Advertisement

Enzyme for Biosensing Applications

  • Béatrice D. Leca-Bouvier
  • Loïc J. Blum
Chapter

Abstract

Enzymes are very efficient biocatalysts, which have the ability to specifically recognize their substrates and to catalyze their transformation. These unique properties make the enzymes powerful tools to develop analytical devices. Enzyme-based biosensors associate intimately a biocatalyst-containing sensing layer with a transducer. The transformations catalyzed by an enzyme come with the variations of some physicochemical parameters. The role of the transducer is to convert those physicochemical signals into a measurable electrical signal. In biosensors, enzymes are generally immobilized on or close to the transducer. Depending on the chemical and physical characteristics of the enzyme support, different immobilization techniques can be implemented. The transduction mode will be adapted to the physicochemical parameter that is monitored. The variation of the concentration of a substrate or a product in the course of an enzymatic reaction can be detected with the help of a physical or chemical sensor, which then acts as a transducer. Electrochemical biosensors have been then developed involving oxidoreduction reactions. Optical biosensors are based either on fluorescence, absorbance, and bioluminescence or chemiluminescence measurements. Enzymatic reactions are usually associated with a high enthalpy change, which results in a temperature variation that can be recorded using a thermistor. Gravimetric biosensors are based on a mass variation induced by an enzymatic reaction.

Due to their proteic nature, enzymes are often fragile and this instability results in a decrease in the enzyme activity and consequently in a decrease in the biosensor performances. Although, fortunately, not all enzymes are concerned, this can limit the development of enzyme-based biosensors. The first biosensors described were the size of a pH electrode but now the progress in the transducer technology makes the fabrication of miniaturized systems possible and this allows the development of small-sized multi-biosensors and the integration of miniaturized biosensors in lab-on-a-chip-type devices.

Keywords

Enzyme Biosensor Biocatalysis Electrochemical detection Amperometric detection Potentiometric detection ENFET LAPS Conductometric detection Impedimetric detection QCM SAW Microcantilever Calorimetric detection Optical SPR Opt(r)ode Oxidoreductase Luciferase GOD Chemiluminescence Electrochemiluminescence Bioluminescence Luminol FAD NAD PQQ Cofactor Nanoparticles Carbon nanotubes 

Abbreviations

AChE

Acetylcholinesterase

ADP

Adenosine 5′-diphosphate

AMP

Adenosine 5′-monophosphate

ATP

Adenosine 5′-triphosphate

BSA

Bovine serum albumin

BuChE

Butyrylcholinesterase

CL

Chemiluminescence

CNT

Carbon nanotube

DAMAB

N,N-Didecylaminomethylbenzene

DH

Dehydrogenase

ECL

Electrochemiluminescence

EDC

Ethyl-3-[1-dimethylaminopropyl]carbodiimide

ENFET

Enzyme field-effect transistor

EuTC

Europium (III) tetracycline

FAD

Flavin adenine dinucleotide

FET

Field-effect transistor

FMN

Flavin mononucleotide

GFOR

Glucose–fructose oxidoreductase

GOD

Glucose oxidase

HRP

Horseradish peroxidase

IDA

Interdigitated array

ISE

Ion-selective electrode

ISFET

Ion-sensitive field-effect transistor

ITO

Indium tin oxide

LAPS

Light-addressable potentiometric sensor

MWCNT

Multiwall carbon nanotube

NAD

Nicotinamide adenine dinucleotide

NBD-PE

Nitrobenzoxadiazole dipalmitoylphosphatidylethanolamine

NHS

N-Hydroxysuccinimide

NP

Nanoparticle

NTA

Nitriloacetic acid

OD

Oxidase

OPH

Organophosphorus hydrolase

PDDA

Poly (diallyldimethylammonium chloride)

PEG

Poly (ethylene glycol)

PQQ

Pyrroloquinoline quinone

PVA-SbQ

Poly (vinyl alcohol) bearing styrylpyridinium groups

QCM

Quartz crystal microbalance

Ru-bipy

Ruthenium (II) trisbipyridyl

Ru-dpp

Ruthenium (II) tris(4,7-diphenyl-1,10-phenanthroline)

Ru-phen

Ruthenium (II) tris(1,10-phenanthroline)

