Power-Aware System-Level Test Planning

Chapter

Abstract

The high test power consumption, which can be several factors higher than the functional power consumption for which an integrated circuit (IC) is designed, may result in higher overall cost due to yield loss and potentially damaged ICs. As system-on-chips (SOCs) designed in modular fashion are becoming increasingly common, the testing can, in contrast to nonmodular SOCs, be performed in a modular manner. The key advantage is that modular test offers the possibility to plan the testing such that power consumption is controlled; modules are only activated when they are tested. This chapter contains an introduction to core-based testing, which is followed by a discussion on test power consumption and its modeling, and then the chapter discusses power-aware test planning for modular SOCs.

Keywords

Transportation Aliasing 

References

  1. Abadir MS, Breuer MA (1986) Test schedules for VLSI circuits having built-in test hardware. IEEE Trans Comput 35(4):361–367. DOI http://dx.doi.org/10.1109/TC.1986.1676771 Google Scholar
  2. Aerts J, Marinissen EJ (1998) Scan chain design for test time reduction in core-based ICs. In: Proceedings of IEEE international test conference (ITC), pp 448–457Google Scholar
  3. Beenker FPM, Eerdewijk KJE, Gerritsen RBW, Peacock FN, Star MD (1986) Macro testing: unifying ic and board test. IEEE Design Test Comput 3(6):26–32. DOI http://dx.doi.org/ 10.1109/MDT.1986.295048
  4. Bhatia S, Gheewala T, Varma P (1996) A unifying methodology for intellectual property and custom logic testing. In: Proceedings of IEEE international test conference (ITC), pp 639–648Google Scholar
  5. Bonhomme Y, Girard P, Guiller L, Landrault C, Pravossoudovitch S (2001) A gated clock scheme for low power scan testing of logic ICs or embedded cores. In: Proceedings of IEEE Asian test symposium (ATS), pp 253–258Google Scholar
  6. Bonhomme Y, Girard P, Landrault C, Pravossoudovitch S (2002) Power driven chaining of flip-flops in scan architectures. In: Proceedings of IEEE international test conference (ITC), pp 796–803Google Scholar
  7. Bouwman F, Oostdijk S, Stans R, Bennetts B, Beenker FPM (1992) Macro testability: the results of production device applications. In: Proceedings of IEEE international test conference (ITC), pp 232–241Google Scholar
  8. Butler KM, Saxena J, Fryars T, Hetherington G, Jain A, Lewis J (2004) Minimizing power consumption in scan testing: pattern generation and DFT techniques. In: Proceedings of IEEE international test conference (ITC), pp 355–364Google Scholar
  9. Chakrabarty K (2000) Design of system-on-a-chip test access architectures under place-and-route and power constraints. In: Proceedings of ACM/IEEE design automation conference (DAC), pp 432–437. DOI http://doi.acm.org/10.1145/337292.337531
  10. Chakravarty S, Thadikaran PJ (1997) Introduction to IDDQ testing. Kluwer, DordrechtGoogle Scholar
  11. Chou R, Saluja K, Agrawal V (1997) Scheduling tests for VLSI systems under power constraints. IEEE Trans VLSI Syst 5(2):175–185CrossRefGoogle Scholar
  12. Craig GL, Kime CR, Saluja KK (1988) Test scheduling and control for VLSI built-in self-test. IEEE Trans Comput 37(9):1099–1109. DOI http://dx.doi.org/10.1109/12.2260
  13. Dabholkar V, Chakravarty S, Pomeranz I, Reddy S (1998) Techniques for minimizing power dissipation in scan and combinatorial circuits during test application. IEEE Trans Comput Aided Des 17(12):1325–1333CrossRefGoogle Scholar
