Differentiation of Matrix Expressions

  • Jon Wakefield
Chapter
Part of the Springer Series in Statistics book series (SSS)

Abstract

For univariate x and f : we write the derivative as

References

  1. Agresti, A. (1990). Categorical data analysis. New York: Wiley.MATHGoogle Scholar
  2. Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In B.N. Petrov & F. Csaki (Eds.), Second International Symposium on Information Theory (pp. 267–281). Budapest: Akademia Kiado.Google Scholar
  3. Allen, J., Zwerdling, R., Ehrenkranz, R., Gaultier, C., Geggel, R., Greenough, A., Kleinman, R., Klijanowicz, A., Martinez, F., Ozdemir, A., Panitch, H., Nickerson, B., Stein, M., Tomezsko, J., van der Anker, J., & American Thoracic Society. (2003). Statement of the care of the child with chronic lung disease of infancy and childhood. American Journal of Respiratory and Critical Care Medicine168, 356–396.Google Scholar
  4. Altham, D. (1991). Practical statistics for medical research. Boca Raton: Chapman and Hall/CRC.Google Scholar
  5. Altham, P. (1969). Exact Bayesian analysis of a 2 ×2 contingency table and Fisher’s ‘exact’ significance test. Journal of the Royal Statistical Society, Series B31, 261–269.MathSciNetGoogle Scholar
  6. Arcones, M., & E. Giné. (1992). On the bootstrap of M-estimators and other statistical functionals. In R. LePage & L. Billard (Eds.), Exploring the limits of bootstrap. New York: Wiley.Google Scholar
  7. Armitage, P., & Berry, G. (1994). Statistical methods in medical research, third edition. Oxford: Blackwell Science.Google Scholar
  8. Bachrach, L., Hastie, T., Wang, M.-C., Narasimhan, B., & Marcus, R. (1999). Bone mineral acquisition in healthy Asian, Hispanic, Black and Caucasian youth. A longitudinal study. Journal of Clinical Endocrinology and Metabolism84, 4702–4712.Google Scholar
  9. Bahadur, R. (1961). A representation of the joint distribution of responses to n dichotomous items. In H. Solomon (Ed.), Studies on item analysis and prediction (pp. 158–168). Stanford: Stanford Mathematical Studies in the Social Sciences VI, Stanford University Press.Google Scholar
  10. Barnett, V. (2009). Comparative statistical inference (3rd ed.). New York: Wiley.Google Scholar
  11. Bartlett, M. (1957). A comment on D.V. Lindley’s statistical paradox. Biometrika44, 533–534.Google Scholar
  12. Bates, D. (2011). Computational methods for mixed models. Technical report, http://cran.r-project.org/web/packages/lme4/index.html.
  13. Bates, D., & Watts, D. (1980). Curvature measures of nonlinearity (with discussion). Journal of the Royal Statistical Society, Series B42, 1–25.MathSciNetMATHGoogle Scholar
  14. Bates, D., & Watts, D. (1988). Nonlinear regression analysis and its applications. New York: Wiley.MATHCrossRefGoogle Scholar
  15. Bauer, E., & Kohavi, R. (1999). An empirical comparison of voting classification algorithms: Bagging, boosting, and variants. Machine Learning36, 105–139.CrossRefGoogle Scholar
  16. Bayes, T. (1763). An essays towards solving a problem in the doctrine of chances. Philosophical Transactions of the Royal Society of London53, 370–418. Reprinted, with an introduction by George Barnard, in 1958 in Biometrika, 45, 293–315.Google Scholar
  17. Beal, S., & Sheiner, L. (1982). Estimating population kinetics. CRC Critical Reviews in Biomedical Engineering8, 195–222.Google Scholar
  18. Beale, E. (1960). Confidence regions in non-linear estimation (with discussion). Journal of the Royal Statistical Society, Series B22, 41–88.MathSciNetMATHGoogle Scholar
  19. Beaumont, M., Wenyang, Z., & Balding, D. (2002). Approximate Bayesian computation in population genetics. Genetics162, 2025–2035.Google Scholar
  20. Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, Series B, 57, 289–300.MathSciNetMATHGoogle Scholar
  21. Berger, J. (2003). Could Fisher, Jeffreys and Neyman have agreed on testing? (with discussion). Statistical Science18, 1–32.MathSciNetMATHCrossRefGoogle Scholar
  22. Berger, J. (2006). The case for objective Bayesian analysis. Bayesian Analysis1, 385–402.MathSciNetCrossRefGoogle Scholar
  23. Berger, J., & Bernardo, J. (1992). On the development of reference priors (with discussion). In J. Bernardo, J. Berger, A. Dawid, & A. Smith (Eds.), Bayesian statistics 4, Proceedings of the Fourth Valencia International Meeting (pp. 35–60). Oxford: Oxford University Press.Google Scholar
  24. Berger, J. & Wolpert, R. (1988). The likelihood principle: A review, generalizations, and statistical implications. Hayward: IMS Lecture Notes.Google Scholar
  25. Berk, R. (2008). Statistical learning from a regression perspective. New York: Springer.MATHGoogle Scholar
  26. Bernardo, J. (1979). Reference posterior distributions for Bayesian inference (with discussion). Journal of the Royal Statistical Society, Series B41, 113–147.MathSciNetMATHGoogle Scholar
  27. Bernardo, J., & Smith, A. (1994). Bayesian theory. New York: Wiley.MATHCrossRefGoogle Scholar
  28. Bernstein, S. (1917). Theory of probability (Russian). Moscow-Leningrad: Gostekhizdat.Google Scholar
  29. Besag, J., & Kooperberg, C. (1995). On conditional and intrinsic auto-regressions. Biometrika, 82, 733–746.MathSciNetMATHGoogle Scholar
  30. Besag, J., York, J., & Mollié, A. (1991). Bayesian image restoration with two applications in spatial statistics. Annals of the Institute of Statistics and Mathematics43, 1–59.MATHCrossRefGoogle Scholar
  31. Bickel, P., & Freedman, D. (1981). Some asymptotic theory for the bootstrap. Annals of Statistics9, 1196–1217.MathSciNetMATHCrossRefGoogle Scholar
  32. Bishop, Y., Feinberg, S., & Holland, P. (1975). Discrete multivariate analysis: Theory and practice. Cambridge: MIT.MATHGoogle Scholar
  33. Black, D. (1984). Investigation of the possible increased incidence of cancer in West Cumbria. London: Report of the Independent Advisory Group, HMSO.Google Scholar
  34. Bliss, C. (1935). The calculation of the dosage-mortality curves. Annals of Applied Biology, 22, 134–167.CrossRefGoogle Scholar
  35. de Boor, C. (1978). A practical guide to splines. New York: Springer.MATHCrossRefGoogle Scholar
  36. Bowman, A., & Azzalini, A. (1997). Applied smoothing techniques for data analysis. Oxford: Oxford University Press.MATHGoogle Scholar
  37. Breiman, L. (1996). Bagging predictors. Machine Learning24, 123–140.MathSciNetMATHGoogle Scholar
  38. Breiman, L. (2001a). Random forests. Machine Learning45, 5–32.MATHCrossRefGoogle Scholar
  39. Breiman, L. (2001b). Statistical modeling: The two cultures (with discussion). Statistical Science16, 199–231.MathSciNetMATHCrossRefGoogle Scholar
  40. Breiman, L., & Spector, P. (1992). Submodel selection and evaluation in regression. the x-random case. International Statistical Review60, 291–319.Google Scholar
  41. Breiman, L., Friedman, J., Olshen, R., & Stone, C. (1984). Classification and regression trees. Monterrey: Wadsworth.MATHGoogle Scholar
  42. Breslow, N. (2005). Whither PQL? In D. Lin & P. Heagerty (Eds.), Proceedings of the Second Seattle Symposium (pp. 1–22). New York: Springer.Google Scholar
  43. Breslow, N. & Chatterjee, N. (1999). Design and analysis of two-phase studies with binary outcome applied to Wilms tumour prognosis. Applied Statistics48, 457–468.MATHCrossRefGoogle Scholar
  44. Breslow, N., & Clayton, D. (1993). Approximate inference in generalized linear mixed models. Journal of the American Statistical Association88, 9–25.MATHGoogle Scholar
  45. Breslow, N., & Day, N. (1980). Statistical methods in cancer research, Volume 1- The analysis of case-control studies. Lyon: IARC Scientific Publications No. 32.Google Scholar