SAM

Self-assembled monolayer

SAW

Surface acoustic wave

SPR

Surface plasmon resonance

SWCNT

Singlewall carbon nanotube

TTF-TCNQ

Tetrathiafulvalene-tetracyanoquinodimethane

References

  1. Abad JM, Pariente F, Hernandez L, Abruna HD, Lorenzo E (1998) Determination of organophosphorus and carbamate pesticides using a piezoelectric biosensor. Anal Chem 70(14):2848–2855Google Scholar
  2. Abdelmalek F, Shadaram M, Boushriha H (2001) Ellipsometry measurements and impedance spectroscopy on Langmuir–Blodgett membranes on Si/SiO2 for ion sensitive sensor. Sens Actuators B Chem 72(3):208–213Google Scholar
  3. Alfonta L, Katz E, Willner I (2000) Sensing of acetylcholine by a tricomponent-enzyme layered electrode using faradaic impedance spectroscopy, cyclic voltammetry, and microgravimetric quartz crystal microbalance transduction methods. Anal Chem 72(5):927–935Google Scholar
  4. Andreescu S, Marty J-L (2006) Twenty years research in cholinesterase biosensors: from basic research to practical applications. Biomol Eng 23(1):1–15Google Scholar
  5. Arnold MA (1985) Enzyme-based fiber optic sensor. Anal Chem 57(2):565–566Google Scholar
  6. Arya SK, Solanki PR, Singh RP, Pandey MK, Datta M, Malhotra BD (2006) Application of octadecanethiol self-assembled monolayer to cholesterol biosensor based on surface plasmon resonance technique. Talanta 69(4):918–926Google Scholar
  7. Arya SK, Prusty AK, Singh SP, Solanki PR, Pandey MK, Datta M, Malhotra BD (2007a) Cholesterol biosensor based on N-(2-aminoethyl)-3-aminopropyl-trimethoxysilane self-assembled monolayer. Anal Biochem 363(2):210–218Google Scholar
  8. Arya SK, Solanki PR, Singh SP, Kaneto K, Pandey MK, Datta M, Malhotra BD (2007b) Poly-(3-hexylthiophene) self-assembled monolayer based cholesterol biosensor using surface plasmon resonance technique. Biosens Bioelectron 22(11):2516–2524Google Scholar
  9. Aylott JW, Richardson DJ, Russell DA (1997) Optical biosensing of nitrate ions using a sol–gel immobilized nitrate reductase. Analyst 122:77–80Google Scholar
  10. Bartic C, Campitelli A, Borghs S (2003) Field-effect detection of chemical species with hybrid organic/inorganic transistors. Appl Phys Lett 82(3):475–477Google Scholar
  11. Bartlett PN, Booth S, Caruana DJ, Kilburn JD, Santamaria C (1997) Modification of glucose oxidase by the covalent attachment of a tetrathiafulvalene derivative. Anal Chem 69(4):734–742Google Scholar
  12. Bartlett PN, Birkin PR, Wang JH, Palmisano F, De Benedetto G (1998) An enzyme switch employing direct electrochemical communication between horseradish peroxidase and a poly(aniline) film. Anal Chem 70(17):3685–3694Google Scholar
  13. Basu I, Subramanian RV, Mathew A, Kayastha AM, Chadha A, Bhattacharya E (2005) Solid state potentiometric sensor for the estimation of tributyrin and urea. Sens Actuators B Chem 107(1):418–423Google Scholar
  14. Besteman K, Lee JO, Wiertz FGM, Heering HA, Dekker C (2003) Enzyme-coated carbon nanotubes as single-molecule biosensors. Nano Lett 3(6):727–730Google Scholar
  15. Bilitewski U, Drewes W, Schmid RD (1992) Thick film biosensors for urea. Sens Actuators B Chem 7(1–3):321–326Google Scholar
  16. Blum LJ (1997a) Bioluminescence-based fiberoptic sensors. In: Bio- and chemi-luminescent sensors. World Scientific, Singapore, pp 113–141Google Scholar
  17. Blum LJ (1997b) Chemiluminescence-based fiberoptic sensors. In: Bio- and chemi-luminescent sensors. World Scientific, Singapore, pp 143–179Google Scholar
  18. Blum LJ, Gautier SM, Coulet PR (1993) Design of bioluminescence-based fiber optic sensors for flow-injection analysis. J Biotech 31(3):357–368Google Scholar
  19. Blum LJ, Gautier SM, Berger A, Michel PE, Coulet PR (1995) Multicomponent organized bioactive layers for fiber-optic luminescent sensors. Sens Actuators B Chem 29(1–3):1–9Google Scholar
  20. Borisov SM, Wolfbeis OS (2008) Optical biosensors. Chem Rev 108(2):423–461Google Scholar
  21. Bucur B, Andreescu S, Marty J-L (2004) Affinity methods to immobilize acetylcholinesterases for manufacturing biosensors. Anal Lett 37(8):1571–1588Google Scholar
  22. Busch M, Gutberlet F, Hobel W, Polster J, Schmidt HL, Schwenk M (1993a) The application of optodes in FIA-based fermentation process control using the software package FIACRE. Sens Actuators B Chem 11(1–3):407–412Google Scholar
  23. Busch M, Hobel W, Polster J (1993b) Software FIACRE: bioprocess monitoring on the basis of flow injection analysis using simultaneously a urea optode and a glucose luminescence sensor. J Biotech 31(3):327–343Google Scholar
  24. Calvo EJ, Etchenique R, Pietrasanta L, Wolosiuk A, Danilowicz C (2001) Layer-by-layer self-assembly of glucose oxidase and Os(Bpy)2ClPyCH2NH-poly(allylamine) bioelectrode. Anal Chem 73(6):1161–1168Google Scholar
  25. Cano M, Luis Ávila J, Mayén M, Mena ML, Pingarrón J, Rodríguez-Amaro R (2008) A new, third generation, PVC/TTF-TCNQ composite amperometric biosensor for glucose determination. J Electroanal Chem 615(1):69–74Google Scholar
  26. Cao Z, Jiang X, Xie Q, Yao S (2008) A third-generation hydrogen peroxide biosensor based on horseradish peroxidase immobilized in a tetrathiafulvalene-tetracyanoquinodimethane/multiwalled carbon nanotubes film. Biosens Bioelectron 24(2):222–227Google Scholar
  27. Caras S, Janata J (1980) Field effect transistor sensitive to penicillin. Anal Chem 52(12):1935–1937Google Scholar
  28. Cass AEG, Davis G, Francis GD, Hill HAO, Aston WJ, Higgins IJ, Plotkin EV, Scott LDL, Turner APF (1984) Ferrocene-mediated enzyme electrode for amperometric determination of glucose. Anal Chem 56(4):667–671Google Scholar
  29. Castillo-Ortega MM, Rodriguez DE, Encinas JC, Plascencia M, Mendez-Velarde FA, Olayo R (2002) Conductometric uric acid and urea biosensor prepared from electroconductive polyaniline-poly(n-butyl methacrylate) composites. Sens Actuators B Chem 85(1–2):19–25Google Scholar
  30. Cattaneo MV, Male KB, Luong JHT (1992) A chemiluminescence fiber-optic biosensor system for the determination of glutamine in mammalian cell cultures. Biosens Bioelectron 7(8):569–574Google Scholar
  31. Chen H, Wang E (2000) Optical urea biosensor based on ammonium ion selective membrane. Anal Lett 33(6):997–1011Google Scholar
  32. Chen RJ, Zhang Y, Wang D, Dai H (2001) Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J Am Chem Soc 123(16):3838–3839Google Scholar
  33. Choi J-W, Kim Y-K, Lee I-H, Min J, Lee WH (2001) Optical organophosphorus biosensor consisting of acetylcholinesterase/viologen hetero Langmuir–Blodgett film. Biosens Bioelectron 16(9–12):937–943Google Scholar
  34. Chudobova I, Vrbova E, Kodicek M, Janovcova J, Kas J (1996) Fibre optic biosensor for the determination of d-glucose based on absorption changes of immobilized glucose oxidase. Anal Chim Acta 319(1–2):103–110Google Scholar
  35. Clark JLC, Lyons C (1962) Electrode systems for continuous monitoring in cardiovascular surgery. Ann N Y Acad Sci 102:29–45Google Scholar
