Antibody Engineering for Biosensor Applications

  • Neal A. E. Hopkins


Antibodies are a well-established class of affinity reagents used extensively in detection and diagnostic applications. However, while these proteins have been developed to provide considerable functionality in conventional applications (e.g. sandwich ELISA), their exploitation in emergent biosensor technologies requires careful consideration.

Historically, diagnostic technologies have been the primary consumer of antibody products. As a result, antibody development has been skewed toward satisfying the requirements of conventional diagnostic assay formats (ostensibly sandwich assays). The resulting catalogue of antibody products provides a convenient resource for potential biosensor exploitation. However, when applied outside of their traditional context (on novel surface/transducer interfaces) they can behave unpredictably and undesirably (e.g. loss of activity or specificity).

The surface immobilisation of a recognition element within a biosensor is an invariant feature of biosensor assay design. The resulting interface represents a complex system composed of interdependent technical challenges affecting assay stability, specificity, and sensitivity. It is likely that a holistic approach to interface development is required as the development of individual interface components is unlikely to deliver the technical advances required for the practical exploitation/commercialization of biosensor technologies.

The use of antibodies in biosensor applications requires a detailed understanding of their inherent properties and the interface to which they are to be tethered. This chapter illustrates the core properties of antibody structure and function and their significance in biosensing applications. The different classes of antibody reagents available to biosensor developers are discussed with a focus on recombinant antibody technologies. The opportunities available in biosensor development, regarding assay and interface design, are briefly considered. Finally, strategies for the bespoke engineering and application of antibodies in biosensor technologies are discussed in detail.


Antibody engineering Biosensor interface Stability Affinity Specificity Sensitivity Immobilisation Monoclonal Polyclonal Recombinant antibody Domain antibody 



Enzyme-linked immunosorbent assay




Immunoglobulin gamma


Complementarity determining region


Human chorionic gonadotropin


Polymerase chain reaction


Protein databank


Designed ankyrin repeat proteins


Prostate specific antigen


Prostate specific membrane antigen


Surface Plasmon resonance


Atomic force microscopy


Quartz crystal microbalance with dissipation


Polyethylene glycol (identical to PEO)


Polyethylene oxide (identical to PEG)