  46. Brinkman, N. (1981). Ethanol fuel – a single-cylinder engine study of efficiency and exhaust emissions. SAE Transcations90, 1410–1424.Google Scholar
  47. Brooks, S., Gelman, A., Jones, G., & Meng, X.-L. (Eds.). (2011). Handbook of Markov chain Monte Carlo. Boca Raton: Chapman and Hall/CRC.MATHGoogle Scholar
  48. Bühlmann, P., & Yu, B. (2002). Analyzing bagging. The Annals of Statistics30, 927–961.MathSciNetMATHCrossRefGoogle Scholar
  49. Buja, A., Hastie, T., & Tibshirani, R. (1989). Linear smoothers and additive models (with discussion). Annals of Statistics17, 453–555.MathSciNetMATHCrossRefGoogle Scholar
  50. Buse, A. (1982). The likelihood ratio, Wald, and Lagrange multiplier tests: an expository note. The American Statistician36, 153–157.Google Scholar
  51. Cameron, A., & Trivedi, P. (1998). Regression analysis of count data. Cambridge: Cambridge University Press.MATHGoogle Scholar
  52. Carey, V., Zeger, S., & Diggle, P. (1993). Modeling multivariate binary data with alternating logistic regressions. Biometrika80, 517–526.MATHCrossRefGoogle Scholar
  53. Carlin, B., & Louis, T. (2009). Bayesian methods for data analysis (3rd ed.). Boca Raton: Chapman and Hall/CDC.Google Scholar
  54. Carroll, R., & Ruppert, D. (1988). Transformations and weighting in regression. Boca Raton: Chapman and Hall/CRC.Google Scholar
  55. Carroll, R., Ruppert, D., & Stefanski, L. (1995). Measurement error in nonlinear models. Boca Raton: Chapman and Hall/CRC.MATHGoogle Scholar
  56. Carroll, R., Rupert, D., Stefanski, L., & Crainiceanu, C. (2006). Measurement error in nonlinear models: A modern perspective (2nd ed.). Boca Raton: Chapman and Hall/CRC.MATHCrossRefGoogle Scholar
  57. Casella, G., & Berger, R. (1987). Reconciling Bayesian evidence in the one-sided testing problem. Journal of the American Statistical Association82, 106–111.MathSciNetMATHCrossRefGoogle Scholar
  58. Casella, G., & Berger, R. (1990). Statistical inference. Pacific Grove: Wadsworth and Brooks.MATHGoogle Scholar
  59. Chaloner, K., & Brant, R. (1988). A Bayesian approach to outlier detection and residual analysis. Biometrika75, 651–659.MathSciNetMATHCrossRefGoogle Scholar
  60. Chambers, R., & Skinner, C. (2003). Analysis of survey data. New York: Wiley.MATHCrossRefGoogle Scholar
  61. Chan, K., & Geyer, C. (1994). Discussion of “Markov chains for exploring posterior distributions”. The Annals of Statistics22, 1747–1758.CrossRefGoogle Scholar
  62. Chatfield, C. (1995). Model uncertainty, data mining and statistical inference (with discussion). Journal of the Royal Statistical Society, Series A158, 419–466.CrossRefGoogle Scholar
  63. Chaudhuri, P., & Marron, J. (1999). SiZer for exploration of structures in curves. Journal of the American Statistical Association94, 807–823.MathSciNetMATHCrossRefGoogle Scholar
  64. Chen, S., Donoho, D., & Saunders, M. (1998). Atomic decomposition by basis pursuit. SIAM Journal of Scientific Computing20, 33–61.MathSciNetCrossRefGoogle Scholar
  65. Chipman, H., George, E., & McCulloch, R. (1998). Bayesian cart model search (with discussion). Journal of the American Statistical Association93, 935–960.CrossRefGoogle Scholar
  66. Clayton, D., & Hills, M. (1993). Statistical models in epidemiology. Oxford: Oxford University Press.MATHGoogle Scholar
  67. Clayton, D., & Kaldor, J. (1987). Empirical Bayes estimates of age-standardized relative risks for use in disease mapping. Biometrics43, 671–682.CrossRefGoogle Scholar
  68. Cleveland, W., Grosse, E., & Shyu, W. (1991). Local regression models. In J. Chambers & T. Hastie (Eds.), Statistical models in S (pp. 309–376). Pacific Grove: Wadsworth and Brooks/Cole.Google Scholar
  69. Cochran, W. (1977). Sampling techniques. New York: Wiley.MATHGoogle Scholar
  70. Cook, R., & Weisberg, S. (1982). Residuals and influence in regression. Boca Raton: Chapman and Hall/CRC.MATHGoogle Scholar
  71. Cox, D. (1972). The analysis of multivariate binary data. Journal of the Royal Statistical Society, Series C21, 113–120.CrossRefGoogle Scholar
  72. Cox, D. (1983). Some remarks on overdispersion. Biometrika70, 269–274.MathSciNetMATHCrossRefGoogle Scholar
  73. Cox, D. (2006). Principles of statistical inference. Cambridge: Cambridge University Press.MATHCrossRefGoogle Scholar
  74. Cox, D., & Hinkley, D. (1974). Theoretical statistics. Boca Raton: Chapman and Hall/CRC.MATHGoogle Scholar
  75. Cox, D., & Reid, N. (2000). The theory of the design of experiments. Boca Raton: Chapman and Hall/CRC.MATHGoogle Scholar
  76. Cox, D., & Snell, E. (1989). The analysis of binary data (2nd ed.). Boca Raton: Chapman and Hall/CRC.Google Scholar
  77. Craig, P., Goldstein, M., Seheult, A., & Smith, J. (1998). Constructing partial prior specifications for models of complex physical systems. Journal of the Royal Statistical Society, Series D, 47, 37–53.CrossRefGoogle Scholar
  78. Crainiceanu, C., Ruppert, D., & Wand, M. (2005). Bayesian analysis for penalized spline regression using WinBUGS. Journal of Statistical Software14, 1–24.Google Scholar
  79. Craven, P., & Wabha, G. (1979). Smoothing noisy data with spline functions. Numerische Mathematik31, 377–403.MATHCrossRefGoogle Scholar
  80. Crowder, M. (1986). On consistency and inconsistency of estimating equations. Econometric Theory2, 305–330.CrossRefGoogle Scholar
  81. Crowder, M. (1987). On linear and quadratic estimating functions. Biometrika74, 591–597.MathSciNetMATHCrossRefGoogle Scholar
  82. Crowder, M. (1995). On the use of a working correlation matrix in using generalized linear models for repeated measures. Biometrika82, 407–410.MATHCrossRefGoogle Scholar
  83. Crowder, M., & Hand, D. (1990). Analysis of repeated measures. Boca Raton: Chapman and Hall/CRC.MATHGoogle Scholar
  84. Crowder, M., & Hand, D. (1996). Practical longitudinal data analysis. Boca Raton: Chapman and Hall/CRC.MATHGoogle Scholar
  85. Darby, S., Hill, D., & Doll, R. (2001). Radon: a likely carcinogen at all exposures. Annals of Oncology12, 1341–1351.CrossRefGoogle Scholar
  86. Darroch, J., Lauritzen, S., & Speed, T. (1980). Markov fields and log-linear interaction models for contingency tables. The Annals of Statistics8, 522–539.MathSciNetMATHCrossRefGoogle Scholar
  87. Davidian, M., & Giltinan, D. (1995). Nonlinear models for repeated measurement data. Boca Raton: Chapman and Hall/CRC.Google Scholar
  88. Davies, O. (1967). Statistical methods in research and production (3rd ed.). London: Olive and Boyd.Google Scholar
  89. Davison, A. (2003). Statistical models. Cambridge: Cambridge University Press.MATHCrossRefGoogle Scholar
  90. Davison, A., & Hinkley, D. (1997). Bootstrap methods and their application. Cambridge: Cambridge University Press.MATHGoogle Scholar
  91. De Finetti, B. (1974). Theory of probability, volume 1. New York: Wiley.Google Scholar
  92. De Finetti, B. (1975). Theory of probability, volume 2. New York: Wiley.Google Scholar
  93. Demidenko, E. (2004). Mixed models. Theory and applications. New York: Wiley.MATHCrossRefGoogle Scholar
  94. Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the em algorithm. Journal of the Royal Statistical Society, Series B39(1), 1–38.MathSciNetMATHGoogle Scholar
  95. Denison, D., & Holmes, C. (2001). Bayesian partitioning for estimating disease risk. Biometrics57, 143–149.MathSciNetMATHCrossRefGoogle Scholar
  96. Denison, D., Holmes, C., Mallick, B., & Smith, A. (2002). Bayesian methods for nonlinear classification and regression. New York: Wiley.MATHGoogle Scholar
