Advertisement

Optimum VDD for Minimum Energy

  • Nikhil Jayakumar
  • Suganth Paul
  • Rajesh Garg
  • Kanupriya Gulati
  • Sunil P. Khatri
Chapter

Abstract

Operating circuits in the sub-threshold region or near the sub-threshold design can yield extremely low power circuits. However, for most applications that require ultra-low power, the lowest power solution is not necessarily the optimal solution from a minimum energy point of view. In this chapter, we describe a technique to find the energy optimum VDD value for a design, and show that for minimum energy consumption, the circuit may need to be operated at VDD values that are slightly higher than the NMOS threshold voltage value. We study this problem in the context of designing a circuit using a network of dynamic NOR-NOR PLAs.

In Sect. 11.3, we present related previous work. Some preliminaries and assumptions in this chapter are mentioned in Sect. 11.4 while the experiments that demonstrate how the optimum VDD was calculated are discussed in Sect. 11.5.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Calhoun, B.H., Wang, A., Chandrakasan, A., Kosonocky, S.: Device Sizing for Minimum Energy Operation in Subthreshold Circuits. In: Proc. IEEE Custom Integrated Circuits Conference, pp. 95–98. Orlando, FL (2004)Google Scholar
  2. 2.
    Cao, Y., Sato, T., Sylvester, D., Orshansky, M., Hu, C.: New Paradigm of Predictive MOSFET and Interconnect Modeling for Early Circuit Design. In: Proc. IEEE Custom Integrated Circuit Conference, pp. 201–204. Orlando, FL (2000). http://www-device.eecs.berkeley.edu/~ptm
  3. 3.
    Gonzalez, R., Gordon, B.M., Horowitz, M.A.: Supply and Threshold Voltage Scaling for Low Power CMOS. IEEE Journal of Solid-State Circuits 32(8), 1210–1216 (1997)CrossRefGoogle Scholar
  4. 4.
    Jayakumar, N., Khatri, S.: A METAL and VIA Maskset Programmable VLSI Design Methodology Using PLAs. In: Proc. IEEE/ACM International Conference on Computer Aided Design, pp. 590–594. San Jose, CA (2004)Google Scholar
  5. 5.
    Khatri, S., Mehrotra, A., Brayton, R., Sangiovanni-Vincentelli, A., Otten, R.: A Novel VLSI Layout Fabric for Deep Sub-Micron Applications. In: Proc. Design Automation Conference. New Orleans, LA (1999)Google Scholar
  6. 6.
    Mo, F., Brayton, R.: River PLAs: A Regular Circuit Structure. In: Proc. Design Automation Conference, pp. 201–206. New Orleans, LA (2002)Google Scholar
  7. 7.
    Mo, F., Brayton, R.: Whirlpool PLAs: A Regular Logic Structure and Their Synthesis. In: Proc. IEEE/ACM International Conference on Computer Aided Design, pp. 543–550. San Jose, CA (2002)Google Scholar
  8. 8.
    Mo, F., Brayton, R.: PLA-Based Regular Structures and Their Synthesis. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 22(6), 723–729 (2003)CrossRefGoogle Scholar
  9. 9.
    Nagel, L.: SPICE: A Computer Program to Simulate Computer Circuits. In: University of California, Berkeley UCB/ERL Memo M520 (1995)Google Scholar
  10. 10.
    Paul, B., Soeleman, H., Roy, K.: An 8X8 Sub-Threshold Digital CMOS Carry Save Array Multiplier. In: Proc. European Solid State Circuits Conference, pp. 377–380. Villach, Austria (2001)Google Scholar
  11. 11.
    Rabaey, J.: Design at the End of the Silicon Roadmap. Keynote Talk, Asia and South Pacific Design Automation Conference (2005)Google Scholar
  12. 12.
    Soeleman, H., Roy, K.: Ultra-low Power Digital Subthreshold Logic Circuits. In: Proc. International Symposium on Low Power Electronic Design, pp. 94–96. San Diego, CA (1999)Google Scholar
  13. 13.
    Soeleman, H., Roy, K.: Digital CMOS Logic Operation in the Sub-threshold Region. In: Proc. Tenth Great Lakes Symposium on VLSI, pp. 107–112. Chicago, IL (2000)Google Scholar
  14. 14.
    Soeleman, H., Roy, K., Paul, B.: Robust Subthreshold Logic for Ultra-low Power Operation. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 9(1), 90–99 (2001)Google Scholar
  15. 15.
    Soeleman, H., Roy, K., Paul, B.: Robust Subthreshold Logic for Ultra-low Power Operation. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 9(1), 90–99 (2001)Google Scholar
  16. 16.
    Wang, A., Chandrakasan, A., Kosonocky, S.: Optimal Supply and Threshold Scaling for Subthreshold CMOS Circuits. In: Proc. IEEE Computer Society Annual Symposium on VLSI, pp. 5–9 (2003)Google Scholar
  17. 17.
    Zhai, B., Blaauw, D., Sylvester, D., Flautner, K.: Theoretical and Practical Limits of Dynamic Voltage Scaling. In: Proc. Design Automation Conference, pp. 868–873. San Diego, CA (2004)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Nikhil Jayakumar
    • 1
  • Suganth Paul
    • 2
  • Rajesh Garg
    • 3
  • Kanupriya Gulati
    • 4
  • Sunil P. Khatri
    • 5
  1. 1.SunnyvaleUSA
  2. 2.AustinUSA
  3. 3.HillsboroUSA
  4. 4.College StationUSA
  5. 5.Dept. Electrical & Computer EngineeringTexas A & M UniversityCollege StationUSA

Personalised recommendations