  14. Flores P, Costa J, Neto H, Monteiro J, Marques-Silva J (1999) Assignment and reordering of incompletely specified pattern sequences targetting minimum power dissipation. In: Proceedings of IEEE international conference on VLSI design (ICVD), pp 37–41Google Scholar
  15. Gattiker A, Nigh P, Grosch D, Maly W (1996) Current signatures for production testing. In: Proceedings of IEEE international workshop on IDDQ testing (IDDQ)Google Scholar
  16. Ghosh S, Basu S, Touba NA (2003) Joint minimization of power and area in scan testing by scan cell reordering. In: Proceedings of IEEE computer society annual symposium on VLSI, pp 246–249Google Scholar
  17. Girard P, Landrault C, Pravossoudovitch S, Severac D (1997) Reduction of power consumption during test application by test vector ordering. Electron Lett 33(21):1752–1754CrossRefGoogle Scholar
  18. Goel SK, Marinissen EJ (2002a) Cluster-based test architecture design for system-on-chip. In: Proceedings of IEEE VLSI test symposium (VTS), pp 259–264Google Scholar
  19. Goel SK, Marinissen EJ (2002b) Effective and efficient test architecture design for SOCs. In: Proceedings of IEEE international test conference (ITC), pp 529–538Google Scholar
  20. Goel SK, Marinissen EJ (2003) SOC test architecture design for efficient utilization of test bandwidth. ACM Trans Des Automat Electron Syst 8(4):399–429. DOI http://doi.acm.org/ 10.1145/944027.944029
  21. Gupta RK, Zorian Y (1997) Introducing core-based system design. IEEE Des Test Comput 14(4):15–25. DOI http://dx.doi.org/10.1109/54.632877 Google Scholar
  22. Harrod P (1999) Testing reusable IP – a case study. In: Proceedings of IEEE international test conference (ITC), p 493Google Scholar
  23. He Z, Jervan G, Peng Z, Eles P (2005) Power-constrained hybrid bist test scheduling in an abort-on-first-fail test environment. In: Proceedings of Euromicro conference on digital system design (DSD), pp 83–87. DOI http://dx.doi.org/10.1109/DSD.2005.63
  24. Huang Y, Cheng WT, Tsai CC, Mukherjee N, Samman O, Zaidan Y, Reddy SM (2001) Resource allocation and test scheduling for concurrent test of core-based SOC design. In: Proceedings of IEEE Asian test symposium (ATS), pp 265–270Google Scholar
  25. Huang Y, Reddy S, Cheng W, Reuter P, Mukherjee N, Tsai C, Samman O, Zaidan Y (2002) Optimal core wrapper width selection and SOC test scheduling based on 3-d bin packing algorithm. In: Proceedings of IEEE international test conference (ITC), pp 74–82Google Scholar
  26. IEEE std 1500 – Standard for embedded core test (2005). DOI http://http://grouper.ieee.org/ groups/1500/
  27. Immaneni V, Raman S (1990) Direct access test scheme-design of block and core cells for embedded asics. In: Proceedings of IEEE international test conference (ITC), pp 488–492. DOI 10.1109/TEST.1990.114058Google Scholar
  28. Iyengar V, Chakrabarty K (2001) Precedence-based, preemptive, and power-constrained test scheduling for system-on-a-chip. In: Proceedings of IEEE VLSI test symposium (VTS), pp 368–374Google Scholar
  29. Iyengar V, Chakrabarty K, Marinissen EJ (2001) Test wrapper and test access mechanism co-optimization for system-on-chip. In: Proceedings of IEEE international test conference (ITC), pp 1023–1032Google Scholar
  30. Iyengar V, Chakrabarty K, Marinissen E (2002a) Efficient wrapper/TAM co-optimization for large SOCs. In: Proceedings of design, automation, and test in Europe (DATE). IEEE Computer Society, Washington, DC, pp 491–498Google Scholar