  36. Contractor AQ, Sureshkumar TN, Narayanan R, Sukeerthi S, Lal R, Srinivasa RS (1994) Conducting polymer-based biosensors. Electrochim Acta 39(8–9):1321–1324Google Scholar
  37. Cordek J, Wang X, Tan W (1999) Direct immobilization of glutamate dehydrogenase on optical fiber probes for ultrasensitive glutamate detection. Anal Chem 71(8):1529–1533Google Scholar
  38. Cosnier S (2003) Biosensors based on electropolymerized films: new trends. Anal Bioanal Chem 377(3):507–520Google Scholar
  39. Csoeregi E, Schmidtke DW, Heller A (1995) Design and optimization of a selective subcutaneously implantable glucose electrode based on “wired” glucose oxidase. Anal Chem 67(7):1240–1244Google Scholar
  40. Danielsson B, Lundström I, Mosbach K, Stiblert L (1979) On a new enzyme transducer combination: the enzyme transistor. Anal Lett 12(11):1189–1199Google Scholar
  41. Danielsson B, Paul W, Alan T, Colin P (2005) SENSORS: calorimetric/enthalpimetric. In: Encyclopedia of analytical science. Elsevier, Oxford, pp. 237–245Google Scholar
  42. de la Rica R, Fernández-Sánchez C, Baldi A (2006) Polysilicon interdigitated electrodes as impedimetric sensors. Electrochem Commun 8(8):1239–1244Google Scholar
  43. de Marcos S, Galindo J, Sierra JF, Galban J, Castillo JR (1999) An optical glucose biosensor based on derived glucose oxidase immobilised onto a sol–gel matrix. Sens Actuators B Chem 57(1–3):227–232Google Scholar
  44. de Marcos S, Sanz V, Andreu Y, Galbán J (2006) Comparative study of polymeric supports as the base of immobilisation of chemically modified enzymes. Microchim Acta 153(3):163–170Google Scholar
  45. Degani Y, Heller A (1987) Direct electrical communication between chemically modified enzymes and metal electrodes. I. Electron transfer from glucose oxidase to metal electrodes via electron relays, bound covalently to the enzyme. J Phys Chem 91(6):1285–1289Google Scholar
  46. Dhand C, Singh SP, Arya SK, Datta M, Malhotra BD (2007) Cholesterol biosensor based on electrophoretically deposited conducting polymer film derived from nano-structured polyaniline colloidal suspension. Anal Chim Acta 602(2):244–251Google Scholar
  47. Di J, Shen C, Peng S, Tu Y, Li S (2005) A one-step method to construct a third-generation biosensor based on horseradish peroxidase and gold nanoparticles embedded in silica sol–gel network on gold modified electrode. Anal Chim Acta 553(1–2):196–200Google Scholar
  48. Di J, Peng S, Shen C, Gao Y, Tu Y (2007) One-step method embedding superoxide dismutase and gold nanoparticles in silica sol–gel network in the presence of cysteine for construction of third-generation biosensor. Biosens Bioelectron 23(1):88–94Google Scholar
  49. Doong R-A, Tsai H-C (2001) Immobilization and characterization of sol–gel-encapsulated acetylcholinesterase fiber-optic biosensor. Anal Chim Acta 434(2):239–246Google Scholar
  50. Dremel BAA, Li SY, Schmid RD (1992) On-line determination of glucose and lactate concentrations in animal cell culture based on fibre optic detection of oxygen in flow-injection analysis. Biosens Bioelectron 7(2):133–139Google Scholar
  51. Dzyadevych SV, Soldatkin AP, El’skaya AV, Martelet C, Jaffrezic-Renault N (2006) Enzyme biosensors based on ion-selective field-effect transistors. Anal Chim Acta 568(1–2):248–258Google Scholar
  52. Esseghaier C, Bergaoui Y, Tlili A, Helali S, Abdelghani A (2008) Impedance spectroscopy on immobilized streptavidin horseradish peroxidase layer for biosensing. Sens Actuators B Chem 134:112–116Google Scholar
  53. Fei J, Wu Y, Ji X, Wang J, Hu S, Gao Z (2003) An amperometric biosensor for glucose based on electrodeposited redox polymer/glucose oxidase film on a gold electrode. Anal Sci 19(9):1259–1263Google Scholar
  54. Ferretti S, Russell DA, Sapsford KE, Lee S-K, MacCraith BD, Oliva AG, Vidal M, Richardson DJ (2000) Optical biosensing of nitrite ions using cytochrome cd 1 nitrite reductase encapsulated in a sol–gel matrix. Analyst 125:1993–1999Google Scholar
  55. Forzani ES, Zhang H, Nagahara LA, Amlani I, Tsui R, Tao N (2004) A conducting polymer nanojunction sensor for glucose detection. Nano Lett 4(9):1785–1788Google Scholar
  56. Foulds NC, Lowe CR (1988) Immobilization of glucose oxidase in ferrocene-modified pyrrole polymers. Anal Chem 60(22):2473–2478Google Scholar
  57. Gauglitz G, Reichert M (1992) Spectral investigation and optimization of pH and urea sensors. Sens Actuators B Chem 6(1–3):83–86Google Scholar
  58. Gautier SM, Blum LJ, Coulet PR (1990a) Alternate determination of ATP and NADH with a single bioluminescence-based fiber-optic sensor. Sens Actuators B Chem 1(1–6):580–584Google Scholar
  59. Gautier SM, Blum LJ, Coulet PR (1990b) Fibre-optic biosensor based on luminescence and immobilized enzymes: microdetermination of sorbitol, ethanol and oxaloacetate. J Biolumin Chemilumin 5(1):57–63Google Scholar
  60. Gautier SM, Blum LJ, Coulet PR (1991) Cofactor-containing bioluminescent fibre-optic sensor: new developments with poly(vinyl alcohol) matrices. Anal Chim Acta 255(2):253–258Google Scholar
  61. Gavalas VG, Law SA, Christopher Ball J, Andrews R, Bachas LG (2004) Carbon nanotube aqueous sol–gel composites: enzyme-friendly platforms for the development of stable biosensors. Anal Biochem 329(2):247–252Google Scholar
  62. Godoy S, Leca-Bouvier B, Boullanger P, Blum LJ, Girard-Egrot AP (2005) Electrochemiluminescent detection of acetylcholine using acetylcholinesterase immobilized in a biomimetic Langmuir–Blodgett nanostructure. Sens Actuators B Chem 107(1):82–87Google Scholar
  63. Goeders KM, Colton JS, Bottomley LA (2008) Microcantilevers: sensing chemical interactions via mechanical motion. Chem Rev 108(2):522–542Google Scholar
  64. Goldfinch MJ, Lowe CR (1984) Solid-phase optoelectronic sensors for biochemical analysis. Anal Biochem 138(2):430–436Google Scholar
  65. Grieshaber D, MacKenzie R, Voros J, Reimhult E (2008) Electrochemical biosensors – sensor principles and architectures. Sensors 8:1400–1458Google Scholar
  66. Guan J-G, Miao Y-Q, Zhang Q-J (2004) Impedimetric biosensors. J Biosci Bioeng 97(4):219–226Google Scholar
  67. Guilbault GG, Lubrano GJ (1973) An enzyme electrode for the amperometric determination of glucose. Anal Chim Acta 64(3):439–455Google Scholar
  68. Guo M, Chen J, Li J, Nie L, Yao S (2004) Carbon nanotubes-based amperometric cholesterol biosensor fabricated through layer-by-layer technique. Electroanalysis 16(23):1992–1998Google Scholar
  69. Habermüller K, Mosbach M, Schuhmann W (2000) Electron-transfer mechanisms in amperometric biosensors. Fresenius J Anal Chem 366(6):560–568Google Scholar
  70. Healey BG, Walt DR (1995) Improved fiber-optic chemical sensor for penicillin. Anal Chem 67(24):4471–4476Google Scholar
  71. Heller A (1990) Electrical wiring of redox enzymes. Acc Chem Res 23(5):128–134Google Scholar