  97. Dennis, J., Jr, & Schnabel, R. (1996). Numerical methods for unconstrained optimization and nonlinear equations. Englewood Cliffs: Siam.MATHCrossRefGoogle Scholar
  98. Devroye, L. (1986). Non-uniform random variate generation. New York: Springer.MATHGoogle Scholar
  99. Diaconis, P., & Freedman, D. (1986). On the consistency of Bayes estimates. Annals of Statistics14, 1–26.MathSciNetMATHCrossRefGoogle Scholar
  100. Diaconis, P., & Ylvisaker, D. (1980). Quantifying prior opinion (with discussion). In J. Bernardo, M. D. Groot, D. Lindley, & A. Smith (Eds.), Bayesian statistics 2 (pp. 133–156). Amsterdam: North Holland.Google Scholar
  101. DiCiccio, T., Kass, R., Raftery, A., & Wasserman, L. (1997). Computing Bayes factors by combining simulation and asymptotic approximations. Journal of the American Statistical Association92, 903–915.MathSciNetMATHCrossRefGoogle Scholar
  102. Diggle, P., & Rowlingson, B. (1994). A conditional approach to point process modelling of raised incidence. Journal of the Royal Statistical Society, Series A157, 433–440.CrossRefGoogle Scholar
  103. Diggle, P., Morris, S., & Wakefield, J. (2000). Point source modelling using matched case-control data. Biostatistics1, 89–105.MATHCrossRefGoogle Scholar
  104. Diggle, P., Heagerty, P., Liang, K.-Y., & Zeger, S. (2002). Analysis of longitudinal data (2nd ed.). Oxford: Oxford University Press.Google Scholar
  105. Doob, J. (1948). Le Calcul des Probabilités et ses Applications, Chapter Application of the theory of martingales (pp. 22–28). Colloques Internationales du CNRS Paris.Google Scholar
  106. Duchon, J. (1977). Splines minimizing rotation-invariant semi-norms in Solobev spaces. In W. Schemp & K. Zeller (Eds.), Construction theory of functions of several variables (pp. 85–100). New York: Springer.CrossRefGoogle Scholar
  107. Dwyer, J., Andrews, E., Berkey, C., Valadian, I., & Reed, R. (1983). Growth in “new” vegetarian preschool children using the Jenss-Bayley curve fitting technique. American Journal of Clinical Nutrition37, 815–827.Google Scholar
  108. Efron, B. (1975). The efficiency of logistic regression compared to normal discriminant analysis. Journal of the American Statistical Association70, 892–898.MathSciNetMATHCrossRefGoogle Scholar
  109. Efron, B. (1979). Bootstrap methods: Another look at the jacknife. Annals of Statistics7, 1–26.MathSciNetMATHCrossRefGoogle Scholar
  110. Efron, B. (2008). Microarrays, empirical Bayes and the two groups model (with discussion). Statistical Science23, 1–47.MathSciNetCrossRefGoogle Scholar
  111. Efron, B., & Tibshirani, R. (1993). An introduction to the bootstrap. Boca Raton: Chapman and Hall/CRC.MATHGoogle Scholar
  112. Efroymson, M. (1960). Multiple regression analysis. In A. Ralston & H. Wilf (Eds.), Mathematical methods for digital computers (pp. 191–203). New YOrk: Wiley.Google Scholar
  113. Eilers, P., & Marx, B. (1996). Flexible smoothing with B-splines and penalties. Statistical Science11, 89–102.MathSciNetMATHCrossRefGoogle Scholar
  114. Essenberg, J. (1952). Cigarette smoke and the incidence of primary neoplasm of the lung in the albino mouse. Science116, 561–562.CrossRefGoogle Scholar
  115. Evans, M., & Swartz, T. (2000). Approximating integrals via Monte Carlo and deterministic methods. Oxford: Oxford University Press.MATHGoogle Scholar
  116. Fan, J. (1992). Design-adaptive nonparametric regression. Journal of the American Statistical Association87, 1273–1294.CrossRefGoogle Scholar
  117. Fan, J. (1993). Local linear regression smoothers and their minimax efficiencies. Annals of Statistics21, 196–215.MathSciNetMATHCrossRefGoogle Scholar
  118. Fan, J. & I. Gijbels (1996). Local polynomial modelling and its applications. Boca Raton: Chapman and Hall/CRC.MATHGoogle Scholar
  119. Faraway, J. (2004). Linear models with R. Boca Raton: Chapman and Hall/CRC.Google Scholar
  120. Fearnhead, P., & Prangle, D. (2012). Constructing summary statistics for approximate bayesian computation: semi-automatic approximate bayesian computation (with discussion). Journal of the Royal Statistical Society, Series B74, 419–474.MathSciNetCrossRefGoogle Scholar
  121. Ferguson, T. (1996). A course in large sample theory. Boca Raton: Chapman and Hall/CRC.MATHGoogle Scholar
  122. Feynman, R. (1951). The concept of probability in quantum mechanics. In J. Neyman (Ed.), Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability (pp. 535–541). California: University of California Press.Google Scholar
  123. Fine, P., Ponnighaus, J., Maine, N., Clarkson, J., & Bliss, L. (1986). Protective efficacy of BCG against leprosy in Northern Malawi. The Lancet328, 499–502.CrossRefGoogle Scholar
  124. Firth, D. (1987). On the efficiency of quasi-likelihood estimation. Biometrika74, 233–245.MathSciNetMATHCrossRefGoogle Scholar
  125. Firth, D. (1993). Recent developments in quasi-likelihood methods. In Bulletin of the international Statistical Institute, 55, 341–358.Google Scholar
  126. Fisher, R. (1922). On the mathematical foundations of theoretical statistics. Philosophical Transactions of the Royal Society of London, Series A222, 309–368.MATHCrossRefGoogle Scholar
  127. Fisher, R. (1925a). Statistical methods for research workers. Edinburgh: Oliver and Boyd.Google Scholar
  128. Fisher, R. (1925b). Theory of statistical estimation. Proceedings of the Cambridge Philosophical Society22, 700–725.MATHCrossRefGoogle Scholar
  129. Fisher, R. (1935). The logic of inductive inference (with discussion). Journal of the Royal Statistical Society, Series A98, 39–82.Google Scholar
  130. Fisher, R. (1936). The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7, 179–188.Google Scholar
  131. Fisher, R. (1990). Statistical methods, experimental design and scientific inference. Oxford: Oxford University Press.MATHGoogle Scholar
  132. Fitzmaurice, G., & Laird, N. (1993). A likelihood-based method for analyzing longitudinal binary responses. Biometrika80, 141–151.MATHCrossRefGoogle Scholar
  133. Fitzmaurice, G., Laird, N., & Rotnitzky, A. (1993). Regression models for discrete longitudinal responses (with discussion). Statistical Science8, 248–309.MathSciNetGoogle Scholar
  134. Fitzmaurice, G., Laird, N., & Ware, J. (2004). Applied longitudinal analysis. New York: Wiley.MATHGoogle Scholar
  135. Fong, Y., Rue, H., & Wakefield, J. (2010). Bayesian inference for generalized linear models. Biostatistics11, 397–412.CrossRefGoogle Scholar
  136. Freedman, D. (1997). From association to causation via regression. Advances in Applied Mathematics18, 59–110.MathSciNetMATHCrossRefGoogle Scholar
  137. Freund, Y., & Schapire, R. (1997). Experiments with a new boosting algorithm. In Machine Learning: Proceedings for the Thirteenth International Conference, San Fransisco (pp. 148–156). Los Altos: Morgan Kaufmann.Google Scholar
  138. Friedman, J. (1979). A tree-structured approach to nonparametric multiple regression. In T. Gasser & M. Rosenblatt (Eds.), Smoothing techniques for curve estimation (pp. 5–22). New York: Springer.CrossRefGoogle Scholar
  139. Friedman, J. (1991). Multivariate adaptive regression splines (with discussion). Annals of Statistics19, 1–141.MathSciNetMATHCrossRefGoogle Scholar
  140. Friedman, J., Hastie, T., & Tibshirani, R. (2000). Additive logistic regression: A statistical view of boosting (with discussion). Annals of Statistics28, 337–407.MathSciNetMATHCrossRefGoogle Scholar
  141. Gallant, A. (1987). Nonlinear statistical models. New York: Wiley.MATHCrossRefGoogle Scholar
  142. Gamerman, D. and Lopes, H. F. (2006). Markov chain Monte Carlo: Stochastic simulation for Bayesian inference (2nd ed.). Boca Raton: Chapman and Hall/CRC.MATHGoogle Scholar
