Advertisement

Accelerating Boolean Satisfiability on a Custom IC

  • Kanupriya Gulati
  • Sunil P. Khatri
Chapter

Abstract

Boolean satisfiability (SAT) is a core NP-complete problem. Several heuristic software and hardware approaches have been proposed to solve this problem. In this work, we present a hardware solution to the SAT problem.We propose a custom IC to implement our approach, in which the traversal of the implication graph as well as conflict clause generation is performed in hardware, in parallel.

Keywords

Hardware Architecture Terminal Cell Very Large Scale Integration Communication Unit Clause Generation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
  2. 2.
  3. 3.
  4. 4.
    Abramovici, M., Saab, D.: Satisfiability on reconfigurable hardware. In: Proceedings, International Workshop on Field Programmable Logic and Applications, pp. 448–456 (1997)Google Scholar
  5. 5.
    Abramovici, M., de Sousa, J., Saab, D.: A massively-parallel easily-scalable satisfiability solver using reconfigurable hardware. In: Proceedings, Design Automation Conference (DAC), pp. 684–690 (1999)Google Scholar
  6. 6.
    Bruni, R., Sassano, A.: Restoring satisfiability or maintaining unsatisfiability by finding small unsatisfiable subformulae. In: LICS Workshop on Theory and Applications of Satisfiability Testing (2001)Google Scholar
  7. 7.
    Büning, H.K.: On subclasses of minimal unsatisfiable formulas. Discrete Applied Mathematics 107(1–3), 83–98 (2000)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Cook, S.: The complexity of theorem-proving procedures. In: Proceedings, Third ACM Symposium on Theory of Computing, pp. 151–158 (1971)Google Scholar
  9. 9.
    Davydov, G., Davydova, I., BÂĺuning, H.K.: An efficient algorithm for the minimal unsatisfiability problem for a subclass of CNF. In: Annals of Mathematics and Artificial Intelligence, vol. 23, pp. 229 – 245 (1998)Google Scholar
  10. 10.
    Fleischner, H., Kullmann, O., Szeider, S.: Polynomial-time recognition of minimal unsatisfiable formulas with fixed clause-variable difference. In: Theoretical Computer Science, vol. 289, pp. 503–516 (2002)Google Scholar
  11. 11.
    Goldberg, E., Novikov, Y.: BerkMin: A fast and robust SAT solver. In: Proceedings, Design, Automation and Test in Europe (DATE) Conference, pp. 142–149 (2002)Google Scholar
  12. 12.
    Goldberg, E., Novikov, Y.: Verification of proofs of unsatisfiability for CNF formulas. In: Proceedings, Design and Test in Europe Conference, pp. 10,886 – 10,891 (2003)Google Scholar
  13. 13.
    Gu, J., Purdom, P., Franco, J., Wah, B.: Algorithms for the satisfiability (SAT) problem : A survey. DIMACS Series in Discrete Mathematics and Theoretical Computer Science 35, 19–151 (1997)MathSciNetGoogle Scholar
  14. 14.
    Gulati, K., Waghmode, M., Khatri, S., Shi, W.: Efficient, scalable hardware engine for Boolean satisfiability and unsatisfiable core extraction. IET Computers Digital Techniques 2(3), 214–229 (2008)CrossRefGoogle Scholar
  15. 15.
    Huang, J.: MUP: A minimal unsatisfiability prover. In: ASP-DAC ’05: Proceedings of the 2005 Asia and South Pacific Design Automation Conference, pp. 432–437 (2005)Google Scholar
  16. 16.
    Jin, H., Awedh, M., Somenzi, F.: CirCUs: A satisfiability solver geared towards bounded model checking. In: Computer Aided Verification, pp. 519–522 (2004)Google Scholar
  17. 17.
    Karypis, G., Kumar, V.: A Software Package for Partitioning Unstructured Graphs, Partitioning Meshes and Computing Fill-Reducing Orderings of Sparse Matrices. http://www-users.cs.umn.edu/karypis/metis (1998)
  18. 18.
    Kautz, H.A., Selman, B.: Planning as satisfiability. In: Proceedings, Tenth European Conference on Artificial Intelligence, pp. 359–363 (1992)Google Scholar
  19. 19.
    Lynce, J., Marques-Silva, J.: On computing minimum unsatisfiable cores. In: In Seventh International Conference on Theory and Applications of Satisfiability Testing, pp. 305–310 (2004)Google Scholar
  20. 20.
    McMillan, K.L.: Interpolation and SAT-based model checking. In: Proceedings, Computer Aided Verification, pp. 1–13 (2003)Google Scholar
  21. 21.
    Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an efficient SAT solver. In: Proceedings of the Design Automation Conference, pp. 530–535 (2001)Google Scholar