  72. Hiller M, Kranz C, Huber J, Bäuerle P, Schuhmann W (1996) Amperometric biosensors produced by immobilization of redox enzymes at polythiophene-modified electrode surfaces. Adv Mater 8(3):219–222Google Scholar
  73. Hlavay J, Guilbault GG (1994) Determination of sulphite by use of a fiber-optic biosensor based on a chemiluminescent reaction. Anal Chim Acta 299(1):91–96Google Scholar
  74. Hlavay J, Haemmerli SD, Guilbault GG (1994) Fibre-optic biosensor for hypoxanthine and xanthine based on a chemiluminescence reaction. Biosens Bioelectron 9(3):189–195Google Scholar
  75. Hoa DT, Kumar TNS, Punekar NS, Srinivasa RS, Lal R, Contractor AQ (1992) A biosensor based on conducting polymers. Anal Chem 64(21):2645–2646Google Scholar
  76. Ilangovan R, Daniel D, Krastanov A, Zachariah C, Elizabeth R (2006) Enzyme based biosensor for heavy metal ions determination. Biotechnol Biotechnol Equip 20:184–189Google Scholar
  77. Inoue Y, Kato Y, Sato K (1992) Surface acoustic wave method for in situ determination of the amounts of enzyme–substrate complex formed on immobilized glucose oxidase during catalytic reaction. J Chem Soc Faraday Trans 88:449–454Google Scholar
  78. Iyer R, Pavlov V, Katakis I, Bachas LG (2003) Amperometric sensing at high temperature with a “wired” thermostable glucose-6-phosphate dehydrogenase from Aquifex aeolicus. Anal Chem 75(15):3898–3901Google Scholar
  79. Jia J, Wang B, Wu A, Cheng G, Li Z, Dong S (2002) A method to construct a third-generation horseradish peroxidase biosensor: self-assembling gold nanoparticles to three-dimensional sol–gel network. Anal Chem 74(9):2217–2223Google Scholar
  80. Joshi KA, Tang J, Haddon R, Wang J, Chen W, Mulchandani A (2005a) A disposable biosensor for organophosphorus nerve agents based on carbon nanotubes modified thick film strip electrode. Electroanalysis 17(1):54–58Google Scholar
  81. Joshi PP, Merchant SA, Wang Y, Schmidtke DW (2005b) Amperometric biosensors based on redox polymer-carbon nanotube-enzyme composites. Anal Chem 77(10):3183–3188Google Scholar
  82. Kajiya Y, Sugai H, Iwakura C, Yoneyama H (1991) Glucose sensitivity of polypyrrole films containing immobilized glucose oxidase and hydroquinonesulfonate ions. Anal Chem 63(1):49–54Google Scholar
  83. Kaku T, Karan HI, Okamoto Y (1994) Amperometric glucose sensors based on immobilized glucose oxidase–polyquinone system. Anal Chem 66(8):1231–1235Google Scholar
  84. Kang X, Cheng G, Dong S (2001) A novel electrochemical SPR biosensor. Electrochem Commun 3(9):489–493Google Scholar
  85. Kar S, Arnold MA (1992) Fiber-optic ammonia sensor for measuring synaptic glutamate and extracellular ammonia. Anal Chem 64(20):2438–2443Google Scholar
  86. Karousos NG, Aouabdi S, Way AS, Reddy SM (2002) Quartz crystal microbalance determination of organophosphorus and carbamate pesticides. Anal Chim Acta 469(2):189–196Google Scholar
  87. Khan GF, Ohwa M, Wernet W (1996) Design of a stable charge transfer complex electrode for a third-generation amperometric glucose sensor. Anal Chem 68(17):2939–2945Google Scholar
  88. Koncki R, Lenarczuk T, Radomska A, Glab S (2001) Optical biosensors based on Prussian blue films. Analyst 126:1080–1085Google Scholar
  89. Kondoh J, Matsui Y, Shiokawa S (1993) New biosensor using shear horizontal surface acoustic wave device. Jpn J Appl Phys 32:2376–2379Google Scholar
  90. Kondoh J, Matsui Y, Shiokawa S, Wlodarski WB (1994) Enzyme-immobilized SH-SAW biosensor. Sens Actuators B Chem 20(2–3):199–203Google Scholar
  91. Köneke R, Menzel C, Ulber R, Schügerl K, Scheper T, Saleemuddin M (1996) Reversible coupling of glucoenzymes on fluoride-sensitive FET biosensors based on lectin-glucoprotein binding. Biosens Bioelectron 11(12):1229–1236Google Scholar
  92. Koopal CGJ, de Ruiter B, Nolte RJM (1991) Amperometric biosensor based on direct communication between glucose oxidase and a conducting polymer inside the pores of a filtration membrane. J Chem Soc Chem Commun 1691–1692Google Scholar
  93. Korell U, Spichiger UE (1993) Membraneless immobilization of xanthine oxidase on organic conducting salt/silicone oil electrodes. Electroanalysis 5(9–10):869–876Google Scholar
  94. Korell U, Spichiger UE (1994) Novel membranes amperometric peroxide biosensor based on a tetrathiafulvalene-p-tetracyanoquinodimethane electrode. Anal Chem 66(4):510–515Google Scholar
  95. Lange MA, Chambers JQ (1985) Amperometric determination of glucose with a ferrocene-mediated glucose oxidase/polyacrylamide gel electrode. Anal Chim Acta 175:89–97Google Scholar
  96. Länge K, Rapp B, Rapp M (2008) Surface acoustic wave biosensors: a review. Anal Bioanal Chem 391(5):1509–1519Google Scholar
  97. Langer JJ, Filipiak M, Kecinska J, Jasnowska J, Wlodarczak J, Buladowski B (2004) Polyaniline biosensor for choline determination. Surf Sci 573(1):140–145Google Scholar
  98. Leca B, Blum LJ (2000) Luminol electrochemiluminescence with screen-printed electrodes for low-cost disposable oxidase-based optical sensors. Analyst 125(5):789–791Google Scholar
  99. Leca B, Marty JL (1997a) Reagentless ethanol sensor based on a NAD-dependent dehydrogenase. Biosens Bioelectron 12(11):1083–1088Google Scholar
  100. Leca B, Marty JL (1997b) Reusable ethanol sensor based on a NAD(+)-dependent dehydrogenase without coenzyme addition. Anal Chim Acta 340(1–3):143–148Google Scholar
  101. Leca B, Morelis RM, Coulet PR (1995) Design of a choline sensor via direct coating of the transducer by photopolymerization of the sensing layer. Sens Actuators B Chem 27(1–3):436–439Google Scholar
  102. Leca BD, Verdier AM, Blum LJ (2001) Screen-printed electrodes as disposable or reusable optical devices for luminol electrochemiluminescence. Sens Actuators B Chem 74(1–3):190–193Google Scholar
  103. Lee S-J, Saleemuddin M, Scheper T, Loos H, Sahm H (1994a) A fluorometric fiber-optic biosensor for dual analysis of glucose and fructose using glucose–fructose-oxidoreductase isolated from Zymomonas mobilis. J Biotech 36(1):39–44Google Scholar
  104. Lee SJ, Scheper T, Buckmann AF (1994b) Application of a flow injection fibre optic biosensor for the analysis of different amino acids. Biosens Bioelectron 9(1):29–32Google Scholar
  105. Lee W-Y, Kim S-R, Kim T-H, Lee KS, Shin M-C, Park J-K (2000a) Sol–gel-derived thick-film conductometric biosensor for urea determination in serum. Anal Chim Acta 404(2):195–203Google Scholar
  106. Lee W-Y, Lee KS, Kim T-H, Shin M-C, Park J-K (2000b) Microfabricated conductometric urea biosensor based on sol–gel immobilized urease. Electroanalysis 12(1):78–82Google Scholar
  107. Lenarczuk T, Wencel D, Glab S, Koncki R (2001) Prussian blue-based optical glucose biosensor in flow-injection analysis. Anal Chim Acta 447(1–2):23–32Google Scholar
  108. Li L, Walt DR (1995) Dual-analyte fiber-optic sensor for the simultaneous and continuous measurement of glucose and oxygen. Anal Chem 67(20):3746–3752Google Scholar