Non-specific binding








Transfer ribonucleic acid


Deoxyribonucleic acid


Messenger ribonucleic acid


Horseradish peroxidase


  1. Adachi M, Kurihara Y, Nojima H, Takeda-Shitaka M, Kamiya K, Umeyama H (2003) Interaction between the antigen and antibody is controlled by the constant domains: normal mode dynamics of the HEL-HyHEL-10 complex. Protein Sci 12:2125–2131CrossRefGoogle Scholar
  2. Adekar SP, Jones RM, Elias MD, Al-Saleem FH, Root MJ, Simpson LL, Dessain SK (2008) Hybridoma populations enriched for affinity-matured human IgGs yield high-affinity antibodies specific for botulinum neurotoxins. J Immunol Methods 333:156–166CrossRefGoogle Scholar
  3. Albrecht H, DeNardo GL, DeNardo SJ (2006) Monospecific bivalent scFv-SH: effects of linker length and location of an engineered cysteine on production, antigen binding activity and free SH accessibility. J Immunol Methods 310:100–116CrossRefGoogle Scholar
  4. AlLazikani B, Lesk AM, Chothia C (1997) Standard conformations for the canonical structures of immunoglobulins. J Mol Biol 273:927–948CrossRefGoogle Scholar
  5. Anderson GP, Goldman ER (2008) TNT detection using llama antibodies and a two-step competitive fluid array immunoassay. J Immunol Methods 339:47–54CrossRefGoogle Scholar
  6. Andolfi L, Bruce D, Cannistraro S, Canters GW, Davis JJ, Hill HAO, Crozier J, Verbeet MP, Wrathmell CL, Astier Y (2004) The electrochemical characteristics of blue copper protein monolayers on gold. J Electroanal Chem 565:21–28CrossRefGoogle Scholar
  7. Arbabi-Ghahroudi M, Tanha J, MacKenzie R (2005) Prokaryotic expression of antibodies. Cancer Metastasis Rev 24:501–519CrossRefGoogle Scholar
  8. Arndt KM, Muller KM, Pluckthun A (1998) Factors influencing the dimer to monomer transition of an antibody single-chain Fv fragment. Biochemistry 37:12918–12926CrossRefGoogle Scholar
  9. Bae YM, Oh BK, Lee W, Lee WH, Choi JW (2005) Study on orientation of immunogrlobulin G on protein G layer. Biosens Bioelectron 21:103–110CrossRefGoogle Scholar
  10. Baird CL, Myszka DG (2001) Current and emerging commercial optical biosensors. J Mol Recognit 14:261–268CrossRefGoogle Scholar
  11. Baker SN, Brauns EB, McCleskey TM, Burrell AK, Baker GA, 2006. Fluorescence quenching immunoassay performed in an ionic liquid. Chem Commun (Camb): 2851–2853.Google Scholar
  12. Barderas R, Desmet J, Timmerman P, Meloen R, Casal JI (2008) Affinity maturation of antibodies assisted by in silico modeling. Proc Natl Acad Sci USA 105:9029–9034CrossRefGoogle Scholar
  13. Barlen B, Mazumdar SD, Lezrich O, Kampfer P, Keusgen M (2007) Detection of salmonella by surface plasmon resonance. Sensors 7:1427–1446CrossRefGoogle Scholar
  14. Barthelemy PA, Raab H, Appleton BA, Bond CJ, Wu P, Wiesmann C, Sidhu SS (2008) Comprehensive analysis of the factors contributing to the stability and solubility of autonomous human V-H domains. J Biol Chem 283:3639–3654CrossRefGoogle Scholar
  15. Batista FD, Neuberger MS (1998) Affinity dependence of the B cell response to antigen: a threshold, a ceiling, and the importance of off-rate. Immunity 8:751–759CrossRefGoogle Scholar
  16. Baujard-Lamotte L, Noinville S, Goubard F, Marque P, Pauthe E (2008) Kinetics of conformational changes of fibronectin adsorbed onto model surfaces. Colloids Surf B Biointerfaces 63:129–137CrossRefGoogle Scholar
  17. Bayry J, Prabhudas K, Bist P, Reddy GR, Suryanarayana VVS (1999) Immune affinity purification of foot and mouth disease virus type specific antibodies using recombinant protein adsorbed to polystyrene wells. J Virol Methods 81:21–30CrossRefGoogle Scholar
  18. Behring E, Kitasato S (1890) Ueber das Zustandekommen der Diphtheria-Immunitat und der Tetanus-Immunitat bci thicrcn. Dtsch Med Wochenschr 16:1113–1114CrossRefGoogle Scholar
  19. Benhar I (2007) Design of synthetic antibody libraries. Expert Opin Biol Ther 7:763–779CrossRefGoogle Scholar
  20. Berquand A, Xia N, Castner DG, Clare BH, Abbott NL, Dupres V, Adriaensen Y, Dufrene YF (2005) Antigen binding forces of single antilysozyme Fv fragments explored by atomic force microscopy. Langmuir 21:5517–5523CrossRefGoogle Scholar
  21. Bessette PH, Aslund F, Beckwith J, Georgiou G (1999) Efficient folding of proteins with multiple disulfide bonds in the Escherichia coli cytoplasm. Proc Natl Acad Sci USA 96:13703–13708CrossRefGoogle Scholar
  22. Bibila TA, Robinson DK (1995) In pursuit of the optimal fed-batch process for monoclonal-antibody production. Biotechnol Prog 11:1–13CrossRefGoogle Scholar
  23. Birch JR, Racher AJ (2006) Antibody production. Adv Drug Deliv Rev 58:671–685CrossRefGoogle Scholar
  24. Bird RE, Hardman KD, Jacobson JW, Johnson S, Kaufman BM, Lee SM, Lee T, Pope SH, Riordan GS, Whitlow M (1988) Single-chain antigen-binding proteins. Science 242:423–426CrossRefGoogle Scholar
  25. Birtalan S, Zhang YN, Fellouse FA, Shao LH, Schaefer G, Sidhu SS (2008) The intrinsic contributions of tyrosine, serine, glycine and arginine to the affinity and specificity of antibodies. J Mol Biol 377:1518–1528CrossRefGoogle Scholar
  26. Blenner MA, Banta S (2008) Characterization of the 4D5Flu single-chain antibody with a stimulus-responsive elastin-like peptide linker: a potential reporter of peptide linker conformation. Protein Sci 17:527–536CrossRefGoogle Scholar
  27. Bolduc OR, Masson JF (2008) Monolayers of 3-mercaptopropyl-amino acid to reduce the nonspecific adsorption of serum proteins on the surface of biosensors. Langmuir 24:12085–12091CrossRefGoogle Scholar
  28. Bongini L, Fanelli D, Piazza F, De los Rios P, Sandin S, Skoglund U (2004) Freezing immunoglobulins to see them move. Proc Natl Acad Sci USA 101:6466–6471CrossRefGoogle Scholar
  29. Bosshard HR, Marti DN, Jelesarov I (2004) Protein stabilization by salt bridges: concepts, experimental approaches and clarification of some misunderstandings. J Mol Recognit 17:1–16CrossRefGoogle Scholar
  30. Boujday S, Bantegnie A, Briand E, Marnet PG, Salmain M, Pradier CM (2008) In-depth investigation of protein adsorption on gold surfaces: correlating the structure and density to the efficiency of the sensing layer. J Phys Chem B 112:6708–6715CrossRefGoogle Scholar
  31. Briand E, Gu C, Boujday S, Salmain M, Herry JM, Pradier CM (2007) Functionalisation of gold surfaces with thiolate SAMs: topography/bioactivity relationship – a combined FT-RAIRS, AFM and QCM investigation. Surf Sci 601:3850–3855CrossRefGoogle Scholar
  32. Brockmann EC, Cooper M, Stromsten N, Vehniainen M, Saviranta P (2005) Selecting for antibody scFv fragments with improved stability using phage display with denaturation under reducing conditions. J Immunol Methods 296:159–170CrossRefGoogle Scholar