  143. Gasser, T., Stroka, L., & Jennen-Steinmetz, C. (1986). Residual variance and residual pattern in nonlinear regression. Biometrika73, 625–633.MathSciNetMATHCrossRefGoogle Scholar
  144. Gelfand, A. E., Diggle, P. J., Fuentes, M., & Guttorp, P. (Eds.). (2010). Handbook of spatial statistics. Boca Raton: Chapman and Hall/CRC.MATHGoogle Scholar
  145. Gelman, A. (2006). Prior distributions for variance parameters in hierarchical models. Bayesian Analysis1, 515–534.MathSciNetCrossRefGoogle Scholar
  146. Gelman, A., & Hill, J. (2007). Data analysis using regression and multilevel/hierarchical models. Cambridge: Cambridge University Press.Google Scholar
  147. Gelman, A., & Rubin, D. (1992). Inference from iterative simulation using multiple sequences. Statistical Science7, 457–511.CrossRefGoogle Scholar
  148. Gelman, A., Carlin, J., Stern, H., & Rubin, D. (2004). Bayesian data analysis (2nd ed.). Boca Raton: Chapman and Hall/CRC.MATHGoogle Scholar
  149. Gibaldi, M., & Perrier, D. (1982). Pharmacokinetics (2nd ed.). New York: Marcel Dekker.Google Scholar
  150. Giné, E., Götze, F., & Mason, D. (1997). When is the Student t-statistic asymptotically normal? The Annals of Probability25, 1514–1531.MathSciNetMATHCrossRefGoogle Scholar
  151. Glynn, P., & Iglehart, D. (1990). Simulation output using standardized time series. Mathematics of Operations Research15, 1–16.MathSciNetMATHCrossRefGoogle Scholar
  152. Gneiting, T., & Raftery, A. (2007). Strictly proper scoring rules, prediction, and estimation. Journal of the American Statistical Association102, 359–378.MathSciNetMATHCrossRefGoogle Scholar
  153. Godambe, V., & Heyde, C. (1987). Quasi-likelihood and optimal estimation. International Statistical Review55, 231–244.MathSciNetMATHCrossRefGoogle Scholar
  154. Godfrey, K. (1983). Compartmental models and their applications. London: Academic.Google Scholar
  155. Goldstein, M., & Wooff, D. (2007). Bayes linear statistics, theory and methods. New York: Wiley.MATHCrossRefGoogle Scholar
  156. Golub, G., Heath, M. & Wabha, G. (1979). Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics21, 215–223.MathSciNetMATHCrossRefGoogle Scholar
  157. Goodman, S. (1993). p values, hypothesis tests and likelihood: Implications for epidemiology of a neglected historical debate. American Journal of Epidemiology137, 485–496.Google Scholar
  158. Gordon, L., & Olshen, R. A. (1978). Asymptotically efficient solutions to the classification problems. Annals of Statistics6, 515–533.MathSciNetMATHCrossRefGoogle Scholar
  159. Gordon, L., & Olshen, R. A. (1984). Almost surely consistent nonparametric regression from recursive partitioning schemes. Journal of Multivariate Analysis15, 147–163.MathSciNetMATHCrossRefGoogle Scholar
  160. Gourieroux, C., Montfort, A., & Trognon, A. (1984). Pseudo-maximum likelihood methods: Theory. Econometrica52, 681–700.MathSciNetMATHCrossRefGoogle Scholar
  161. Green, P., & Silverman, B. (1994). Nonparametric regression and generalized linear models. Boca Raton: Chapman and Hall/CRC.MATHGoogle Scholar
  162. Green, P. J. (1995). Reversible jump MCMC computation and Bayesian model determination. Biometrika82, 711–732.MathSciNetMATHCrossRefGoogle Scholar
  163. Greenland, S., Robins, J., & Pearl, J. (1999). Confounding and collapsibility in causal inference. Statistical Science14, 29–46.MATHCrossRefGoogle Scholar
  164. Gu, C. (2002). Smoothing spline ANOVA models. New York: Springer.MATHGoogle Scholar
  165. Haberman, S. (1977). Maximum likelihood estimates in exponential response models. Annals of Statistics5, 815–841.MathSciNetMATHCrossRefGoogle Scholar
  166. Hand, D. and Crowder, M. (1991). Practical longitudinal data analysis. Boca Raton: Chapman and Hall/CRC Press.Google Scholar
  167. Haldane, J. (1948). The precision of observed values of small frequencies. Biometrika35, 297–303.MathSciNetGoogle Scholar
  168. Härdle, W., Hall, P., & Marron, J. (1988). How far are automatically chosen smoothing parameters from their optimum? Journal of the American Statistical Association83, 86–101.MathSciNetMATHGoogle Scholar
  169. Hastie, T., & Tibshirani, R. (1990). Generalized additive models. Boca Raton: Chapman and Hall/CRC.MATHGoogle Scholar
  170. Hastie, T., & Tibshirani, R. (1993). Varying-coefficient models. Journal of the Royal Statistical Society, Series B55, 757–796.MathSciNetMATHGoogle Scholar
  171. Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning (2nd ed.). New York: Springer.MATHCrossRefGoogle Scholar
  172. Hastings, W. (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika57, 97–109.MATHCrossRefGoogle Scholar
  173. Haughton, D. (1988). On the choice of a model to fit data from an exponential family. The Annals of Statistics16, 342–355.MathSciNetMATHCrossRefGoogle Scholar
  174. Haughton, D. (1989). Size of the error in the choice of a model to fit from an exponential family. Sankhya: The Indian Journal of Statistics, Series A51, 45–58.MathSciNetMATHGoogle Scholar
  175. Heagerty, P., Kurland, B. (2001). Misspecified maximum likelihood estimates and generalised linear mixed models. Biometrika88, 973–986.MathSciNetMATHCrossRefGoogle Scholar
  176. Heyde, C. (1997). Quasi-likelihood and its applications. New York: Springer.CrossRefGoogle Scholar
  177. Hobert, J., & Casella, G. (1996). The effect of improper priors on Gibbs sampling in hierarchical linear mixed models. Journal of the American Statistical Association91, 1461–1473.MathSciNetMATHCrossRefGoogle Scholar
  178. Hodges, J., & Reich, B. (2010). Adding spatially-correlated errors can mess up the fixed effect you love. The American Statistician64, 325–334.MathSciNetMATHCrossRefGoogle Scholar
  179. Hoerl, A., & Kennard, R. (1970). Ridge regression: Biased estimation for non-orthogonal problems. Technometrics12, 55–67.MATHCrossRefGoogle Scholar
  180. Hoff, P. (2009). A first course in Bayesian statistical methods. New York: Springer.MATHCrossRefGoogle Scholar
  181. Holst, U., Hössjer, O., Björklund, C., Ragnarson, P., & Edner, H. (1996). Locally weighted least squares kernel regression and statistical evaluation of LIDAR measurements. Environmetrics, 7, 401–416.CrossRefGoogle Scholar
  182. Hothorn, T., Hornik, K., & Zeileis, A. (2006). Unbiased recursive partitioning: A conditional inference framework. Journal of Computational and Graphical Statistics15, 651–674.MathSciNetCrossRefGoogle Scholar
  183. Huber, P. (1967). The behavior of maximum likelihood estimators under non-standard conditions. In L. LeCam & J. Neyman (Eds.), Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability (pp. 221–233). California: University of California Press.Google Scholar
  184. Inoue, L., & Parmigiani, G. (2009). Decision theory: Principles and approaches. New York: Wiley.MATHGoogle Scholar
  185. Izenman, A. (2008). Modern multivariate statistical techniques: Regression, classification, and manifold learning. New York: Springer.MATHGoogle Scholar
  186. Jeffreys, H. (1961). Theory of probability (3rd ed.). Oxford: Oxford University Press.MATHGoogle Scholar
  187. Jenss, R., & Bayley, N. (1937). A mathematical method for studying the growth of a child. Human Biology9, 556–563.Google Scholar
  188. Johnson, N., Kotz, S., & Balakrishnan, N. (1994). Continuous univariate distributions, volume 1 (2nd ed.). New York: Wiley.Google Scholar
  189. Johnson, N., Kotz, S., & Balakrishnan, N. (1995). Continuous univariate distributions, volume 2 (2nd ed.). New York: Wiley.Google Scholar
  190. Johnson, N., Kotz, S., & Balakrishnan, N. (1997). Discrete multivariate distributions. New York: Wiley.MATHGoogle Scholar