  109. Li C-I, Lin Y-H, Shih C-L, Tsaur J-P, Chau L-K (2002a) Sol–gel encapsulation of lactate dehydrogenase for optical sensing of l-lactate. Biosens Bioelectron 17(4):323–330Google Scholar
  110. Li YX, Zhu LD, Zhu GY, Zhao CA (2002b) A chemiluminescence optical fiber glucose biosensor based on co-immobilizing glucose oxidase and horseradish peroxidase in a sol–gel film. Chem Res Chin Univ 18(1):12–15Google Scholar
  111. Lin Y, Lu F, Wang J (2004) Disposable carbon nanotube modified screen-printed biosensor for amperometric detection of organophosphorus pesticides and nerve agents. Electroanalysis 16(1–2):145–149Google Scholar
  112. Liu S, Ju H (2003) Reagentless glucose biosensor based on direct electron transfer of glucose oxidase immobilized on colloidal gold modified carbon paste electrode. Biosens Bioelectron 19(3):177–183Google Scholar
  113. Liu D, Ge K, Chen K, Nie L, Yao S (1995) Clinical analysis of urea in human blood by coupling a surface acoustic wave sensor with urease extracted from pumpkin seeds. Anal Chim Acta 307(1):61–69Google Scholar
  114. Liu J, Chou A, Rahmat W, Paddon-Row MN, Gooding JJ (2005) Achieving direct electrical connection to glucose oxidase using aligned single walled carbon nanotube arrays. Electroanalysis 17(1):38–46Google Scholar
  115. Llopis X, Merkoçi A, del Valle M, Alegret S (2005) Integration of a glucose biosensor based on an epoxy-graphite-TTF·TCNQ-GOD biocomposite into a FIA system. Sens Actuators B Chem 107(2):742–748Google Scholar
  116. Lojou É, Bianco P (2004) Membrane electrodes for protein and enzyme electrochemistry. Electroanalysis 16(13–14):1113–1121Google Scholar
  117. Luo X-L, Xu J-J, Zhao W, Chen H-Y (2004a) Glucose biosensor based on ENFET doped with SiO2 nanoparticles. Sens Actuators B Chem 97(2–3):249–255Google Scholar
  118. Luo X-L, Xu J-J, Zhao W, Chen H-Y (2004b) A novel glucose ENFET based on the special reactivity of MnO2 nanoparticles. Biosens Bioelectron 19(10):1295–1300Google Scholar
  119. Luo X, Killard AJ, Morrin A, Smyth MR (2006) Enhancement of a conducting polymer-based biosensor using carbon nanotube-doped polyaniline. Anal Chim Acta 575(1):39–44Google Scholar
  120. Mabeck J, Malliaras G (2006) Chemical and biological sensors based on organic thin-film transistors. Anal Bioanal Chem 384(2):343–353Google Scholar
  121. Marquette CA, Blum LJ (1999) Luminol electrochemiluminescence-based fibre optic biosensors for flow injection analysis of glucose and lactate in natural samples. Anal Chim Acta 381(1):1–10Google Scholar
  122. Marquette C, Blum L (2006) Applications of the luminol chemiluminescent reaction in analytical chemistry. Anal Bioanal Chem 385(3):546–554Google Scholar
  123. Marquette C, Blum L (2008) Electro-chemiluminescent biosensing. Anal Bioanal Chem 390(1):155–168Google Scholar
  124. Marquette CA, Leca BD, Blum LJ (2001) Electrogenerated chemiluminescence of luminol for oxidase-based fibre-optic biosensors. Luminescence 16(2):159–165Google Scholar
  125. Martin SP, Lamb DJ, Lynch JM, Reddy SM (2003) Enzyme-based determination of cholesterol using the quartz crystal acoustic wave sensor. Anal Chim Acta 487(1):91–100Google Scholar
  126. Mascini M (1995) Enzyme-based optical-fibre biosensors. Sens Actuators B Chem 29(1–3):121–125Google Scholar
  127. McCurley MF (1994) An optical biosensor using a fluorescent, swelling sensing element. Biosens Bioelectron 9(7):527–533Google Scholar
  128. Mena ML, Yáñez-Sedeño P, Pingarrón JM (2005) A comparison of different strategies for the construction of amperometric enzyme biosensors using gold nanoparticle-modified electrodes. Anal Biochem 336(1):20–27Google Scholar
  129. Merkoçi A, Braga S, Fàbregas E, Alegret S (1999) A potentiometric biosensor for d-amygdalin based on a consolidated biocomposite membrane. Anal Chim Acta 391(1):65–72Google Scholar
  130. Michel PE, Gautier-Sauvigne SM, Blum LJ (1998) Luciferin incorporation in the structure of acrylic microspheres with subsequent confinement in a polymeric film: a new method to develop a controlled release-based biosensor for ATP, ADP and AMP. Talanta 47(1):169–181Google Scholar
  131. Mitsubayashi K, Kon T, Hashimoto Y (2003) Optical bio-sniffer for ethanol vapor using an oxygen-sensitive optical fiber. Biosens Bioelectron 19(3):193–198Google Scholar
  132. Mourzina IG, Yoshinobu T, Ermolenko YE, Vlasov YG, Schöning MJ, Iwasaki H (2004) Immobilization of urease and cholinesterase on the surface of semiconductor transducer for the development of light-addressable potentiometric sensors. Microchim Acta 144(1):41–50Google Scholar
  133. Moussy F, Jakeway S, Harrison DJ, Rajotte RV (1994) In vitro and in vivo performance and lifetime of perfluorinated ionomer-coated glucose sensors after high-temperature curing. Anal Chem 66(22):3882–3888Google Scholar
  134. Mulchandani A, Pan S, Chen W (1999) Fiber-optic enzyme biosensor for direct determination of organophosphate nerve agents. Biotechnol Prog 15(1):130–134Google Scholar
  135. Narayanaswamy R, Sevilla F (1988) An optical fibre probe for the determination of glucose based on immobilized glucose dehydrogenase. Anal Lett 21(7):1165–1175Google Scholar
  136. Navas Diaz A, Ramos Peinado MC (1997) Sol–gel cholinesterase biosensor for organophosphorus pesticide fluorimetric analysis. Sens Actuators B Chem 39(1–3):426–431Google Scholar
  137. Nishizawa M, Matsue T, Uchida I (1992) Penicillin sensor based on a microarray electrode coated with pH-responsive polypyrrole. Anal Chem 64(21):2642–2644Google Scholar
  138. Noguer T, Leca B, Jeanty G, Marty JL (1999) Biosensors based on enzyme inhibition: detection of organophosphorus and carbamate insecticides and dithiocarbamate fungicides. Field Anal Chem Technol 3(3):171–178Google Scholar
  139. Notsu H, Tatsuma T, Fujishima A (2002) Tyrosinase-modified boron-doped diamond electrodes for the determination of phenol derivatives. J Electroanal Chem 523(1–2):86–92Google Scholar
  140. Ohara TJ, Rajagopalan R, Heller A (1994) “Wired” enzyme electrodes for amperometric determination of glucose or lactate in the presence of interfering substances. Anal Chem 66(15):2451–2457Google Scholar
  141. Opitz N, Lubbers DW (1988) Electrochromic dyes, enzyme reactions and hormone–protein interactions in fluorescence optic sensor (optode) technology. Talanta 35(2):123–127Google Scholar
  142. Palmisano F, Centonze D, Guerrieri A, Zambonin PG (1993) An interference-free biosensor based on glucose oxidase electrochemically immobilized in a non-conducting poly(pyrrole) film for continuous subcutaneous monitoring of glucose through microdialysis sampling. Biosens Bioelectron 8(9–10):393–399Google Scholar
  143. Palmisano F, Rizzi R, Centonze D, Zambonin PG (2000) Simultaneous monitoring of glucose and lactate by an interference and cross-talk free dual electrode amperometric biosensor based on electropolymerized thin films. Biosens Bioelectron 15(9–10):531–539Google Scholar