  31. Iyengar V, Chakrabarty K, Marinissen EJ (2002b) On using rectangle packing for SOC wrapper/TAM co-optimization. In: VTS ’02: Proceedings of the 20th IEEE VLSI test symposium. IEEE Computer Society, Washington, DC, pp 253–258Google Scholar
  32. Iyengar V, Chakrabarty K, Marinissen EJ (2002c) Test wrapper and test access mechanism co-optimization for system-on-chip. J Electron Test Theory Appl 18(2):213–230. DOI http://dx.doi.org/10.1023/A:1014916913577
  33. Koranne S (2002) A novel reconfigurable wrapper for testing of embedded core-based SOCs and its associated scheduling algorithm. J Electron Test Theory Appl 18(4–5):415–434CrossRefGoogle Scholar
  34. Koranne S, Iyengar V (2002) On the use of k-tuples for SOC test schedule representation. In: Proceedings of IEEE international test conference (ITC). IEEE Computer Society, Washington, DC, p 539Google Scholar
  35. Larsson E (2004) Integrating core selection in the SOC test solution design-flow. In: Proceedings of IEEE international test conference (ITC), pp 1349–1358Google Scholar
  36. Larsson E, Fujiwara H (2006) System-on-chip test scheduling with reconfigurable core wrappers. IEEE Trans VLSI Syst 14(3):305–309. DOI http://dx.doi.org/10.1109/TVLSI.2006.871757 Google Scholar
  37. Larsson E, Peng Z (1999) An estimation-based technique for test scheduling. In: Proceedings of electronic circuits and systems conferenceGoogle Scholar
  38. Larsson E, Peng Z (2000) A technique for test infrastructure design and test scheduling. In: Proceedings of IEEE design and diagnostics of electronic circuits and systems workshop (DDECS)Google Scholar
  39. Larsson E, Peng Z (2001a) An integrated system-on-chip test framework. In: DATE ’01: Proceedings of the conference on design, automation and test in Europe. IEEE, Piscataway, NJ, pp 138–144Google Scholar
  40. Larsson E, Peng Z (2001b) Test scheduling and scan-chain division under power constraints. In: Proceedings of IEEE Asian test symposium (ATS), pp 259–264Google Scholar
  41. Larsson E, Peng Z (2002a) An integrated framework for the design and optimization of SOC test solutions. J Electron Test Theory Appl 18(4–5):385–400CrossRefGoogle Scholar
  42. Larsson E, Peng Z (2002b) An integrated framework for the design and optimization of SOC test solutions. In: Chakrabarty K (ed) SOC (system-on-a-chip) testing for plug and play test automation, frontiers in electronics testing, vol 21. Kluwer, Dordrecht, pp 21–36Google Scholar
  43. Larsson E, Peng Z (2006) Power-aware test planning in the early system-on-chip design exploration process. IEEE Trans Comput 6(2):227–239CrossRefGoogle Scholar
  44. Larsson E, Arvidsson K, Fujiwara H, Peng Z (2002) Integrated test scheduling, test parallelization and TAM design. In: Proceedings of IEEE Asian test symposium (ATS), p 397Google Scholar
  45. Larsson E, Arvidsson K, Fujiwara H, Peng Z (2004) Efficient test solutions for core-based designs. IEEE Trans Comput Aided Des 23(5):758–775. DOI 10.1109/TCAD.2004.826560CrossRefGoogle Scholar
  46. Marinissen EJ, Iyengar V, Chakrabarty K (2002) A set of benchmarks for modular testing of SOCs. In: Proceedings of IEEE international test conference, pp 519–528Google Scholar
  47. Muresan V, Wang X, Muresan V, Vladutiu M (2000) A comparison of classical scheduling approaches in power-constrained block-test scheduling. In: ITC ’00: Proceedings of the 2000 IEEE international test conference. IEEE Computer Society, Washington, DC, p 882Google Scholar