  191. Johnson, N., Kemp, A., & Kotz, S. (2005). Univariate discrete distributions (3rd ed.). New York: Wiley.MATHCrossRefGoogle Scholar
  192. Johnson, V. (2008). Bayes factors based on test statistics. Journal of the Royal Statistical Society, Series B67, 689–701.Google Scholar
  193. Jordan, M., Ghahramani, Z., Jaakkola, T., & Saul, L. (1999). An introduction to variational methods for graphical models. Machine Learning37, 183–233.MATHCrossRefGoogle Scholar
  194. Kadane, J., & Wolfson, L. (1998). Experiences in elicitation. Journal of the Royal Statistical Society, Series D47, 3–19.CrossRefGoogle Scholar
  195. Kalbfleisch, J., & Prentice, R. (2002). The statistical analysis of failure time data (2nd ed.). New York: Wiley.MATHCrossRefGoogle Scholar
  196. Kass, R., & Raftery, A. (1995). Bayes factors. Journal of the American Statistical Association90, 773–795.MATHCrossRefGoogle Scholar
  197. Kass, R., & Vaidyanathan, S. (1992). Approximate Bayes factors and orthogonal parameters, with application to testing equality of two binomial proportions. Journal of the Royal Statistical Society, Series B54, 129–144.MathSciNetMATHGoogle Scholar
  198. Kass, R., Tierney, L., & Kadane, J. (1990). The validity of posterior expansions based on Laplace’s method. In S. Geisser, J. Hodges, S. Press, & A. Zellner (Eds.), Bayesian and likelihood methods in statistics and econometrics (pp. 473–488). Amsterdam: North-Holland.Google Scholar
  199. Kauermann, G. (2005). A note on smoothing parameter selection for penalized spline smoothing. Journal of Statistical Planning and Inference127, 53–69.MathSciNetMATHCrossRefGoogle Scholar
  200. Kauermann, G., & Carroll, R. (2001). A note on the efficiency of sandwich covariance matrix estimation. Journal of the American Statistical Association96, 1387–1396.MathSciNetMATHCrossRefGoogle Scholar
  201. Kemp, I., Boyle, P., Smans, M., & Muir, C. (1985). Atlas of cancer in Scotland, 1975–1980: Incidence and epidemiologic perspective. Lyon: IARC Scientific Publication No. 72.Google Scholar
  202. Kerr, K. (2009). Comments on the analysis of unbalanced microarray data. Bioinformatics25, 2035–2041.CrossRefGoogle Scholar
  203. Kim, H., & Loh, W.-Y. (2001). Classification trees with unbiased multiway splits. Journal of the American Statistical Association96, 589–604.MathSciNetCrossRefGoogle Scholar
  204. Knafl, G., Sacks, J., & Ylvisaker, D. (1985). Confidence bands for regression functions. Journal of the American Statistical Association80, 683–691.MathSciNetMATHCrossRefGoogle Scholar
  205. Knorr-Held, L., & Rasser, G. (2000). Bayesian detection of clusters and discontinuities in disease maps. Biometrics56, 13–21.MATHCrossRefGoogle Scholar
  206. Korn, E., & Graubard, B. (1999). Analysis of health surveys. New York: Wiley.MATHCrossRefGoogle Scholar
  207. Kosorok, M. (2008). Introduction to empirical processes and semiparametric inference. New York: Springer.MATHCrossRefGoogle Scholar
  208. Kotz, S., Balakrishnan, N., & Johnson, N. (2000). Continuous multivariate distributions, volume 1 (2nd ed.). New York: Wiley.CrossRefGoogle Scholar
  209. Laird, N., & Ware, J. (1982). Random-effects models for longitudinal data. Biometrics38, 963–974.MATHCrossRefGoogle Scholar
  210. Lange, N., & Ryan, L. (1989). Assessing normality in random effects models. Annals of Statistics17, 624–642.MathSciNetMATHCrossRefGoogle Scholar
  211. Lehmann, E. (1986). Testing statistical hypotheses (2nd ed.). New York: Wiley.MATHGoogle Scholar
  212. Lehmann, E., & Romano, J. (2005). Generalizations of the familywise error rate. Annals of Statistics33, 1138–1154.MathSciNetMATHCrossRefGoogle Scholar
  213. van der Lende, R., Kok, T., Peset, R., Quanjer, P., Schouten, J., & Orie, N. G. (1981). Decreases in VC and FEV1 with time: Indicators for effects of smoking and air pollution. Bulletin of European Physiopathology and Respiration17, 775–792.Google Scholar
  214. Liang, K., & Zeger, S. (1986). Longitudinal data analysis using generalized linear models. Biometrika73, 13–22.MathSciNetMATHCrossRefGoogle Scholar
  215. Liang, K.-Y., & McCullagh, P. (1993). Case studies in binary dispersion. Biometrics49, 623–630.CrossRefGoogle Scholar
  216. Liang, K.-Y., Zeger, S., & Qaqish, B. (1992). Multivariate regression analyses for categorical data (with discussion). Journal of the Royal Statistical Society, Series B54, 3–40.MathSciNetMATHGoogle Scholar
  217. Lindley, D. (1957). A statistical paradox. Biometrika44, 187–192.MathSciNetMATHGoogle Scholar
  218. Lindley, D. (1968). The choice of variables in multiple regression (with discussion). Journal of the Royal Statistical Society, Series B30, 31–66.MathSciNetMATHGoogle Scholar
  219. Lindley, D. (1980). Approximate Bayesian methods. In J. Bernardo, M. D. Groot, D. Lindley, & A. Smith (Eds.), Bayesian statistics (pp. 223–237). Valencia: Valencia University Press.Google Scholar
  220. Lindley, D., & Smith, A. (1972). Bayes estimates for the linear model (with discussion). Journal of the Royal Statistical Society, Series B34, 1–41.MathSciNetMATHGoogle Scholar
  221. Lindsey, J., Byrom, W., Wang, J., Jarvis, P., & Jones, B. (2000). Generalized nonlinear models for pharmacokinetic data. Biometrics56, 81–88.MATHCrossRefGoogle Scholar
  222. Lindstrom, M., & Bates, D. (1990). Nonlinear mixed-effects models for repeated measures data. Biometrics46, 673–687.MathSciNetCrossRefGoogle Scholar
  223. Lipsitz, S., Laird, N., & Harrington, D. (1991). Generalized estimating equations for correlated binary data: Using the odds ratio as a measure of association. Biometrika78, 153–160.MathSciNetCrossRefGoogle Scholar
  224. Little, R., & Rubin, D. (2002). Statistical analysis with missing data (2nd ed.). New York: Wiley.MATHGoogle Scholar
  225. Loader, C. (1999). Local regression and likelihood. New York: Springer.MATHGoogle Scholar
  226. Lumley, T. (2010). Complex surveys: A guide to analysis using R. New York: Wiley.Google Scholar
  227. Lumley, T., Diehr, P., Emerson, S., & Chen, L. (2002). The importance of the normality assumption in large public health data sets. Annual Reviews of Public Health23, 151–169.CrossRefGoogle Scholar
  228. Machin, D., Farley, T., Busca, B., Campbell, M., & d’Arcangues, C. (1988). Assessing changes in vaginal bleeding patterns in contracepting women. Contraception38, 165–179.Google Scholar
  229. Malahanobis, P. (1936). On the generalised distance in statistics. Proceedings of the National Institute of Sciences of India2, 49–55.Google Scholar
  230. Mallows, C. (1973). Some comments on Cp. Technometrics15, 661–667.MATHGoogle Scholar
  231. Marra, G., & Wood, S. (2012). Coverage properties of confidence intervals for generalized additive model components. Scandinavian Journal of Statistics39, 53–74.MathSciNetMATHCrossRefGoogle Scholar
  232. van Marter, L., Leviton, A., Kuban, K., Pagano, M., & Allred, E. (1990). Maternal glucocorticoid therapy and reduced risk of bronchopulmonary dysplasia. Pediatrics86, 331–336.Google Scholar
  233. Matheron, G. (1971). The theory of regionalized variables and its applications. Technical report, Les Cahiers du Centre de Morphologie Mathématique de Fontainebleau, Fascicule 5, Ecole des Mines de Paris.Google Scholar
  234. McCullagh, P. (1983). Quasi-likelihood functions. The Annals of Statistics11, 59–67.MathSciNetMATHCrossRefGoogle Scholar
  235. McCullagh, P., & Nelder, J. (1989). Generalized linear models (2nd ed.). Boca Raton: Chapman and Hall/CRC.MATHGoogle Scholar