  144. Palmisano F, Zambonin PG, Centonze D, Quinto M (2002) A disposable, reagentless, third-generation glucose biosensor based on overoxidized poly(pyrrole)/tetrathiafulvalene-tetracyanoquinodimethane composite. Anal Chem 74(23):5913–5918Google Scholar
  145. Pandey PC, Mishra AP (1988) Conducting polymer-coated enzyme microsensor for urea. Analyst 113:329–331Google Scholar
  146. Pandey PC, Upadhyay S, Sharma S (2003) TTF-TCNQ functionalized ormosil based electrocatalytic biosensor: a comparative study on bioelectrocatalysis. Electroanalysis 15(13):1115–1119Google Scholar
  147. Papkovsky DB (1993) Luminescent porphyrins as probes for optical (bio)sensors. Sens Actuators B Chem 11(1–3):293–300Google Scholar
  148. Papkovsky DB, Olah J, Kurochkin IN (1993) Fibre-optic lifetime-based enzyme biosensor. Sens Actuators B Chem 11(1–3):525Google Scholar
  149. Park K-Y, Choi S-B, Lee M, Sohn B-K, Choi S-Y (2002) ISFET glucose sensor system with fast recovery characteristics by employing electrolysis. Sens Actuators B Chem 83(1–3):90–97Google Scholar
  150. Pasic A, Koehler H, Schaupp L, Pieber T, Klimant I (2006) Fiber-optic flow-through sensor for online monitoring of glucose. Anal Bioanal Chem 386(5):1293–1302Google Scholar
  151. Pasic A, Koehler H, Klimant I, Schaupp L (2007) Miniaturized fiber-optic hybrid sensor for continuous glucose monitoring in subcutaneous tissue. Sens Actuators B Chem 122(1):60–68Google Scholar
  152. Patolsky F, Zayats M, Katz E, Willner I (1999) Precipitation of an insoluble product on enzyme monolayer electrodes for biosensor applications: characterization by faradaic impedance spectroscopy, cyclic voltammetry, and microgravimetric quartz crystal microbalance analyses. Anal Chem 71(15):3171–3180Google Scholar
  153. Patolsky F, Weizmann Y, Willner I (2004) Long-range electrical contacting of redox enzymes by SWCNT connectors. Angew Chem Int Ed Engl 43(16):2113–2117Google Scholar
  154. Pei J, Tian F, Thundat T (2004) Glucose biosensor based on the microcantilever. Anal Chem 76(2):292–297Google Scholar
  155. Pishko MV, Katakis I, Lindquist S-E, Ye L, Heller BAGA (1990) Direct electrical communication between graphite electrodes and surface adsorbed glucose oxidase/redox polymer complexes. Angew Chem Int Ed Engl 29(1):82–84Google Scholar
  156. Poghossian A, Schöning MJ (2004) Detecting both physical and (bio-)chemical parameters by means of ISFET devices. Electroanalysis 16(22):1863–1872Google Scholar
  157. Poghossian A, Schöning MJ (2007) Chemical and biological field-effect sensors for liquids – status report. In: Marks RS, Cullen DC, Karube I, Lowe CR, Weetall HH (eds) Handbook of biosensors and biochips. Wiley, Chichester, pp 395–411Google Scholar
  158. Poghossian A, Schoning MJ, Schroth P, Simonis A, Luth H (2001a) An ISFET-based penicillin sensor with high sensitivity, low detection limit and long lifetime. Sens Actuators B Chem 76(1–3):519–526Google Scholar
  159. Poghossian A, Yoshinobu T, Simonis A, Ecken H, Luth H, Schoning MJ (2001b) Penicillin detection by means of field-effect based sensors: EnFET, capacitive EIS sensor or LAPS? Sens Actuators B Chem 78(1–3):237–242Google Scholar
  160. Preuschoff F, Spohn U, Janasek D, Weber E (1994) Photodiode-based chemiluminometric biosensors for hydrogen peroxide and l-lysine. Biosens Bioelectron 9(8):543–549Google Scholar
  161. Qian L, Yang X (2006) Composite film of carbon nanotubes and chitosan for preparation of amperometric hydrogen peroxide biosensor. Talanta 68(3):721–727Google Scholar
  162. Ramanathan K, Danielsson B (2001) Principles and applications of thermal biosensors. Biosens Bioelectron 16(6):417–423Google Scholar
  163. Ramos MC, Torijas MC, Diaz AN (2001) Enhanced chemiluminescence biosensor for the determination of phenolic compounds and hydrogen peroxide. Sens Actuators B Chem 73–75(1):71Google Scholar
  164. Rebriiev AV, Starodub NF (2004) Enzymatic biosensor based on the ISFET and photopolymeric membrane for the determination of urea. Electroanalysis 16(22):1891–1895Google Scholar
  165. Ren C, Song Y, Li Z, Zhu G (2005) Hydrogen peroxide sensor based on horseradish peroxidase immobilized on a silver nanoparticles/cysteamine/gold electrode. Anal Bioanal Chem 381(6):1179–1185Google Scholar
  166. Rhines TD, Arnold MA (1989) Fiber-optic biosensor for urea based on sensing of ammonia gas. Anal Chim Acta 227:387–396Google Scholar
  167. Riklin A, Katz E, Wiliner I, Stocker A, Buckmann AF (1995) Improving enzyme–electrode contacts by redox modification of cofactors. Nature 376(6542):672–675Google Scholar
  168. Rochette JF, Sacher E, Meunier M, Luong JHT (2005) A mediatorless biosensor for putrescine using multiwalled carbon nanotubes. Anal Biochem 336(2):305–311Google Scholar
  169. Rosenzweig Z, Kopelman R (1996) Analytical properties and sensor size effects of a micrometer-sized optical fiber glucose biosensor. Anal Chem 68(8):1408–1413Google Scholar
  170. Rubio-Retama J, Hernando J, Lopez-Ruiz B, Hartl A, Steinmuller D, Stutzmann M, Lopez-Cabarcos E, AntonioGarrido J (2006) Synthetic nanocrystalline diamond as a third-generation biosensor support. Langmuir 22(13):5837–5842Google Scholar
  171. Russell RJ, Pishko MV, Simonian AL, Wild JR (1999) Poly(ethylene glycol) hydrogel-encapsulated fluorophore–enzyme conjugates for direct detection of organophosphorus neurotoxins. Anal Chem 71(21):4909–4912Google Scholar
  172. Salimi A, Compton RG, Hallaj R (2004) Glucose biosensor prepared by glucose oxidase encapsulated sol–gel and carbon-nanotube-modified basal plane pyrolytic graphite electrode. Anal Biochem 333(1):49–56Google Scholar
  173. Sanz V, de Marcos S, Galban J (2007) A reagentless optical biosensor based on the intrinsic absorption properties of peroxidase. Biosens Bioelectron 22(6):956–964Google Scholar
  174. Sasso SV, Pierce RJ, Walla R, Yacynych AM (1990) Electropolymerized 1,2-diaminobenzene as a means to prevent interferences and fouling and to stabilize immobilized enzyme in electrochemical biosensors. Anal Chem 62(11):1111–1117Google Scholar
  175. Sassolas A, Blum LJ, Leca-Bouvier BD (2008) Electrogeneration of polyluminol and chemiluminescence for new disposable reagentless optical sensors. Anal Bioanal Chem 390(3):865–871Google Scholar
  176. Sassolas A, Blum LJ, Leca-Bouvier B (2009) Polymeric luminol on pre-treated screen-printed electrodes for the design of performant reagentless (bio)sensors. Sens Actuators B Chem 139:214–221Google Scholar
  177. Schäferling M, Wolfbeis OS (2007) Europium tetracycline as a luminescent probe for nucleoside phosphates and its application to the determination of kinase activity. Chemistry 13(15):4342–4349Google Scholar
  178. Schaffar BPH, Wolfbeif OS (1990) A fast responding fibre optic glucose biosensor based on an oxygen optrode. Biosens Bioelectron 5(2):137–148Google Scholar