  48. Mureşan V, Wang X, Mureşan V, Vlăduţiu M (2004) Greedy tree growing heuristics on block-test scheduling under power constraints. J Electron Test Theory Appl 20(1):61–78. DOI http://dx.doi.org/10.1023/B:JETT.0000009314.39022.78 Google Scholar
  49. Nicolici N, Al-Hashimi BM (2003) Power-conscious test synthesis and scheduling. IEEE Design Test Comput 20(4):48–55. DOI http://dx.doi.org/10.1109/MDT.2003.1214352 Google Scholar
  50. Pouget J, Larsson E, Peng Z (2003a) SOC test time minimization under multiple constraints. In: Proceedings of Asian test symposium (ATS), pp 312–317Google Scholar
  51. Pouget J, Larsson E, Peng Z, Flottes M, Rouzeyre B (2003b) An efficient approach to SOC wrapper design, TAM configuration and test scheduling. In: Proceedings of IEEE European test symposium (ETS), pp 51–56Google Scholar
  52. Pouget J, Larsson E, Peng Z (2005) Multiple-constraint driven system-on-chip test time optimization. J Electron Test Theory Appl 21(6):599–611. DOI http://dx.doi.org/10.1007/s10836-005-2911-4 Google Scholar
  53. Rajsuman R (1995) IDDQ testing for CMOS VLSI. Artech Publishing, ItalyGoogle Scholar
  54. Rajsuman R (1998) Design for IDDQ testing for embedded cores based sysem-on-chip. In: Proceedings of IEEE international workshop on IDDQ testing (IDDQ), pp 69–73Google Scholar
  55. Ravikumar CP, Hetherington G (2004) A holistic parallel and hierarchical approach towards design-for-test. In: Proceedings of IEEE international test conference (ITC), pp 345–354Google Scholar
  56. Ravikumar CP, Kumar R (2002) Divide-and-conquer IDDQ testing for core-based system chips. In: Proceedings of international conference on VLSI design (VLSID), pp 761–766Google Scholar
  57. Ravikumar CP, Chandra G, Verma A (2000) Simultaneous module selection and scheduling for power-constrained testing of core based systems. In: Proceedings of international conference on VLSI design (VLSID), p 462Google Scholar
  58. Ravikumar CP, Dandamudi R, Devanathan VR, Haldar N, Kiran K, Kumar PS (2005) A framework for distributed and hierarchical design-for-test. In: Proceedings of international conference on VLSI design (VLSID), pp 497–503Google Scholar
  59. Rosinger PM, Al-Hashimi BM, Nicolici N (2002) Power profile manipulation: a new approach for reducing test application time under power constraints. IEEE Trans Comput Aided Des 21(10):1217–1225CrossRefGoogle Scholar
  60. Rosinger P, Al-Hashimi B, Chakrabarty K (2005) Rapid generation of thermal-safe test schedules. In: Proceedings of the design, automation and test in Europe conference, pp 840–845Google Scholar
  61. Runyon RP, Haber A, Pittenger DJ, Coleman KA (1996) Fundamentals of behavioral statistics, 2nd edn. McGraw-Hill, New YorkGoogle Scholar
  62. Sachdev M (1997) Deep submicron IDDQ testing: issues and solutions. In: Proceedings of European design and test conference (ED&TC), pp 271–278Google Scholar
  63. Samii S, Larsson E, Chakrabarty K, Peng Z (2006) Cycle-accurate test power modeling and its application to SOC test scheduling. In: Proceedings of IEEE international test conference (ITC), pp 1–10. DOI 10.1109/TEST.2006.297693Google Scholar
  64. Samii S, Selkälä M, Larsson E, Chakrabarty K, Peng Z (2008) Cycle-accurate test power modeling and its application to SOC test architecture design and scheduling. IEEE Trans Comput Aided Des 27(5):973–977CrossRefGoogle Scholar
  65. Saxena J, Butler KM, Whetsel L (2001) An analysis of power reduction techniques in scan testing. In: Proceedings of the IEEE international test conference 2001. IEEE Computer Society, Washington, DC, pp 670–677Google Scholar