  22. 22.
    Nagel, L.: SPICE: A computer program to simulate computer circuits. In: University of California, Berkeley UCB/ERL Memo M520 (1995)Google Scholar
  23. 23.
    Nam, G.J., Sakallah, K.A., Rutenbar, R.A.: Satisfiability-based layout revisited: Detailed routing of complex FPGAs via search-based Boolean SAT. In: FPGA ’99: Proceedings of the 1999 ACM/SIGDA Seventh International Symposium on Field Programmable Gate Arrays, pp. 167–175 (1999)Google Scholar
  24. 24.
    Oh, Y., Mneimneh, M., Andraus, Z.S., Sakallah, K.A., Markov, I.L.: AMUSE: A minimally unsatisfiable subformula extractor. In: Proceedings, Design Automation Conference, pp. 518–523 (2004)Google Scholar
  25. 25.
    Pagarani, T., Kocan, F., Saab, D., Abraham, J.: Parallel and scalable architecture for solving Satisfiability on reconfigurable FPGA. In: Proceedings, IEEE Custom Integrated Circuits Conference (CICC), pp. 147–150 (2000)Google Scholar
  26. 26.
    Papadimitriou, C.H., Wolfe, D.: The complexity of facets resolved. In: Journal of Computer and System Sciences, pp. 37(1):2–13 (1998)Google Scholar
  27. 27.
    Reis, N.A., de Sousa, J.T.: On implementing a configware/software SAT solver. In: FCCM ’02: Proceedings of the 10th Annual IEEE Symposium on Field-Programmable Custom Computing Machines, p. 282. IEEE Computer Society, Washington, DC (2002)CrossRefGoogle Scholar
  28. 28.
    Silva, M., Sakallah, J.: GRASP-a new search algorithm for satisfiability. In: Proceedings of the International Conference on Computer-Aided Design (ICCAD), pp. 220–7 (1996)Google Scholar
  29. 29.
    Skliarova, I., Ferrari, A.: Reconfigurable hardware SAT solvers: A survey of systems. IEEE Transactions on Computers 53(11), 1449–1461 (2004)CrossRefGoogle Scholar
  30. 30.
    de Souza, J.T., Abramovici, M., da Silva, J.M.: A configware/software approach to SAT solving. In: IEEE Symposium on FPGAs for Custom Computing Machines (2001)Google Scholar
  31. 31.
    Suyama, T., Yokoo, M., Sawada, H., Nagoya, A.: Solving satisfiability problems using reconfigurable computing. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 9(1), 109–116 (2001)CrossRefGoogle Scholar
  32. 32.
    Waghmode, M., Gulati, K., Khatri, S., Shi, W.: An efficient, scalable hardware engine for Boolean satisfiability. In: Proceedings, IEEE International Conference on Computer Design (ICCD), pp. 326–331 (2006)Google Scholar
  33. 33.
    Zhang, L., Malik, S.: Validating SAT solvers using an independent resolution-based checker: Practical implementations and other applications. In: DATE ’03: Proceedings of the conference on Design, Automation and Test in Europe, p. 10880. IEEE Computer Society, Washington, DC (2003)Google Scholar
  34. 34.
    Zhao, Y., Malik, S., Moskewicz, M., Madigan, C.: Accelerating Boolean satisfiability through application specific processing. In: Proceedings, International Symposium on System Synthesis (ISSS), pp. 244–249 (2001)Google Scholar
  35. 35.
    Zhao, Y., Malik, S., Wang, A., Moskewicz, M., Madigan, C.: Matching architecture to application via configurable processors: A case study with Boolean satisfiability problem. In: Proceedings, International Conference on Computer Design (ICCD), pp. 447–452 (2001)Google Scholar
  36. 36.
    Zheng, L., Stuckey, P.J.: Improving SAT using 2SAT. In: ACSC ’02: Proceedings of the Twenty-fifth Australasian Conference on Computer Science, pp. 331–340. Australian Computer Society, Inc., Darlinghurst, Australia (2002)Google Scholar
  37. 37.
    Zhong, P., Ashar, P., Malik, S., Martonosi, M.: Using reconfigurable computing techniques to accelerate problems in the CAD domain: A case study with Boolean satisfiability. In: Proceedings, Design Automation Conference, pp. 194–199 (1998)Google Scholar
  38. 38.
    Zhong, P., Martonosi, M., Ashar, P., Malik, S.: Accelerating Boolean satisfiability with configurable hardware. In: Proceedings, IEEE Symposium on FPGAs for Custom Computing Machines, pp. 186–195 (1998)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.CoppellUSA
  2. 2.Department of Electrical & Computer EngineeringTexas A & M UniversityCollege StationUSA

Personalised recommendations