  236. McCulloch, C., & Neuhaus, J. (2011). Prediction of random effects in linear and generalized linear models under model misspecification. Biometrics67, 270–279.MathSciNetMATHCrossRefGoogle Scholar
  237. McDonald, B. (1993). Estimating logistic regression parameters for bivariate binary data. Journal of the Royal Statistical Society, Series B55, 391–397.MATHGoogle Scholar
  238. Meier, L., van de Geer, S., & Bühlmann, P. (2008). The group lasso for logistic regression. Journal of the Royal Statistical Society, Series B70, 53–71.MATHCrossRefGoogle Scholar
  239. Meinshausen, N., & Yu, B. (2009). Lasso-type recovery of sparse representations for high-dimensional data. The Annals of Statistics37, 246–270.MathSciNetMATHCrossRefGoogle Scholar
  240. Mendel, G. (1866). Versuche über Pflanzen-Hybriden. Verhandl d Naturfsch Ver in Bünn4, 3–47.Google Scholar
  241. Mendel, G. (1901). Experiments in plant hybridization. Journal of the Royal Horticultural Society26, 1–32. Translation of Mendel (1866) by W. Bateson.Google Scholar
  242. Meng, X., & Wong, W. (1996). Simulating ratios of normalizing constants via a simple identity. Statistical Sinica6, 831–860.MathSciNetMATHGoogle Scholar
  243. Metropolis, N., Rosenbluth, A., Teller, A., & Teller, E. (1953). Equations of state calculations by fast computing machines. Journal of Chemical Physics21, 1087–1091.CrossRefGoogle Scholar
  244. Miller, A. (1990). Subset selection in regression. Boca Raton: Chapman and Hall/CRC.MATHGoogle Scholar
  245. von Mises, R. (1931). Wahrscheinlichkeitsrecheung. Leipzig: Franz Deutiche.Google Scholar
  246. Montgomery, D., & Peck, E. (1982). Introduction to linear regression analysis. New York: Wiley.MATHGoogle Scholar
  247. Morgan, J., & Messenger, R. (1973). Thaid: a sequential search program for the analysis of nominal scale dependent variables. Technical report, Ann Arbor: Institute for Social Research, University of Michigan.Google Scholar
  248. Morgan, J., & Sonquist, J. (1963). Problems in the analysis of survey data, and a proposal. Journal of the American Statistical Association58, 415–434.MATHCrossRefGoogle Scholar
  249. Nadaraya, E. (1964). On estimating regression. Theory of Probability and its Applications9, 141–142.CrossRefGoogle Scholar
  250. Naylor, J., & Smith, A. (1982). Applications of a method for the efficient computation of posterior distributions. Applied Statistics31, 214–225.MathSciNetMATHCrossRefGoogle Scholar
  251. Neal, R. (1996). Bayesian learning for neural networks. New York: Springer.MATHCrossRefGoogle Scholar
  252. Nelder, J. (1966). Inverse polynomials, a useful group of multi-factor response functions. Biometrics22, 128–141.CrossRefGoogle Scholar
  253. Nelder, J. A., & Wedderburn, R. W. M. (1972). Generalized linear models. Journal of the Royal Statistical Society, Series A135, 370–384.CrossRefGoogle Scholar
  254. Neyman, J., & Pearson, E. (1928). On the use and interpretation of certain test criteria for purposes of statistical inference. Part i. Philosophical Transactions of the Royal Society of London, Series A20A, 175–240.Google Scholar
  255. Neyman, J., & Pearson, E. (1933). On the problem of the most efficient tests of statistical hypotheses. Philosophical Transactions of the Royal Society of London, Series A231, 289–337.CrossRefGoogle Scholar
  256. Neyman, J., & Scott, E. (1948). Consistent estimates based on partially consistent observations. Econometrica16, 1–32.MathSciNetCrossRefGoogle Scholar
  257. Nychka, D. (1988). Bayesian confidence intervals for smoothing splines. Journal of the American Statistical Association83, 1134–1143.MathSciNetCrossRefGoogle Scholar
  258. O’Hagan, A. (1994). Kendall’s advanced theory of statistics, volume 2B: Bayesian inference. London: Arnold.Google Scholar
  259. O’Hagan, A. (1998). Eliciting expert beliefs in substantial practical applications. Journal of the Royal Statistical Society, Series D47, 21–35.CrossRefGoogle Scholar
  260. O’Hagan, A., & Forster, J. (2004). Kendall’s advanced theory of statistics, volume 2B: Bayesian inference (2nd ed.). London: Arnold.MATHGoogle Scholar
  261. Olshen, R. (2007). Tree-structured regression and the differentiation of integrals. Annals of Statistics35, 1–12.MathSciNetMATHCrossRefGoogle Scholar
  262. Ormerod, J., & Wand, M. (2010). Explaining variational approximations. The American Statistician64, 140–153.MathSciNetMATHCrossRefGoogle Scholar
  263. O’Sullivan, F. (1986). A statistical perspective on ill-posed problems. Statistical Science1, 502–518.MathSciNetMATHCrossRefGoogle Scholar
  264. Pagano, M., & Gauvreau, K. (1993). Principles of biostatistics. Belmont: Duxbury Press.Google Scholar
  265. Pearl, J. (2009). Causality: Models, reasoning and inference (2nd ed.). Cambridge: Cambridge University Press.MATHGoogle Scholar
  266. Pearson, E. (1953). Discussion of “Statistical inference” by D.V. Lindley. Journal of the Royal Statistical Society, Series B15, 68–69.Google Scholar
  267. Peers, H. (1971). Likelihood ratio and associated test criteria. Biometrika58, 577–587.MATHCrossRefGoogle Scholar
  268. Pepe, M. (2003). The statistical evaluation of medical tests for classification and prediction. Oxford: Oxford University Press.MATHGoogle Scholar
  269. Pérez, J. M., & Berger, J. O. (2002). Expected-posterior prior distributions for model selection. Biometrika89, 491–512.MathSciNetMATHCrossRefGoogle Scholar
  270. Pinheiro, J., & Bates, D. (2000). Mixed-effects models in S and splus. New York: Springer.CrossRefGoogle Scholar
  271. Plummer, M. (2008). Penalized loss functions for Bayesian model comparison. Biostatistics9, 523–539.MATHCrossRefGoogle Scholar
  272. Potthoff, R., & Roy, S. (1964). A generalized multivariate analysis of variance useful especially for growth curve problems. Biometrika51, 313–326.MathSciNetMATHGoogle Scholar
  273. Prentice, R. (1988). Correlated binary regression with covariates specific to each binary observation. Biometrics44, 1033–1048.MathSciNetMATHCrossRefGoogle Scholar
  274. Prentice, R., & Pyke, R. (1979). Logistic disease incidence models and case-control studies. Biometrika66, 403–411.MathSciNetMATHCrossRefGoogle Scholar
  275. Prentice, R., & Zhao, L. (1991). Estimating equations for parameters in means and covariances of multivariate discrete and continuous responses. Biometrics47, 825–839.MathSciNetMATHCrossRefGoogle Scholar
  276. Qaqish, B., & Ivanova, A. (2006). Multivariate logistic models. Biometrika93, 1011–1017.MathSciNetCrossRefGoogle Scholar
  277. Radelet, M. (1981). Racial characteristics and the imposition of the death sentence. American Sociological Review46, 918–927.CrossRefGoogle Scholar
  278. Rao, C. (1948). Large sample tests of statistical hypotheses concerning several parameters with applications to problems of estimation. Proceedings of the Cambridge Philosophical Society44, 50–57.MATHCrossRefGoogle Scholar
  279. Rao, C., & Wu, Y. (1989). A strongly consistent procedure for model selection in a regression problem. Biometrika76, 369–374.MathSciNetMATHCrossRefGoogle Scholar
  280. Rasmussen, C., & Williams, C. (2006). Gaussian processes for machine learning. Cambridge: MIT.MATHGoogle Scholar
  281. Ravishanker, N., & Dey, D. (2002). A first course in linear model theory. Boca Raton: Chapman and Hall/CRC.MATHGoogle Scholar
  282. Reinsch, C. (1967). Smoothing by spline functions. Numerische Mathematik10, 177–183.MathSciNetMATHCrossRefGoogle Scholar
  283. Reiss, P., & Ogden, R. (2009). Smoothing parameter selection for a class of semiparametric linear models. Journal of the Royal Statistical Society, Series B71, 505–523.MathSciNetMATHCrossRefGoogle Scholar