  33. Brod E, Nimri S, Turner B, Sivan U (2008) Electrical control over antibody–antigen binding. Sens Actuators B Chem 128:560–565CrossRefGoogle Scholar
  34. Brummell DA, Sharma VP, Anand NN, Bilous D, Dubuc G, Michniewicz J, MacKenzie CR, Sadowska J, Sigurskjold BW, Sinnott B, Young NM, Bundle DR, Narang SA (1993) Probing the combining site of an anticarbohydrate antibody by saturation mutagenesis – role of the heavy-chain Cdr3 residues. Biochemistry 32:1180–1187CrossRefGoogle Scholar
  35. Cai HW, Chen LH, Wan L, Zeng LY, Yang H, Li SF, Li YP, Cheng JQ, Lu XF (2009) High-level expression of a functional humanized anti-CTLA4 single-chain variable fragment antibody in Pichia pastoris. Appl Microbiol Biotechnol 82:41–48CrossRefGoogle Scholar
  36. Calabrese MF, Eakin CM, Wang JM, Miranker AD (2008) A regulatable switch mediates self-association in an immunoglobulin fold. Nat Struct Mol Biol 15:965–971CrossRefGoogle Scholar
  37. Camarero JA (2008) Recent developments in the site-specific immobilization of proteins onto solid supports. Biopolymers 90:450–458CrossRefGoogle Scholar
  38. Campbell GA, Mutharasan R (2008) Near real-time detection of cryptosporidium parvum oocyst by IgM-functionalized piezoelectric-excited millimeter-sized cantilever biosensor. Biosens Bioelectron 23:1039–1045CrossRefGoogle Scholar
  39. Caruso F, Rodda E, Furlong DN (1996) Orientational aspects of antibody immobilization and immunological activity on quartz crystal microbalance electrodes. J Colloid Interf Sci 178:104–115CrossRefGoogle Scholar
  40. Catimel B, Nerrie M, Lee FT, Scott AM, Ritter G, Welt S, Old LJ, Burgess AW, Nice EC (1997) Kinetic analysis of the interaction between the monoclonal antibody A33 and its colonic epithelial antigen by the use of an optical biosensor – a comparison of immobilisation strategies. J Chromatogr A 776:15–30CrossRefGoogle Scholar
  41. Chang CEA, McLaughlin WA, Baron R, Wang W, McCammon JA (2008) Entropic contributions and the influence of the hydrophobic environment in promiscuous protein–protein association. Proc Natl Acad Sci USA 105:7456–7461CrossRefGoogle Scholar
  42. Chang H, Qin WS, Li Y, Zhang JY, Lin Z, Lv M, Sun YX, Feng JN, Shen BF (2007) A novel human scFv fragment against TNF-alpha from de novo design method. Mol Immunol 44:3789–3796CrossRefGoogle Scholar
  43. Chard T (1992) Pregnancy tests – a review. Hum Reprod 7:701–710Google Scholar
  44. Chen SF, Liu LY, Zhou J, Jiang SY (2003) Controlling antibody orientation on charged self-assembled monolayers. Langmuir 19:2859–2864CrossRefGoogle Scholar
  45. Cho IH, Paek EH, Lee H, Kang JY, Kim TS, Paek SH (2007) Site-directed biotinylation of antibodies for controlled immobilization of solid surfaces. Anal Biochem 365:14–23CrossRefGoogle Scholar
  46. Choi DH, Katakura Y, Ninomiya K, Shioya S (2008) Rational screening of antibodies and design of sandwich enzyme linked immunosorbant assay on the basis of a kinetic model. J Biosci Bioeng 105:261–272CrossRefGoogle Scholar
  47. Chothia C, Lesk AM (1987) Canonical structures for the hypervariable regions of immunoglobulins. J Mol Biol 196:901–917CrossRefGoogle Scholar
  48. Chou SF, Hsu WL, Hwang JM, Chen CY (2004) Development of an immunosensor for human ferritin, a nonspecific tumor marker, based on surface plasmon resonance. Biosens Bioelectron 19:999–1005CrossRefGoogle Scholar
  49. Christ D, Famm K, Winter G (2007) Repertoires of aggregation-resistant human antibody domains. Protein Eng Des Sel 20:413–416CrossRefGoogle Scholar
  50. Clackson T, Wells JA (1995) A hot-spot of binding-energy in a hormone-receptor interface. Science 267:383–386CrossRefGoogle Scholar
  51. Clark M (1997) Antibody engineering: IgG effector mechanisms. Chem Immunol 65:88–110Google Scholar
  52. Cloutier SM, Couty S, Terskikh A, Marguerat L, Crivelli V, PugniΦres M, Mani J-C, Leisinger H-J, Mach JP, Deperthes D (2000) Streptabody, a high avidity molecule made by tetramerization of in vivo biotinylated, phage display-selected scFv fragments on streptavidin. Mol Immunol 37:1067–1077CrossRefGoogle Scholar
  53. Cobaugh CW, Almagro JC, Pogson M, Iverson B, Georgiou G (2008) Synthetic antibody libraries focused towards peptide ligands. J Mol Biol 378:622–633CrossRefGoogle Scholar
  54. Conrad U, Scheller J (2005) Considerations on antibody-phage display methodology. Comb Chem High Throughput Screen 8:117–126CrossRefGoogle Scholar
  55. Cooper A (1999) Thermodynamics of protein folding and stability. Protein: a comprehensive treatise 2:217–270Google Scholar
  56. Cooper A, Cameron D, Jakus J, Pettigrew GW (2007) Pressure perturbation calorimetry, heat capacity and the role of water in protein stability and interactions. Biochem Soc Trans 35:1547–1550CrossRefGoogle Scholar
  57. Cooper MD, Alder MN (2006) The evolution of adaptive immune systems. Cell 124:815–822CrossRefGoogle Scholar
  58. Damasceno LM, Anderson KA, Ritter G, Cregg JM, Old LJ, Batt CA (2007) Cooverexpression of chaperones for enhanced secretion of a single-chain antibody fragment in Pichia pastoris. Appl Microbiol Biotechnol 74:381–389CrossRefGoogle Scholar
  59. De Crescenzo G, Litowski JR, Hodges RS, O'Connor-McCourt MD (2003) Real-time monitoring of the interactions of two-stranded de novo designed coiled-coils: effect of chain length on the kinetic and thermodynamic constants of binding. Biochemistry 42:1754–1763CrossRefGoogle Scholar
  60. Decramer S, de Peredo AG, Breuil B, Mischak H, Monsarrat B, Bascands JL, Schanstra JP (2008) Urine in clinical proteomics. Mol Cell Proteomics 7:1850–1862CrossRefGoogle Scholar
  61. Delves PJ, Roitt IM (2000) Advances in immunology: the immune system – second of two parts. N Eng J Med 343:108–117CrossRefGoogle Scholar
  62. Demarest SJ, Chen G, Kimmel BE, Gustafson D, Wu J, Salbato J, Poland J, Elia M, Tan XQ, Wong K, Short J, Hansen G (2006) Engineering stability into Escherichia coli secreted Fabs leads to increased functional expression. Protein Eng Des Sel 19:325–336CrossRefGoogle Scholar
  63. Demarest SJ, Glaser SM (2008) Antibody therapeutics, antibody engineering, and the merits of protein stability. Curr Opin Drug Discov Devel 11:675–687Google Scholar
  64. Derwinska K, Sauer U, Preininger C (2008) Adsorption versus covalent, statistically oriented and covalent, site-specific IgG immobilization on poly(vinyl alcohol)-based surfaces. Talanta 77:652–658CrossRefGoogle Scholar
  65. Desplancq D, King DJ, Lawson ADG, Mountain A (1994) Multimerization behavior of single-chain Fv variants for the tumor-binding antibody B72.3. Protein Eng 7:1027–1033CrossRefGoogle Scholar