  179. Schlapfer P, Mindt W, Racine PH (1974) Electrochemical measurement of glucose using various electron acceptors. Clin Chim Acta 57(3):283–289Google Scholar
  180. Schubert F (1993) A fiber-optic enzyme sensor for the determination of adenosine diphosphate using internal analyte recycling. Sens Actuators B Chem 11(1–3):531–535Google Scholar
  181. Schuhmann W, Lammert R, Hämmerle M, Schmidt H-L (1991) Electrocatalytic properties of polypyrrole in amperometric electrodes. Biosens Bioelectron 6(8):689–697Google Scholar
  182. Schuhmann W, Kranz C, Huber J, Wohlschläger H (1993) Conducting polymer-based amperometric enzyme electrodes. Towards the development of miniaturized reagentless biosensors. Synth Met 61(1–2):31–35Google Scholar
  183. Seker S, Becerik I (2004) A neural network model in the calibration of glucose sensor based on the immobilization of glucose oxidase into polypyrrole matrix. Electroanalysis 16(18):1542–1549Google Scholar
  184. Shervedani RK, Mehrjardi AH, Zamiri N (2006) A novel method for glucose determination based on electrochemical impedance spectroscopy using glucose oxidase self-assembled biosensor. Bioelectrochemistry 69(2):201–208Google Scholar
  185. Shul’ga AA, Soldatkin AP, El’skaya AV, Dzyadevich SV, Patskovsky SV, Strikha VI (1994) Thin-film conductometric biosensors for glucose and urea determination. Biosens Bioelectron 9(3):217–223Google Scholar
  186. Sierra JF, Galban J, Castillo JR (1997) Determination of glucose in blood based on the intrinsic fluorescence of glucose oxidase. Anal Chem 69(8):1471–1476Google Scholar
  187. Simonian AL, Flounders AW, Wild JR (2004) FET-based biosensors for the direct detection of organophosphate neurotoxins. Electroanalysis 16(22):1896–1906Google Scholar
  188. Solanki PR, Arya SK, Nishimura Y, Iwamoto M, Malhotra BD (2007) Cholesterol biosensor based on amino-undecanethiol self-assembled monolayer using surface plasmon resonance technique. Langmuir 23(13):7398–7403Google Scholar
  189. Soldatkin AP, Arkhypova VN, Dzyadevych SV, El’skaya AV, Gravoueille J-M, Jaffrezic-Renault N, Martelet C (2005) Analysis of the potato glycoalkaloids by using of enzyme biosensor based on pH-ISFETs. Talanta 66(1):28–33Google Scholar
  190. Song Y, Wang L, Ren C, Zhu G, Li Z (2006) A novel hydrogen peroxide sensor based on horseradish peroxidase immobilized in DNA films on a gold electrode. Sens Actuators B Chem 114(2):1001–1006Google Scholar
  191. Spohn U, Preuschoff F, Blankenstein G, Janasek D, Kula MR, Hacker A (1995) Chemiluminometric enzyme sensors for flow-injection analysis. Anal Chim Acta 303(1):109–120Google Scholar
  192. Sternberg R, Bindra DS, Wilson GS, Thevenot DR (1988) Covalent enzyme coupling on cellulose acetate membranes for glucose sensor development. Anal Chem 60(24):2781–2786Google Scholar
  193. Stoica L, Ludwig R, Haltrich D, Gorton L (2006) Third-generation biosensor for lactose based on newly discovered cellobiose dehydrogenase. Anal Chem 78(2):393–398Google Scholar
  194. Subramanian A, Oden PI, Kennel SJ, Jacobson KB, Warmack RJ, Thundat T, Doktycz MJ (2002) Glucose biosensing using an enzyme-coated microcantilever. Appl Phys Lett 81(2):385–387Google Scholar
  195. Tatsuma T, Mori H, Fujishima A (2000) Electron transfer from diamond electrodes to heme peptide and peroxidase. Anal Chem 72(13):2919–2924Google Scholar
  196. Thevenot DR, Toth K, Durst RA, Wilson GS (2001) Electrochemical biosensors: recommended definitions and classification. Biosens Bioelectron 16(1–2):121–131Google Scholar
  197. Tian F, Xu B, Zhu L, Zhu G (2001) Hydrogen peroxide biosensor with enzyme entrapped within electrodeposited polypyrrole based on mediated sol–gel derived composite carbon electrode. Anal Chim Acta 443(1):9–16Google Scholar
  198. Tian Y, Mao L, Okajima T, Ohsaka T (2002) Superoxide dismutase-based third-generation biosensor for superoxide anion. Anal Chem 74(10):2428–2434Google Scholar
  199. Tian Y, Mao L, Okajima T, Ohsaka T (2005) A carbon fiber microelectrode-based third-generation biosensor for superoxide anion. Biosens Bioelectron 21(4):557–564Google Scholar
  200. Trettnak W, Wolfbeis OS (1989a) A fiber optic lactate biosensor with an oxygen optrode as the transducer. Anal Lett 22(9):2191–2197Google Scholar
  201. Trettnak W, Wolfbeis OS (1989b) Fully reversible fibre-optic glucose biosensor based on the intrinsic fluorescence of glucose oxidase. Anal Chim Acta 221:195–203Google Scholar
  202. Trettnak W, Leiner MJP, Wolfbeis OS (1989) Fibre-optic glucose sensor with a pH optrode as the transducer. Biosensors 4(1):15–26Google Scholar
  203. Trettnak W, Reininger F, Zinterl E, Wolfbeis OS (1993) Fiber-optic remote detection of pesticides and related inhibitors of the enzyme acetylcholine esterase. Sens Actuators B Chem 11(1–3):87–93Google Scholar
  204. Tsafack VC, Marquette CA, Leca B, Blum LJ (2000a) An electrochemiluminescence-based fibre optic biosensor for choline flow injection analysis. Analyst 125:151–155Google Scholar
  205. Tsafack VC, Marquette CA, Pizzolato F, Blum LJ (2000b) Chemiluminescent choline biosensor using histidine-modified peroxidase immobilised on metal-chelate substituted beads and choline oxidase immobilised on anion-exchanger beads co-entrapped in a photocrosslinkable polymer. Biosens Bioelectron 15(3–4):125–133Google Scholar
  206. Tsai W-C, Cass AEG (1995) Ferrocene-modified horseradish peroxidase enzyme electrodes. A kinetic study on reactions with hydrogen peroxide and linoleic hydroperoxide. Analyst 120:2249–2254Google Scholar
  207. Tsai YC, Li SC, Chen JM (2005) Cast thin film biosensor design based on a Nafion backbone, a multiwalled carbon nanotube conduit, and a glucose oxidase function. Langmuir 21(8):3653–3658Google Scholar
  208. Tymecki L, Zwierkowska E, Koncki R (2005) Strip bioelectrochemical cell for potentiometric measurements fabricated by screen-printing. Anal Chim Acta 538(1–2):251–256Google Scholar
  209. Updike SJ, Hicks GP (1967) The enzyme electrode. Nature 214:986–988Google Scholar
  210. Vaidya R, Wilkins E (1994) Effect of interference on amperometric glucose biosensors with cellulose acetate membranes. Electroanalysis 6(8):677–682Google Scholar
  211. Védrine C, Fabiano S, Tran-Minh C (2003) Amperometric tyrosinase based biosensor using an electrogenerated polythiophene film as an entrapment support. Talanta 59(3):535–544Google Scholar
  212. Vidal J-C, Espuelas J, Castillo J-R (2004) Amperometric cholesterol biosensor based on in situ reconstituted cholesterol oxidase on an immobilized monolayer of flavin adenine dinucleotide cofactor. Anal Biochem 333(1):88–98Google Scholar
  213. Viticoli M, Curulli A, Cusma A, Kaciulis S, Nunziante S, Pandolfi L, Valentini F, Padeletti G (2006) Third-generation biosensors based on TiO2 nanostructured films. Mater Sci Eng C 26(5–7):947–951Google Scholar