  66. Sehgal A, Bahukudumbi S, Chakrabarty K (2008) Power-aware SOC test planning for effective utilization of port-scalable testers. ACM Trans Des Automat Electron Syst 13(3):1–19. DOI http://doi.acm.org/10.1145/1367045.1367062
  67. Senthil AT, Ravikumar CP, Nandy SK (2007) Low-power hierarchical scan test for multiple clock domains. J Low Power Electron 3(1):106–118CrossRefGoogle Scholar
  68. Singh V, Larsson E (2008) On reduction of capture power for modular system-on-chip test. In: Digest of papers of IEEE workshop on RTL and high level testing (WRTLT)Google Scholar
  69. Su CP, Wu CW (2004) A graph-based approach to power-constrained SOC test scheduling. J Electron Test Theory Appl 20(1):45–60. DOI http://dx.doi.org/10.1023/B:JETT.0000009313.23362.fd Google Scholar
  70. Touba NA, Pouya B (1997) Using partial isolation rings to test core-based designs. IEEE Des Test Comput 14(4):52–59. DOI http://dx.doi.org/10.1109/54.632881
  71. Tudu JT, Larsson E, Singh V, Agrawal V (2009) On capture power reduction for modular system-on-chip test. In: Proceedings of IEEE European test symposium (ETS)Google Scholar
  72. Varma P, Bhatia S (1998) A structured test re-use methodology for core-based system chips. In: Proceedings of IEEE international test conference (ITC), pp 294–302Google Scholar
  73. Whetsel L (1997) An IEEE 1149.1-based test access architecture for ICs with embedded cores. In: Proceedings of IEEE international test conference (ITC), pp 69–78Google Scholar
  74. Xia Y, Chrzanowska-Jeske M, Wang B, Jeske M (2003) Using a distributed rectangle bin-packing approach for core-based SOC test scheduling with power constraints. In: Proceedings of international conference on computer-aided design (ICCAD), pp 100–105. DOI http://dx.doi.org/10.1109/ICCAD.2003.148
  75. Xu Q, Nicolici N (2005) Resource-constrained system-on-a-chip test: a survey. Comput Digital Tech, IEE Proc 152(1):67–81CrossRefGoogle Scholar
  76. Xu Q, Nicolici N, Chakrabarty K (2005) Multi-frequency wrapper design and optimization for embedded cores under average power constraints. In: Proceedings of ACM/IEEE design automation conference (DAC). ACM, New York, NY, pp 123–128. DOI http://doi.acm.org/10.1145/1065579.1065615
  77. Yoneda T, Fujiwara H (2002) Design for consecutive testability of system-on-a-chip with built-in self testable cores. J Electron Test Theory Appl 18(4–5):487–501CrossRefGoogle Scholar
  78. Yoneda T, Masuda K, Fujiwara H (2006) Power-constrained test scheduling for multi-clock domain SOCs. In: Proceedings of design, automation, and test in Europe (DATE), pp 297–302Google Scholar
  79. Zhao D, Upadhyaya S (2003) Power constrained test scheduling with dynamically varied TAM. In: Proceedings of IEEE VLSI test symposium (VTS). IEEE Computer Society, Washington, DC, p 273Google Scholar
  80. Zorian Y (1993) A distributed BIST control scheme for complex VLSI devices. In: Proceedings of VLSI Test Symposium, pp 4–9Google Scholar
  81. Zorian Y (1997) Test requirements for embedded core-based systems and IEEE p1500. In: Proceedings of IEEE international test conference (ITC), p 191Google Scholar
  82. Zorian Y (1998) Challenges in testing core-based system chips. IEEE Commun Mag 37(6):104–109Google Scholar
  83. Zorian Y, Marinissen EJ, Dey S (1998) Testing embedded-core based system chips. In: Proceedings of IEEE international test conference (ITC), pp 130–143Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Linköping UniversityLinköpingSweden
  2. 2.Texas Instruments Inc.BangaloreIndia

Personalised recommendations