  66. Dimitrov JD, Lacroix-Desmazes S, Kaveri SV, Vassilev TL (2007) Transition towards antigen-binding promiscuity of a monospecific antibody. Mol Immunol 44:1854–1863CrossRefGoogle Scholar
  67. Donini M, Morea V, Desiderio A, Pashkoulov D, Villani ME, Tramontano A, Benvenuto E (2003) Engineering stable cytoplasmic intrabodies with designed specificity. J Mol Biol 330:323–332CrossRefGoogle Scholar
  68. Dooley H, Flajnik MF, Porter AJ (2003) Selection and characterization of naturally occurring single-domain (IgNAR) antibody fragments from immunized sharks by phage display. Mol Immunol 40:25–33CrossRefGoogle Scholar
  69. Dooley H, Grant SD, Harris WJ, Porter AJ (1998) Stabilization of antibody fragments in adverse environments. Biotechnol Appl Biochem 28:77–83Google Scholar
  70. Dufner P, Jermutus L, Minter RR (2006) Harnessing phage and ribosome display for antibody optimisation. Trends Biotechnol 24:523–529CrossRefGoogle Scholar
  71. Duroux M, Skovsen E, Neves-Petersen MT, Duroux L, Gurevich L, Borrebaeck CAK, Wingren C, Petersen SB (2008) Light-induced immobilisation of biomolecules as an attractive alternative to micro-droplet dispensing-based arraying technologies (vol 7, pg 3491, 2007). Proteomics 8:1113CrossRefGoogle Scholar
  72. Einhauer A, Jungbauer A (2001) Affinity of the monoclonal antibody M1 directed against the FLAG peptide. J Chromatogr A 921:25–30CrossRefGoogle Scholar
  73. Ellmark P, Hogerkorp CM, Ek S, Belov L, Berglund M, Rosenquist R, Christopherson RI, Borrebaeck CAK (2008) Phenotypic protein profiling of different B cell sub-populations using antibody CD-microarrays. Cancer Lett 265:98–106CrossRefGoogle Scholar
  74. Espargaro A, Castillo V, de Groot NS, Ventura S (2008) The in vivo and in vitro aggregation properties of globular proteins correlate with their conformational stability: the SH3 case. J Mol Biol 378:1116–1131CrossRefGoogle Scholar
  75. Famm K, Hansen L, Christ D, Winter G (2008) Thermodynamically stable aggregation-resistant antibody domains through directed evolution. J Mol Biol 376:926–931CrossRefGoogle Scholar
  76. Famm K, Winter G (2006) Engineering aggregation-resistant proteins by directed evolution. Protein Eng Des Sel 19:479–481CrossRefGoogle Scholar
  77. Figueira VBC, Jones JP (2008) Viscoelastic study of the adsorption of bovine serum albumin on gold and its dependence on pH. J Colloid Interf Sci 325:107–113CrossRefGoogle Scholar
  78. Foote J, Eisen HN (2000) Breaking the affinity ceiling for antibodies and T cell receptors. Proc Natl Acad Sci USA 97:10679–10681CrossRefGoogle Scholar
  79. Forsman A, Beirnaert E, asa-Chapman MMI, Hoorelbeke B, Hijazi K, Koh W, Tack V, Szynol A, Kelly C, McKnight A, Verrips T, de Haard H, Weiss RA (2008) Llama antibody fragments with cross-subtype human immunodeficiency virus type 1 (HIV-1)-neutralizing properties and high affinity for HIV-1 gp120. J Virol 82:12069–12081CrossRefGoogle Scholar
  80. Fowler JM, Stuart MC, Wong DKY (2007) Self-assembled layer of thiolated protein G as an immunosensor scaffold. Anal Chem 79:350–354CrossRefGoogle Scholar
  81. Garber E, Demarest SJ (2007) A broad range of Fab stabilities within a host of therapeutic IgGs. Biochem Biophys Res Commun 355:751–757CrossRefGoogle Scholar
  82. Garfield E (1985) The 1984 Nobel-prize in medicine is awarded to Jerne, Niels, K., Milstein, Cesar, and Kohler, Georges, J.F., for their contributions to immunology. Curr Contents 8:3–18Google Scholar
  83. Gaza-Bulseco G, Liu HC (2008) Fragmentation of a recombinant monoclonal antibody at various pH. Pharm Res 25:1881–1890CrossRefGoogle Scholar
  84. Gilbreth RN, Esaki K, Koide A, Sidhu SS, Koide S (2008) A dominant conformational role for amino acid diversity in minimalist protein–protein interfaces. J Mol Biol 381:407–418CrossRefGoogle Scholar
  85. Goddard JM, Hotchkiss JH (2007) Polymer surface modification for the attachment of bioactive compounds. Prog Polym Sci 32:698–725CrossRefGoogle Scholar
  86. Goerke AR, Swartz JR (2009) High-level cell-free synthesis yields of proteins containing site-specific non-natural amino acids. Biotechnol Bioeng 102:400–416CrossRefGoogle Scholar
  87. Goldman ER, Anderson GP, Liu JL, Delehanty JB, Sherwood LJ, Osborn LE, Cummins LB, Hayhurst A (2006) Facile generation of heat-stable antiviral and antitoxin single domain antibodies from a semisynthetic llama library. Anal Chem 78:8245–8255CrossRefGoogle Scholar
  88. Gong NL, Chatterjee S (2003) Platelet endothelial cell adhesion molecule in cell signaling and thrombosis. Mol Cell Biochem 253:151–158CrossRefGoogle Scholar
  89. Goodchild S, Love T, Hopkins N, Mayers C (2006) Engineering antibodies for biosensor technologies. Adv Appl Microbiol 58:185–226Google Scholar
  90. Green NM (1975) Avidin. Adv Protein Chem 29:85–133CrossRefGoogle Scholar
  91. Greenberg AS, Avila D, Hughes M, Hughes A, Mckinney EC, Flajnik MF (1995) A new antigen receptor gene family that undergoes rearrangement and extensive somatic diversification in sharks. Nature 374:168–173CrossRefGoogle Scholar
  92. Gvritishvili AG, Gribenko AV, Makhatadze GI (2008) Cooperativity of complex salt bridges. Protein Sci 17:1285–1290CrossRefGoogle Scholar
  93. Gwenin CD, Jones JP, Kalaji M, Lewis TJ, Llewellyn JP, Williams PA (2007a) Viscoelastic change following adsorption and subsequent molecular reorganisation of a nitroreductase enzyme on a gold surface: a QCM study. Sens Actuators B Chem 126:499–507CrossRefGoogle Scholar
  94. Gwenin CD, Kalaji M, Williams PA, Jones RM (2007b) The orientationally controlled assembly of genetically modified enzymes in an amperometric biosensor. Biosens Bioelectron 22:2869–2875CrossRefGoogle Scholar
  95. Gwinner W (2007) Renal transplant rejection markers. World J Urol 25:445–455CrossRefGoogle Scholar
  96. Haab BB (2006) Applications of antibody array platforms. Curr Opin Biotechnol 17:415–421CrossRefGoogle Scholar
  97. Haab BB, Geierstanger BH, Michailidis G, Vitzthum F, Forrester S, Okon R, Saviranta P, Brinker A, Sorette M, Perlee L, Suresh S, Drwal G, Adkins JN, Omenn GS (2005) Immunoassay and antibody microarray analysis of the HUPO Plasma Proteome Project reference specimens: systematic variation between sample types and calibration of mass spectrometry data. Proteomics 5:3278–3291CrossRefGoogle Scholar
  98. Hagihara Y, Mine S, Uegaki K (2007) Stabilization of an immunoglobulin fold domain by an engineered disulfide bond at the buried hydrophobic region. J Biol Chem 282:36489–36495CrossRefGoogle Scholar