  214. Viveros L, Paliwal S, McCrae D, Wild J, Simonian A (2006) A fluorescence-based biosensor for the detection of organophosphate pesticides and chemical warfare agents. Sens Actuators B Chem 115(1):150–157Google Scholar
  215. Volotovsky V, Kim N (1998) Cyanide determination by an ISFET-based peroxidase biosensor. Biosens Bioelectron 13(9):1029–1033Google Scholar
  216. Walker JP, Asher SA (2005) Acetylcholinesterase-based organophosphate nerve agent sensing photonic crystal. Anal Chem 77(6):1596–1600Google Scholar
  217. Wang J (2008) Electrochemical glucose biosensors. Chem Rev 108(2):814–825Google Scholar
  218. Wang J, Musameh M (2005) Carbon-nanotubes doped polypyrrole glucose biosensor. Anal Chim Acta 539(1–2):209–213Google Scholar
  219. Wang X, Dzyadevych SV, Chovelon J-M, Renault NJ, Chen L, Xia S, Zhao J (2006) Development of a conductometric nitrate biosensor based on methyl viologen/Nafion® composite film. Electrochem Commun 8(2):201–205Google Scholar
  220. Watson LD, Maynard P, Cullen DC, Sethi RS, Brettle J, Lowe CR (1987) A microelectronic conductimetric biosensor. Biosensors 3:101–115Google Scholar
  221. Willner I, Katz E (2000) Integration of layered redox proteins and conductive supports for bioelectronic applications. Angew Chem Int Ed Engl 39(7):1180–1218Google Scholar
  222. Willner I, Heleg-Shabtai V, Blonder R, Katz E, Tao G, Buckmann AF, Heller A (1996) Electrical wiring of glucose oxidase by reconstitution of FAD-modified monolayers assembled onto Au-electrodes. J Am Chem Soc 118(42):10321–10322Google Scholar
  223. Wolfbeis OS, Li H (1993) Fluorescence optical urea biosensor with an ammonium optrode as transducer. Biosens Bioelectron 8(3–4):161–166Google Scholar
  224. Wolfbeis OS, Oehme I, Papkovskaya N, Klimant I (2000) Sol–gel based glucose biosensors employing optical oxygen transducers, and a method for compensating for variable oxygen background. Biosens Bioelectron 15(1–2):69–76Google Scholar
  225. Wolfbeis OS, Schäferling M, Dürkop A (2003) Reversible optical sensor membrane for hydrogen peroxide using an immobilized fluorescent probe, and its application to a glucose biosensor. Microchim Acta 143(4):221–227Google Scholar
  226. Wu XJ, Choi MMF (2003) Hydrogel network entrapping cholesterol oxidase and octadecylsilica for optical biosensing in hydrophobic organic or aqueous micelle solvents. Anal Chem 75(16):4019–4027Google Scholar
  227. Wu XJ, Choi MMF (2004) An optical glucose biosensor based on entrapped-glucose oxidase in silicate xerogel hybridised with hydroxyethyl carboxymethyl cellulose. Anal Chim Acta 514(2):219–226Google Scholar
  228. Wu J, Qu Y (2006) Mediator-free amperometric determination of glucose based on direct electron transfer between glucose oxidase and an oxidized boron-doped diamond electrode. Anal Bioanal Chem 385(7):1330–1335Google Scholar
  229. Xiao Y, Patolsky F, Katz E, Hainfeld JF, Willner I (2003) “Plugging into enzymes”: nanowiring of redox enzymes by a gold nanoparticle. Science 299(5614):1877–1881Google Scholar
  230. Xie X, Suleiman AA, Guilbault GG (1990) A urea fiber optic biosensor based on absorption measurement. Anal Lett 23(12):2143–2153Google Scholar
  231. Xie X, Suleiman AA, Guilbault GG (1991) Determination of urea in serum by a fiber-optic fluorescence biosensor. Talanta 38(10):1197–1200Google Scholar
  232. Xie X, Suleiman AA, Guilbault GG, Yang Z, Z-a S (1992a) Flow-injection determination of ethanol by fiber-optic chemiluminescence measurement. Anal Chim Acta 266(2):325–329Google Scholar
  233. Xie X, Suleiman AA, Guilbault GG (1992b) A fluorescence-based fiber optic biosensor for the flow-injection analysis of penicillin. Biotechnol Bioeng 39(11):1147–1150Google Scholar
  234. Xie X, Shakhsher Z, Suleiman AA, Guilbault GG, Yang Z, Z-a S (1994) A fiber optic biosensor for sulfite analysis in food. Talanta 41(2):317–321Google Scholar
  235. Xu J-J, Zhao W, Luo X-L, Chen H-Y (2005a) A sensitive biosensor for lactate based on layer-by-layer assembling MnO2 nanoparticles and lactate oxidase on ion-sensitive field-effect transistors. Chem Commun 792–794Google Scholar
  236. Xu JJ, Wang G, Zhang Q, Xia XH, Chen HY (2005b) Third generation horseradish peroxidase biosensor based on self-assembling carbon nanotubes to gold electrode surface. Chin Chem Lett 16(4):523–526Google Scholar
  237. Yabuki S-I, Shinohara H, Aizawa M (1989) Electro-conductive enzyme membrane. J Chem Soc Chem Commun 945–946Google Scholar
  238. Yamato H, Ohwa M, Wernet W (1995) A polypyrrole/three-enzyme electrode for creatinine detection. Anal Chem 67(17):2776–2780Google Scholar
  239. Yan X, Ji H-F, Lvov Y (2004) Modification of microcantilevers using layer-by-layer nanoassembly film for glucose measurement. Chem Phys Lett 396(1–3):34–37Google Scholar
  240. Yan X, Xu XK, Ji HF (2005) Glucose oxidase multilayer modified microcantilevers for glucose measurement. Anal Chem 77(19):6197–6204Google Scholar
  241. Yang Y, Wang Z, Yang M, Guo M, Wu Z, Shen G, Yu R (2006) Inhibitive determination of mercury ion using a renewable urea biosensor based on self-assembled gold nanoparticles. Sens Actuators B Chem 114(1):1–8Google Scholar
  242. Yin L-T, Chou J-C, Chung W-Y, Sun T-P, Hsiung K-P, Hsiung S-K (2001) Glucose ENFET doped with MnO2 powder. Sens Actuators B Chem 76(1–3):187–192Google Scholar
  243. Zayats M, Kharitonov AB, Katz E, Buckmann AF, Willner I (2000) An integrated NAD+-dependent enzyme-functionalized field-effect transistor (ENFET) system: development of a lactate biosensor. Biosens Bioelectron 15(11–12):671–680Google Scholar
  244. Zayats M, Katz E, Baron R, Willner I (2005) Reconstitution of apo-glucose dehydrogenase on pyrroloquinoline quinone-functionalized Au nanoparticles yields an electrically contacted biocatalyst. J Am Chem Soc 127(35):12400–12406Google Scholar
  245. Zayats M, Willner B, Willner I (2008) Design of amperometric biosensors and biofuel cells by the reconstitution of electrically contacted enzyme electrodes. Electroanalysis 20(6):583–601Google Scholar
  246. Zhang W, Chang H, Rechnitz GA (1997) Dual-enzyme fiber optic biosensor for pyruvate. Anal Chim Acta 350(1–2):59–65Google Scholar
  247. Zhou Z, Qiao L, Zhang P, Xiao D, Choi M (2005) An optical glucose biosensor based on glucose oxidase immobilized on a swim bladder membrane. Anal Bioanal Chem 383(4):673–679Google Scholar
  248. Zhou Q, Xie Q, Fu Y, Su Z, Jia X, Yao S (2007) Electrodeposition of carbon nanotubes-chitosan-glucose oxidase biosensing composite films triggered by reduction of p-benzoquinone or H2O2. J Phys Chem B 111(38):11276–11284Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Béatrice D. Leca-Bouvier
  • Loïc J. Blum
    • 1
  1. 1.Institut de Chimie et Biochimie Moléculaires et SupramoléculairesLaboratoire de Génie Enzymatique, Membranes Biomimétiques et Assemblages BiomoléculairesVilleurbanneFrance

Personalised recommendations