  284. Rice, J. (1984). Bandwidth choice for nonparametric regression. Annals of Statistics12, 1215–1230.MathSciNetMATHCrossRefGoogle Scholar
  285. Rice, K. (2008). Equivalence between conditional and random-effects likelihoods for pair-matched case-control studies. Journal of the American Statistical Association103, 385–396.MathSciNetMATHCrossRefGoogle Scholar
  286. Ripley, B. (1987). Stochastic simulation. New York: Wiley.MATHCrossRefGoogle Scholar
  287. Ripley, B. (1996). Pattern recognition and neural networks. Cambridge: Cambridge University Press.MATHGoogle Scholar
  288. Ripley, B. (2004). Selecting amongst large classes of models. In N. Adams, M. Crowder, D. Hand, & D. Stephens (Eds.), Methods and models in statistics: In honor of Professor John Nelder, FRS (pp. 155–170). London: Imperial College Press.CrossRefGoogle Scholar
  289. Robert, C. (2001). The Bayesian choice (2nd ed.). New York: Springer.MATHGoogle Scholar
  290. Roberts, G., & Sahu, S. (1997). Updating schemes, correlation structure, blocking and parameterization for the Gibbs sampler. Journal of the Royal Statistical Society, Series B59, 291–317.MathSciNetMATHCrossRefGoogle Scholar
  291. Roberts, G., Gelman, A., & Gilks, W. (1997). Weak convergence and optimal scaling of random walk Metropolis algorithms. The Annals of Applied Probability7, 110–120.MathSciNetMATHCrossRefGoogle Scholar
  292. Robinson, G. (1991). That BLUP is a good thing (with discussion). Statistical Science6, 15–51.MathSciNetMATHCrossRefGoogle Scholar
  293. Robinson, L., & Jewell, N. (1991). Some surprising results about covariate adjustment in logistic regression models. International Statistical Review59, 227–240.MATHCrossRefGoogle Scholar
  294. Rosenbaum, P. (2002). Observational studies (2nd ed.). New York: Springer.MATHGoogle Scholar
  295. Rothman, K., & Greenland, S. (1998). Modern epidemiology (2nd ed.). Philadelphia: Lipincott, Williams and Wilkins.Google Scholar
  296. Royall, R. (1986). Model robust confidence intervals using maximum likelihood estimators. International Statistical Review54, 221–226.MathSciNetMATHCrossRefGoogle Scholar
  297. Royall, R. (1997). Statistical evidence – a likelihood paradigm. Boca Raton: Chapman and Hall/CRC.MATHGoogle Scholar
  298. Rue, H., & Held, L. (2005). Gaussian Markov random fields: Theory and application. Boca Raton: Chapman and Hall/CRC.CrossRefGoogle Scholar
  299. Rue, H., Martino, S., & Chopin, N. (2009). Approximate Bayesian inference for latent Gaussian models using integrated nested Laplace approximations (with discussion). Journal of the Royal Statistical Society, Series B71, 319–392.MathSciNetMATHCrossRefGoogle Scholar
  300. Ruppert, D., Wand, M., & Carroll, R. (2003). Semiparametric regression. Cambridge: Cambridge University Press.MATHCrossRefGoogle Scholar
  301. Salway, R., & Wakefield, J. (2008). Gamma generalized linear models for pharmacokinetic data. Biometrics64, 620–626.MathSciNetMATHCrossRefGoogle Scholar
  302. Savage, L. (1972). The foundations of statistics (2nd ed.). New York: Dover.MATHGoogle Scholar
  303. Scheffé, H. (1959). The analysis of variance. New York: Wiley.MATHGoogle Scholar
  304. Schervish, M. (1995). Theory of statistics. New York: Springer.MATHCrossRefGoogle Scholar
  305. Schott, J. (1997). Matrix analysis for statistics. New York: Wiley.MATHGoogle Scholar
  306. Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics6, 461–464.MathSciNetMATHCrossRefGoogle Scholar
  307. Seaman, S., & Richardson, S. (2004). Equivalence of prospective and retrospective models in the Bayesian analysis of case-control studies. Biometrika91, 15–25.MathSciNetMATHCrossRefGoogle Scholar
  308. Searle, S., Casella, G., & McCulloch, C. (1992). Variance components. New York: Wiley.MATHCrossRefGoogle Scholar
  309. Seber, G., & Lee, S. (2003). Linear regression analysis (2nd ed.). New York: Wiley.MATHCrossRefGoogle Scholar
  310. Seber, G., & Wild, C. (1989). Nonlinear regression. New York: Wiley.MATHCrossRefGoogle Scholar
  311. Sellke, T., Bayarri, M., & Berger, J. (2001). Calibration of p values for testing precise null hypotheses. The American Statistician55, 62–71.MathSciNetMATHCrossRefGoogle Scholar
  312. Sheather, S., & Jones, M. (1991). A reliable data-based bandwidth selection method for kernel density estimation. Journal of the Royal Statistical Society, Series B53, 683–690.MathSciNetMATHGoogle Scholar
  313. Sidák, Z. (1967). Rectangular confidence region for the means of multivariate normal distributions. Journal of the American Statistical Association62, 626–633.MathSciNetMATHGoogle Scholar
  314. Silverman, B. (1985). Some aspects of the spline smoothing approach to non-parametric regression curve fitting. Journal of the Royal Statistical Society, Series B47, 1–52.MATHGoogle Scholar
  315. Simonoff, J. (1997). Smoothing methods in statistics. New York: Springer.Google Scholar
  316. Simpson, E. (1951). The interpretation of interaction in contingency tables. Journal of the Royal Statistical Society, Series B13, 238–241.MATHGoogle Scholar
  317. Singh, K. (1981). On the asymptotic accuracy of Efron’s bootstrap. Annals of Statistics9, 1187–1195.MathSciNetMATHCrossRefGoogle Scholar
  318. Smith, A., & Gelfand, A. (1992). Bayesian statistics without tears: A sampling-resampling perspective. The American Statistician46, 84–88.MathSciNetGoogle Scholar
  319. Smith, C. (1947). Some examples of discrimination. Annals of Eugenics13, 272–282.Google Scholar
  320. Smyth, G., & Verbyla, A. (1996). A conditional likelihood approach to residual maximum likelihood estimation in generalized linear models. Journal of the Royal Statistical Society, Series B58, 565–572.MathSciNetMATHGoogle Scholar
  321. Sommer, A. (1982). Nutritional blindness. Oxford: Oxford University Press.Google Scholar
  322. Spiegelhalter, D., Best, N., Carlin, B., & van der Linde, A. (1998). Bayesian measures of model complexity and fit (with discussion). Journal of the Royal Statistical Society, Series B64, 583–639.Google Scholar
  323. Stamey, T., Kabalin, J., McNeal, J., Johnstone, I., Freiha, F., Redwine, E., & Yang, N. (1989). Prostate specific antigen in the diagnosis and treatment of adenocarcinoma of the prostate, II Radical prostatectomy treated patients. Journal of Urology141, 1076–1083.Google Scholar
  324. Stone, M. (1977). An asymptotic equivalence of choice of model by cross-validation and Akaike’s criterion. Journal of the Royal Statistical Society, Series B39, 44–47.MATHGoogle Scholar
  325. Storey, J. (2002). A direct approach to false discovery rates. Journal of the Royal Statistical Society, Series B64, 479–498.MathSciNetMATHCrossRefGoogle Scholar
  326. Storey, J. (2003). The positive false discovery rate: A Bayesian interpretation and the q-value. The Annals of Statistics31, 2013–2035.MathSciNetMATHCrossRefGoogle Scholar
  327. Storey, J., Madeoy, J., Strout, J., Wurfel, M., Ronald, J., & Akey, J. (2007). Gene-expression variation within and among human populations. American Journal of Human Genetics80, 502–509.CrossRefGoogle Scholar
  328. Sun, J., & Loader, C. (1994). Confidence bands for linear regression and smoothing. The Annals of Statistics22, 1328–1345.MathSciNetMATHCrossRefGoogle Scholar
  329. Szpiro, A., Rice, K., & Lumley, T. (2010). Model-robust regression and a Bayesian “sandwich” estimator. Annals of Applied Statistics4, 2099–2113.MathSciNetMATHCrossRefGoogle Scholar
  330. Thall, P., & Vail, S. (1990). Some covariance models for longitudinal count data with overdispersion. Biometrics46, 657–671.MathSciNetMATHCrossRefGoogle Scholar