  99. Halaby DM, Mornon JPE (1998) The immunoglobulin superfamily: an insight on its tissular, species, and functional diversity. J Mol Evol 46:389–400CrossRefGoogle Scholar
  100. Halaby DM, Poupon A, Mornon JP (1999) The immunoglobulin fold family: sequence analysis and 3D structure comparisons. Protein Eng 12:563–571CrossRefGoogle Scholar
  101. Hamers-casterman C, Atarhouch T, Muyldermans S, Robinson G, Hamers C, Songa EB, Bendahman N, Hamers R (1993) Naturally-occurring antibodies devoid of light-chains. Nature 363:446–448CrossRefGoogle Scholar
  102. Harmsen MM, De Haard HJ (2007) Properties, production, and applications of camelid single-domain antibody fragments. Appl Microbiol Biotechnol 77:13–22CrossRefGoogle Scholar
  103. Harris LJ, Larson SB, Hasel KW, Day J, Greenwood A, Mcpherson A (1992) The 3-dimensional structure of an intact monoclonal-antibody for canine lymphoma. Nature 360:369–372CrossRefGoogle Scholar
  104. Hayhurst A (2000) Improved expression characteristics of single-chain Fv fragments when fused downstream of the Escherichia coli maltose-binding protein or upstream of a single immunoglobulin-constant domain. Protein Expr Purif 18:1–10CrossRefGoogle Scholar
  105. He MY (2008) Cell-free protein synthesis: applications in proteomics and biotechnology. N Biotechnol 25:126–132CrossRefGoogle Scholar
  106. He MY, Stoevesandt O, Taussig MJ (2008) In situ synthesis of protein arrays. Curr Opin Biotechnol 19:4–9CrossRefGoogle Scholar
  107. He MY, Taussig MJ (2005) Ribosome display of antibodies: expression, specificity and recovery in a eukaryotic system. J Immunol Methods 297:73–82CrossRefGoogle Scholar
  108. Hearty S, Leonard P, Quinn J, O'Kennedy R (2006) Production, characterisation and potential application of a novel monoclonal antibody for rapid identification of virulent Listeria monocytogenes. J Microbiol Meth 66:294–312CrossRefGoogle Scholar
  109. Hemmersam AG, Rechendorff K, Foss M, Sutherland DS, Besenbacher F (2008) Fibronectin adsorption on gold, Ti-, and Ta-oxide investigated by QCM-D and RSA modelling. J Colloid Interf Sci 320:110–116CrossRefGoogle Scholar
  110. Ho M, Kreitman RJ, Onda M, Pastan I (2005) In vitro antibody evolution targeting germline hot spots to increase activity of an anti-CD22 immunotoxin. J Biol Chem 280:607–617CrossRefGoogle Scholar
  111. Hodneland CD, Lee YS, Min DH, Mrksich M (2002) Selective immobilization of proteins to self-assembled monolayers presenting active site-directed capture ligands. Proc Natl Acad Sci USA 99:5048–5052CrossRefGoogle Scholar
  112. Honegger A, Pluckthun A (2001) Yet another numbering scheme for immunoglobulin variable domains: an automatic modeling and analysis tool. J Mol Biol 309:657–670CrossRefGoogle Scholar
  113. Hoogenboom HR (2005) Selecting and screening recombinant antibody libraries. Nat Biotechnol 23:1105–1116CrossRefGoogle Scholar
  114. Hoogenboom HR, Griffiths AD, Johnson KS, Chiswell DJ, Hudson P, Winter G (1991) Multisubunit proteins on the surface of filamentous phage – methodologies for displaying antibody (Fab) heavy and light-chains. Nucleic Acids Res 19:4133–4137CrossRefGoogle Scholar
  115. Hu XJ, O'Hara L, White S, Magner E, Kane M, Wall JG (2007) Optimisation of production of a domoic acid-binding scFv antibody fragment in Escherichia coli using molecular chaperones and functional immobilisation on a mesoporous silicate support. Protein Expr Purif 52:194–201CrossRefGoogle Scholar
  116. Hugo N, Lafont V, Beukes M, Altschuh D (2002) Functional aspects of co-variant surface charges in an antibody fragment. Protein Sci 11:2697–2705CrossRefGoogle Scholar
  117. Hust M, Jostock T, Menzel C, Voedisch B, Mohr A, Brenneis M, Kirsch MI, Meier D, Dubel S (2007) Single chain Fab (scFab) fragment. BMC Biotechnol 7:14CrossRefGoogle Scholar
  118. Huston JS, Levinson D, Mudgetthunter M, Tai MS, Novotny J, Margolies MN, Ridge RJ, Bruccoleri RE, Haber E, Crea R, Oppermann H (1988) Protein engineering of antibody-binding sites – recovery of specific activity in an anti-digoxin single-chain Fv analog produced in Escherichia coli. Proc Natl Acad Sci USA 85:5879–5883CrossRefGoogle Scholar
  119. Ingvarsson J, Wingren C, Carlsson A, Ellmark P, Wahren B, Engstrom G, Harmenberg U, Krogh M, Peterson C, Borrebaeck CAK (2008) Detection of pancreatic cancer using antibody microarray-based serum protein profiling. Proteomics 8:2211–2219CrossRefGoogle Scholar
  120. Ionescu RM, Vlasak J, Price C, Kirchmeier M (2008) Contribution of variable domains to the stability of humanized IgG1 monoclonal antibodies. J Pharm Sci 97:1414–1426CrossRefGoogle Scholar
  121. Iqbal SS, Mayo MW, Bruno JG, Bronk BV, Batt CA, Chambers JP (2000) A review of molecular recognition technologies for detection of biological threat agents. Biosens Bioelectron 15:549–578CrossRefGoogle Scholar
  122. Iversen L, Cherouati N, Berthing T, Stamou D, Martinez KL (2008) Templated protein assembly on micro-contact-printed surface patterns. Use of the SNAP-tag protein functionality. Langmuir 24:6375–6381CrossRefGoogle Scholar
  123. Janin J, Bahadur RP, Chakrabarti P (2008) Protein–protein interaction and quaternary structure. Q Rev Biophys 41:133–180Google Scholar
  124. Jermutus L, Honegger A, Schwesinger F, Hanes J, Pluckthun A (2001) Tailoring in vitro evolution for protein affinity or stability. Proc Natl Acad Sci USA 98:75–80CrossRefGoogle Scholar
  125. Jonkheijm P, Weinrich D, Schroder H, Niemeyer CM, Waldmann H (2008) Chemical strategies for generating protein biochips. Angew Chem Int Ed 47:9618–9647CrossRefGoogle Scholar
  126. Jung S, Honegger A, Pluckthun A (1999) Selection for improved protein stability by phage display. J Mol Biol 294:163–180CrossRefGoogle Scholar
  127. Jung S, Pluckthun A (1997) Improving in vivo folding and stability of a single-chain Fv antibody fragment by loop grafting. Protein Eng 10:959–966CrossRefGoogle Scholar
  128. Jung YW, Kang HJ, Lee JM, Jung SO, Yun WS, Chung SJ, Chung BH (2008) Controlled antibody immobilization onto immunoanalytical platforms by synthetic peptide. Anal Biochem 374:99–105CrossRefGoogle Scholar
  129. Jurado P, de Lorenzo V, Fernandez LA (2006) Thioredoxin fusions increase folding of single chain Fv antibodies in the cytoplasm of Escherichia coli: evidence that chaperone activity is the prime effect of thioredoxin. J Mol Biol 357:49–61CrossRefGoogle Scholar
  130. Kaarakainen P, Meklin T, Rintala H, Hyvaerinen A, Karkkainen P, Vepsalainen A, Hirvonen MR, Nevalainen A (2008) Seasonal variation in airborne microbial concentrations and diversity at landfill, urban and rural sites. Clean – Soil Air Water 36:556–563CrossRefGoogle Scholar
  131. Kalkhof S, Sinz A (2008) Chances and pitfalls of chemical cross-linking with amine-reactive N-hydroxysuccinimide esters. Anal Bioanal Chem 392:305–312CrossRefGoogle Scholar
  132. Kamerzell TJ, Middaugh CR (2007) Two-dimensional correlation spectroscopy reveals coupled immunoglobulin regions of differential flexibility that influence stability. Biochemistry 46:9762–9773CrossRefGoogle Scholar
  133. Kamerzell TJ, Ramsey JD, Middaugh CR (2008) Immunoglobulin dynamics, conformational fluctuations, and nonlinear elasticity and their effects on stability. J Phys Chem B 112:3240–3250CrossRefGoogle Scholar
  134. Kingsmore SF (2006) Multiplexed protein measurement: technologies and applications of protein and antibody arrays. Nat Rev Drug Discov 5:310–320CrossRefGoogle Scholar
  135. Kiss C, Fisher H, Pesavento E, Dai MH, Valero R, Ovecka M, Nolan R, Phipps ML, Velappan N, Chasteen L, Martinez JS, Waldo GS, Pavlik P, Bradbury ARM (2006) Antibody binding loop insertions as diversity elements. Nucleic Acids Res 34:e132CrossRefGoogle Scholar
  136. Knotts TA, Rathore N, de Pabloz JJ (2008) An entropic perspective of protein stability on surfaces. Biophys J 94:4473–4483CrossRefGoogle Scholar
  137. Kohler G, Milstein C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256:495–497CrossRefGoogle Scholar
  138. Kolmar H, Skerra A (2008) Alternative binding proteins get mature: rivalling antibodies. FEBS J 275:2667CrossRefGoogle Scholar
  139. Kopf E, Zharhary D (2007) Antibody arrays – an emerging tool in cancer proteomics. Int J Biochem Cell Biol 39:1305–1317CrossRefGoogle Scholar
  140. Kortt AA, Oddie GW, Iliades P, Gruen LC, Hudson PJ (1997) Nonspecific amine immobilization of ligand can be a potential source of error in BIAcore binding experiments and may reduce binding affinities. Anal Biochem 253:103–111CrossRefGoogle Scholar
  141. Kourentzi K, Srinivasan M, Smith-Gill SJ, Willson RC (2008) Conformational flexibility and kinetic complexity in antibody–antigen interaction. J Mol Recognit 21:114–121CrossRefGoogle Scholar
  142. Kubetzko S, Balic E, Waibel R, Zangemeister-Wittke U, Pluckthun A (2006) PEGylation and multimerization of the anti-p185(HER-2) single chain Fv fragment 4D5 – effects on tumor targeting. J Biol Chem 281:35186–35201CrossRefGoogle Scholar
  143. Kubetzko S, Sarkar CA, Pluckthun A (2005) Protein PEGylation decreases observed target association rates via a dual blocking mechanism. Mol Pharmacol 68:1439–1454CrossRefGoogle Scholar
  144. Kwon Y, Han ZZ, Karatan E, Mrksich M, Kay BK (2004) Antibody arrays prepared by cutinase-mediated immobilization on self-assembled monolayers. Anal Chem 76:5713–5720CrossRefGoogle Scholar
  145. Lacy ER, Baker M, Brigham-Burke M (2008) Free sulfhydryl measurement as an indicator of antibody stability. Anal Biochem 382:66–68CrossRefGoogle Scholar
  146. Lahiri J, Isaacs L, Tien J, Whitesides GM (1999) A strategy for the generation of surfaces presenting ligands for studies of binding based on an active ester as a common reactive intermediate: a surface plasmon resonance study. Anal Chem 71:777–790CrossRefGoogle Scholar
  147. Lamla T, Erdmann VA (2004) The nano-tag, a streptavidin-binding peptide for the purification and detection of recombinant proteins. Protein Expr Purif 33:39–47CrossRefGoogle Scholar
  148. Langedijk AC, Honegger A, Maat J, Planta RJ, van Schaik RC, Pluckthun A (1998) The nature of antibody heavy chain residue H6 strongly influences the stability of a V-H domain lacking the disulfide bridge. J Mol Biol 283:95–110CrossRefGoogle Scholar
  149. Lappalainen I, Hurley MG, Clarke J (2008) Plasticity within the obligatory folding nucleus of an immunoglobulin-like domain. J Mol Biol 375:547–559CrossRefGoogle Scholar
  150. Latterich M, Abramovitz M, Leyland-Jones B (2008) Proteomics: new technologies and clinical applications. Eur J Cancer 44:2737–2741CrossRefGoogle Scholar
  151. Le Berre M, Kane M (2006) Biosensor-based assay for domoic acid: comparison of performance using polyclonal, monoclonal, and recombinant antibodies. Anal Lett 39:1587–1598CrossRefGoogle Scholar
  152. Le Brun AP, Holt SA, Shah DS, Majkrzak CF, Lakey JH (2008) Monitoring the assembly of antibody-binding membrane protein arrays using polarised neutron reflection. Eur Biophys J 37:639–645CrossRefGoogle Scholar
  153. Leckband DE, Kuhl TL, Wang HK, Muller W, Herron J, Ringsdorf H (2000) Force probe measurements of antibody–antigen interactions. Methods 20:329–340CrossRefGoogle Scholar
  154. Lee SK, Kim HC, Cho SJ, Jeong SW, Jeon WB (2008) Binding behavior of CRP and anti-CRP antibody analyzed with SPR and AFM measurement. Ultramicroscopy 108:1374–1378CrossRefGoogle Scholar
  155. Lee Y, Lee EK, Cho YW, Matsui T, Kang IC, Kim TS, Han MH (2003) ProteoChip: a highly sensitive protein microarray prepared by a novel method of protein, immobilization for application of protein–protein interaction studies. Proteomics 3:2289–2304CrossRefGoogle Scholar
  156. Leong SSJ, Chen WN (2008) Preparing recombinant single chain antibodies. Chem Eng Sci 63:1401–1414CrossRefGoogle Scholar
  157. Li JN, Mahajan A, Tsai MD (2006) Ankyrin repeat: a unique motif mediating protein–protein interactions. Biochemistry 45:15168–15178CrossRefGoogle Scholar
  158. Li TJ, Cheng JR, Hu BS, Liu Y, Qian GL, Liu FQ (2008) Construction, production, and characterization of recombinant scFv antibodies against methamidophos expressed in Pichia pastoris. World J Microbiol Biotechnol 24:867–874CrossRefGoogle Scholar
  159. Lipovsek D, Lippow SM, Hackel BJ, Gregson MW, Cheng P, Kapila A, Wittrup KD (2007) Evolution of an interloop disulfide bond in high-affinity antibody mimics based on fibronectin type III domain and selected by yeast surface display: molecular convergence with single-domain camelid and shark antibodies. J Mol Biol 368:1024–1041CrossRefGoogle Scholar
  160. Lipovsek D, Pluckthun A (2004) In-vitro protein evolution by ribosome display and mRNA display. J Immunol Methods 290:51–67CrossRefGoogle Scholar
  161. Lippow SM, Wittrup KD, Tidor B (2007) Computational design of antibody-affinity improvement beyond in vivo maturation. Nat Biotechnol 25:1171–1176CrossRefGoogle Scholar
  162. Lipschultz CA, Yee A, Mohan S, Li YL, Smith-Gill SJ (2002) Temperature differentially affects encounter and docking thermodynamics of antibody–antigen association. J Mol Recognit 15:44–52CrossRefGoogle Scholar
  163. Liu HC, Gaza-Bulseco G, Faldu D, Chumsae C, Sun J (2008a) Heterogeneity of monoclonal antibodies. J Pharm Sci 97:2426–2447CrossRefGoogle Scholar