  331. Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society, Series B58, 267–288.MathSciNetMATHGoogle Scholar
  332. Tibshirani, R. (2011). Regression shrinkage and selection via the lasso: a retrospective (with discussion). Journal of the Royal Statistical Society, Series B73, 273–282.MathSciNetCrossRefGoogle Scholar
  333. Tierney, L., & Kadane, J. (1986). Accurate approximations for posterior moments and marginal densities. Journal of the American Statistical Association81, 82–86.MathSciNetMATHCrossRefGoogle Scholar
  334. Titterington, D., Murray, G., Murray, L., Spiegelhalter, D., Skene, A., Habbema, J., & Gelpke, G. (1981). Comparison of discrimination techniques applied to a complex data set of head injured patients. Journal of the Royal Statistical Society, Series A144, 145–175.MathSciNetMATHCrossRefGoogle Scholar
  335. Upton, R., Thiercelin, J., Guentert, T., Wallace, S., Powell, J., Sansom, L., & Riegelman, S. (1982). Intraindividual variability in Theophylline pharmacokinetics: statistical verification in 39 of 60 healthy young adults. Journal of Pharmacokinetics and Biopharmaceutics10, 123–134.Google Scholar
  336. van der Vaart, A. (1998). Asymptotic statistics. Cambridge: Cambridge University Press.MATHGoogle Scholar
  337. Vapnick, V. (1996). The nature of statistical learning theory. New York: Springer.Google Scholar
  338. Verbeeke, G., & Molenberghs, G. (2000). Linear mixed models for longitudinal data. New York: Springer.Google Scholar
  339. Wabha, G. (1983). Bayesian ‘confidence intervals’ for the cross-validated smoothing spline. Journal of the Royal Statistical Society, Series B45, 133–150.Google Scholar
  340. Wabha, G. (1985). A comparison of GCV and GML for choosing the smoothing parameter in the generalized spline problem. Annals of Statistics13, 1378–1402.MathSciNetCrossRefGoogle Scholar
  341. Wabha, G. (1990). Spline models for observational data. Philadelphia: SIAM.Google Scholar
  342. Wakefield, J. (1996). Bayesian individualization via sampling-based methods. Journal of Pharmacokinetics and Biopharmaceutics24, 103–131.Google Scholar
  343. Wakefield, J. (2004). Non-linear regression modelling. In N. Adams, M. Crowder, D. Hand, & D. Stephens (Eds.), Methods and models in statistics: In honor of Professor John Nelder, FRS (pp. 119–153). London: Imperial College Press.CrossRefGoogle Scholar
  344. Wakefield, J. (2007a). A Bayesian measure of the probability of false discovery in genetic epidemiology studies. American Journal of Human Genetics81, 208–227.CrossRefGoogle Scholar
  345. Wakefield, J. (2007b). Disease mapping and spatial regression with count data. Biostatistics, 8, 158–183.MATHCrossRefGoogle Scholar
  346. Wakefield, J. (2008). Ecologic studies revisited. Annual Review of Public Health29, 75–90.CrossRefGoogle Scholar
  347. Wakefield, J. (2009a). Bayes factors for genome-wide association studies: Comparison with p-values. Genetic Epidemiology33, 79–86.CrossRefGoogle Scholar
  348. Wakefield, J. (2009b). Multi-level modelling, the ecologic fallacy, and hybrid study designs. International Journal of Epidemiology38, 330–336.CrossRefGoogle Scholar
  349. Wakefield, J., Smith, A., Racine-Poon, A., & Gelfand, A. (1994). Bayesian analysis of linear and non-linear population models using the Gibbs sampler. Applied Statistics43, 201–221.MATHCrossRefGoogle Scholar
  350. Wakefield, J., Aarons, L., & Racine-Poon, A. (1999). The Bayesian approach to population pharmacokinetic/pharmacodynamic modelling. In C. Gatsonis, R. E. Kass, B. P. Carlin, A. L. Carriquiry, A. Gelman, I. Verdinelli, & M. West (Eds.), Case studies in Bayesian statistics, volume IV (pp. 205–265). New York: Springer.CrossRefGoogle Scholar
  351. Wald, A. (1943). Tests of statistical hypotheses concerning several parameters when the number of observations is large. Transactions of the American Mathematical Society54, 426–482.MathSciNetMATHCrossRefGoogle Scholar
  352. Wand, M., & Jones, M. (1995). Kernel smoothing. Boca Raton: Chapman and Hall/CRC.MATHGoogle Scholar
  353. Wand, M., & Ormerod, J. (2008). On semiparametric regression with O’Sullivan penalised splines. Australian and New Zealand Journal of Statistics50, 179–198.MathSciNetMATHCrossRefGoogle Scholar
  354. Watson, G. (1964). Smooth regression analysis. SankhyaA26, 359–372.Google Scholar
  355. Wedderburn, R. (1974). Quasi-likelihood functions, generalized linear models, and the Gauss-Newton method. Biometrika61, 439–447.MathSciNetMATHGoogle Scholar
  356. Wedderburn, R. (1976). On the existence and uniqueness of the maximum likelihood estimates for certain generalized linear models. Biometrika63, 27–32.MathSciNetMATHCrossRefGoogle Scholar
  357. West, M. (1993). Approximating posterior distributions by mixtures. Journal of the Royal Statistical Society, Series B55, 409–422.MATHGoogle Scholar
  358. West, M., & Harrison, J. (1997). Bayesian forecasting and dynamic models (2nd ed.). New York: Springer.MATHGoogle Scholar
  359. Westfall, P., Johnson, W., & Utts, J. (1995). A Bayesian perspective on the Bonferroni adjustment. Biometrika84, 419–427.MathSciNetCrossRefGoogle Scholar
  360. White, H. (1980). A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica48, 1721–746.Google Scholar
  361. White, J. (1982). A two stage design for the study of the relationship between a rare exposure and a rare disease. American Journal of Epidemiology115, 119–128.Google Scholar
  362. Wood, S. (2006). Generalized additive models: An introduction with R. Boca Raton: Chapman and Hall/CRC.MATHGoogle Scholar
  363. Wood, S. (2008). Fast stable direct fitting and smoothness selection for generalized additive models. Journal of the Royal Statistical Society, Series B70, 495–518.MATHCrossRefGoogle Scholar
  364. Wood, S. (2011). Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. Journal of the Royal Statistical Society, Series B, 73, 3–36.CrossRefGoogle Scholar
  365. Wu, T., & Lange, K. (2008). Coordinate descent algorithms for lasso penalized regression. The Annals of Applied Statistics2, 224–244.MathSciNetMATHCrossRefGoogle Scholar
  366. Yates, F. (1984). Tests of significance for 2 ×2 contingency tables. Journal of the Royal Statistical Society, Series B147, 426–463.MathSciNetMATHCrossRefGoogle Scholar
  367. Yee, T., & Wild, C. (1996). Vector generalized additive models. Journal of the Royal Statistical Society, Series B58, 481–493.MathSciNetMATHGoogle Scholar
  368. Yu, K., & Jones, M. (2004). Likelihood-based local linear estimation of the conditional variance function. Journal of the American Statistical Association99, 139–144.MathSciNetMATHCrossRefGoogle Scholar
  369. Yuan, M., & Lin, Y. (2007). Model selection and estimation in regression with grouped variables. Journal of the Royal Statistical Society, Series B68, 49–67.MathSciNetGoogle Scholar
  370. Zeger, S., & Liang, K. (1986). Longitudinal data analysis for discrete and continuous outcomes. Biometrics42, 121–130.CrossRefGoogle Scholar
  371. Zhao, L., & Prentice, R. (1990). Correlated binary regression using a generalized quadratic model. Biometrika77, 642–648.MathSciNetCrossRefGoogle Scholar
  372. Zhao, L., Prentice, R., & Self, S. (1992). Multivariate mean parameter estimation by using a partly exponential model. Journal of the Royal Statistical Society, Series B54, 805–811.Google Scholar
  373. Zou, H., & Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society, Series B67, 301–320.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Jon Wakefield
    • 1
  1. 1.Departments of Statistics and BiostatisticsUniversity of WashingtonSeattleUSA

Personalised recommendations