  164. Liu HC, Gaza-Bulseco G, Sun J (2006) Characterization of the stability of a fully human monoclonal IgG after prolonged incubation at elevated temperature. J Chromatogr B Analyt Technol Biomed Life Sci 837:35–43CrossRefGoogle Scholar
  165. Liu HC, Gaza-Bulseco G, Xiang T, Chumsae C (2008b) Structural effect of deglycosylation and methionine oxidation on a recombinant monoclonal antibody. Mol Immunol 45:701–708CrossRefGoogle Scholar
  166. Lo Conte L, Chothia C, Janin J (1999) The atomic structure of protein–protein recognition sites. J Mol Biol 285:2177–2198CrossRefGoogle Scholar
  167. Love TE, Redmond C, Mayers CN (2008) Real time detection of anthrax spores using highly specific anti-EA1 recombinant antibodies produced by competitive panning. J Immunol Methods 334:1–10CrossRefGoogle Scholar
  168. Lu JR, Zhao XB, Yaseen M (2007) Protein adsorption studied by neutron reflection. Curr Opin Colloid Interface Sci 12:9–16CrossRefGoogle Scholar
  169. Luginbuhl B, Kanyo Z, Jones RM, Fletterick RJ, Prusiner SB, Cohen FE, Williamson RA, Burton DR, Pluckthun A (2006) Directed evolution of an anti-prion protein scFv fragment to an affinity of 1 pM and its structural interpretation. J Mol Biol 363:75–97CrossRefGoogle Scholar
  170. Luong JHT, Male KB, Glennon JD (2008) Biosensor technology: technology push versus market pull. Biotechnol Adv 26:492–500CrossRefGoogle Scholar
  171. Luppa PB, Sokoll LJ, Chan DW (2001) Immunosensors – principles and applications to clinical chemistry. Clin Chim Acta 314:1–26CrossRefGoogle Scholar
  172. Ly T, Liu ZJ, Pujanauski BG, Sarpong R, Julian RR (2008) Surveying ubiquitin structure by noncovalent attachment of distance constrained bis(crown) ethers. Anal Chem 80:5059–5064CrossRefGoogle Scholar
  173. Makabe K, Nakanishi T, Tsumoto K, Tanaka Y, Kondo H, Umetsu M, Sone Y, Asano R, Kumagai I (2008) Thermodynamic consequences of mutations in Vernier zone residues of a humanized anti-human epidermal growth factor receptor murine antibody-528. J Biol Chem 283:1156–1166CrossRefGoogle Scholar
  174. Mallender WD, Carrero J, Voss EW (1996) Comparative properties of the single chain antibody and Fv derivatives of mAb 4–4-20 – relationship between interdomain interactions and the high affinity for fluorescein ligand. J Biol Chem 271:5338–5346CrossRefGoogle Scholar
  175. Maly J, Illiano E, Sabato M, De Francesco M, Pinto V, Masci A, Masci D, Masojidek J, Sugiura M, Franconi R, Pilloton R (2002) Immobilisation of engineered molecules on electrodes and optical surfaces. Mater Sci Eng C-Biomim Supramol Syst 22:257–261CrossRefGoogle Scholar
  176. Martin CD, Rojas G, Mitchell JN, Vincent KJ, Wu JH, McCafferty J, Schofield DJ (2006) A simple vector system to improve performance and utilisation of recombinant antibodies. BMC Biotechnol 6:46CrossRefGoogle Scholar
  177. Martinez NF, Lozano JR, Herruzo ET, Garcia F, Richter C, Sulzbach T, Garcia R (2008) Bimodal atomic force microscopy imaging of isolated antibodies in air and liquids. Nanotechnology 19:384011CrossRefGoogle Scholar
  178. McCafferty J, Griffiths AD, Winter G, Chiswell DJ (1990) Phage antibodies – filamentous phage displaying antibody variable domains. Nature 348:552–554CrossRefGoogle Scholar
  179. McCarthy BJ, Hill AS (2001) Altering the fine specificity of an anti-Legionella single chain antibody by a single amino acid insertion. J Immunol Methods 251:137–149CrossRefGoogle Scholar
  180. McManus CA, Rose ML, Dunn MJ (2006) Proteomics of transplant rejection. Transplant Rev 20:195–207CrossRefGoogle Scholar
  181. Medintz IL, Goldman ER, Lassman ME, Hayhurst A, Kusterbeck AW, Deschamps JR (2005) Self-assembled TNT biosensor based on modular multifunctional surface-tethered components. Anal Chem 77:365–372CrossRefGoogle Scholar
  182. Mehne J, Markovic G, Proll F, Schweizer N, Zorn S, Schreiber F, Gauglitz G (2008) Characterisation of morphology of self-assembled PEG monolayers: a comparison of mixed and pure coatings optimised for biosensor applications. Anal Bioanal Chem 391:1783–1791CrossRefGoogle Scholar
  183. Michaud GA, Salcius M, Zhou F, Bangham R, Bonin J, Guo H, Snyder M, Predki PF, Schweitzer BI (2003) Analyzing antibody specificity with whole proteome microarrays. Nat Biotechnol 21:1509–1512CrossRefGoogle Scholar
  184. Miller KD, Weaver-Feldhaus J, Gray SA, Siegel RW, Feldhaus MJ (2005) Production, purification, and characterization of human scFv antibodies expressed in Saccharomyces cerevisiae, Pichia pastoris, and Escherichia coli. Protein Expr Purif 42:255–267CrossRefGoogle Scholar
  185. Mimura Y, Church S, Ghirlando R, Ashton PR, Dong S, Goodall M, Lund J, Jefferis R (2000) The influence of glycosylation on the thermal stability and effector function expression of human IgG1-Fc: properties of a series of truncated glycoforms. Mol Immunol 37:697–706CrossRefGoogle Scholar
  186. Mirny LA, Shakhnovich EI (1999) Universally conserved positions in protein folds: reading evolutionary signals about stability, folding kinetics and function. J Mol Biol 291:177–196CrossRefGoogle Scholar
  187. Monsellier E, Bedouelle H (2006) Improving the stability of an antibody variable fragment by a combination of knowledge-based approaches: validation and mechanisms. J Mol Biol 362:580–593CrossRefGoogle Scholar
  188. Moreira IS, Fernandes PA, Ramos MJ (2007a) Hot spot occlusion from bulk water: a comprehensive study of the complex between the lysozyme HEL and the antibody FVD1.3. J Phys Chem B 111:2697–2706CrossRefGoogle Scholar
  189. Moreira IS, Fernandes PA, Ramos MJ (2007b) Hot spots-A review of the protein–protein interface determinant amino-acid residues. Proteins 68:803–812CrossRefGoogle Scholar
  190. Morozova TY, Morozov VN (2008) Force differentiation in recognition of cross-reactive antigens by magnetic beads. Anal Biochem 374:263–271CrossRefGoogle Scholar
  191. Nagata T, Gupta V, Sorce D, Kim WY, Sali A, Chait BT, Shigesada K, Ito Y, Werner MH (1999) Immunoglobulin motif DNA recognition and heterodimerization of the PEBP2/CBF Runt domain. Nat Struct Biol 6:615–619CrossRefGoogle Scholar
  192. Nath N, Hurst R, Hook B, Meisenheimer P, Zhao KQ, Nassif N, Bulleit RF, Storts DR (2008) Improving protein array performance: focus on washing and storage conditions. J Proteome Res 7:4475–4482CrossRefGoogle Scholar
  193. Nezlin R, Ghetie V (2004) Interactions of immunoglobulins outside the antigen-combining site. Academic, San DiegoGoogle Scholar
  194. Ngundi MM, Kulagina NV, Anderson GP, Taitt CR (2006) Nonantibody-based recognition: alternative molecules for detection of pathogens. Expert Rev Proteomics 3:511–524CrossRefGoogle Scholar
  195. Nissim A, Hoogenboom HR, Tomlinson IM, Flynn G, Midgley C, Lane D, Winter G (1994) Antibody fragments from a single pot phage display library as immunochemical reagents. EMBO J 13:692–698Google Scholar
  196. Noh H, Vogler EA (2007) Volumetric interpretation of protein adsorption: competition from mixtures and the Vroman effect. Biomaterials 28:405–422CrossRefGoogle Scholar
  197. Nuttall SD, Walsh RB (2008) Display scaffolds: protein engineering for novel therapeutics. Curr Opin Pharmacol 8:609–615CrossRefGoogle Scholar
  198. Omidfar K, Rasaee MJ, Kashanian S, Paknejad M, Bathaie Z (2007) Studies of thermostability in Camelus bactrianus (Bactrian camel) single-domain antibody specific for the mutant epidermal-growth-factor receptor expressed by Pichia. Biotechnol Appl Biochem 46:41–49CrossRefGoogle Scholar
  199. Orlandi R, Gussow DH, Jones PT, Winter G (1989) Cloning immunoglobulin variable domains for expression by the polymerase chain-reaction. Proc Natl Acad Sci USA 86:3833–3837CrossRefGoogle Scholar
  200. Ostler EL, Resmini M, Brocklehurst K, Gallacher G (2002) Polyclonal catalytic antibodies. JImmunol Methods 269:111–124CrossRefGoogle Scholar
  201. Padlan EA (1994) Anatomy of the antibody molecule. Mol Immunol 31:169–217CrossRefGoogle Scholar
  202. Palmer E, Liu H, Khan F, Taussig MJ, He MY (2006) Enhanced cell-free protein expression by fusion with immunoglobulin C kappa domain. Protein Sci 15:2842–2846CrossRefGoogle Scholar
  203. Pancer Z, Mariuzza RA (2008) The oldest antibodies newly discovered. Nat Biotechnol 26:402–403CrossRefGoogle Scholar
  204. Pantoliano MW, Bird RE, Johnson S, Asel ED, Dodd SW, Wood JF, Hardman KD (1991) Conformational stability, folding, and ligand-binding affinity of single-chain-Fv immunoglobulin fragments expressed in Escherichia coli. Biochemistry 30:10117–10125CrossRefGoogle Scholar
  205. Pasut G, Veronese FM (2007) Polymer-drug conjugation, recent achievements and general strategies. Prog Polym Sci 32:933–961CrossRefGoogle Scholar
  206. Peled JU, Kuang FL, Iglesias-Ussel MD, Roa S, Kalis SL, Goodman ME, Scharff MD (2008) The biochemistry of somatic hypermutation. Annu Rev Immunol 26:481–511CrossRefGoogle Scholar
  207. Pellequer JL, Chen SWW, Roberts VA, Tainer JA, Getzoff ED (1999) Unraveling the effect of changes in conformation and compactness at the antibody V-L–V-H interface upon antigen binding. J Mol Recognit 12:267–275CrossRefGoogle Scholar
  208. Peluso P, Wilson DS, Do D, Tran H, Venkatasubbaiah M, Quincy D, Heidecker B, Poindexter K, Tolani N, Phelan M, Witte K, Jung LS, Wagner P, Nock S (2003) Optimizing antibody immobilization strategies for the construction of protein microarrays. Anal Biochem 312:113–124CrossRefGoogle Scholar
  209. Perkins EA, Squirrell DJ (2000) Development of instrumentation to allow the detection of microorganisms using light scattering in combination with surface plasmon resonance. Biosens Bioelectron 14:853–859CrossRefGoogle Scholar
  210. Persson H, Ohlin M (2007) Exploring central and peripheral diversity in antibody evolution. Mol Immunol 44:2729–2736CrossRefGoogle Scholar
  211. Petrenko VA, Vodyanoy VJ (2003) Phage display for detection of biological threat agents. J Microbiol Meth 53:253–262CrossRefGoogle Scholar
  212. Pluckthun A (1992) Monovalent and bivalent antibody fragments produced in Escherichia coli – engineering, folding and antigen-binding. Immunol Rev 130:151–188CrossRefGoogle Scholar
  213. Porath J, Carlsson J, Olsson I, Belfrage G (1975) Metal chelate affinity chromatography, a new approach to protein fractionation. Nature 258:598–599CrossRefGoogle Scholar
  214. Pozharski E, Moulin A, Hewagama A, Shanafelt AB, Petsko GA, Ringe D (2005) Diversity in hapten recognition: structural study of an anti-cocaine antibody M82G2. J Mol Biol 349:570–582CrossRefGoogle Scholar
  215. Prabakaran P, Vu BK, Gan JH, Feng Y, Dimitrov DS, Ji XH (2008) Structure of an isolated unglycosylated antibody C(H)2 domain. Acta Crystallogr D Biol Crystallogr 64:1062–1067CrossRefGoogle Scholar
  216. Quinn J, Patel P, Fitzpatrick B, Manning B, Dillon P, Daly S, O'Kennedy R, Alcocer M, Lee H, Morgan M, Lang K (1999) The use of regenerable, affinity ligand-based surfaces for immunosensor applications. Biosens Bioelectron 14:587–595CrossRefGoogle Scholar
  217. Rabe M, Verdes D, Zimmermann J, Seeger S (2008) Surface organization and cooperativity during nonspecific protein adsorption events. J Phys Chem B 112:13971–13980CrossRefGoogle Scholar
  218. Rajewsky K (1996) Clonal selection and learning in the antibody system. Nature 381:751–758CrossRefGoogle Scholar
  219. Raju TS (2008) Terminal sugars of Fc glycans influence antibody effector functions of IgGs. Curr Opin Immunol 20:471–478CrossRefGoogle Scholar
  220. Ramachandran N, Srivastava S, LaBaer J (2008) Applications of protein microarrays for biomarker discovery. Proteomics Clin Appl 2:1444–1459CrossRefGoogle Scholar
  221. Randles LG, Batey S, Steward A, Clarke J (2008) Distinguishing specific and nonspecific interdomain interactions in multidomain proteins. Biophys J 94:622–628CrossRefGoogle Scholar
  222. Reeves DC, Lummis SCR (2006) Detection of human and rodent 5-HT3B receptor subunits by anti-peptide polyclonal antibodies. BMC Neurosci 7:27CrossRefGoogle Scholar
  223. Reimhult K, Petersson K, Krozer A (2008) QCM-D analysis of the performance of blocking agents on gold and polystyrene surfaces. Langmuir 24:8695–8700CrossRefGoogle Scholar
  224. Reiter Y, Brinkmann U, Kreitman RJ, Jung SH, Lee B, Pastan I (1994) Stabilization of the Fv fragments in recombinant immunotoxins by disulfide bonds engineered into conserved framework regions. Biochemistry 33:5451–5459CrossRefGoogle Scholar
  225. Renard M, Belkadi L, Hugo N, England P, Altschuh D, Bedouelle H (2002) Knowledge-based design of reagentless fluorescent biosensors from recombinant antibodies. J Mol Biol 318:429–442CrossRefGoogle Scholar
  226. Riechmann L, Winter G (2006) Early protein evolution: building domains from ligand-binding polypeptide segments. J Mol Biol 363:460–468CrossRefGoogle Scholar
  227. Robert P, Sengupta K, Puech PH, Bongrand P, Limozin L (2008) Tuning the formation and rupture of single ligand-receptor bonds by hyaluronan-induced repulsion. Biophys J 95:3999–4012CrossRefGoogle Scholar
  228. Rodier F, Bahadur RP, Chakrabarti P, Janin J (2005) Hydration of protein–protein interfaces. Proteins 60:36–45CrossRefGoogle Scholar
  229. Rothe C, Urlinger S, Lohning C, Prassler J, Stark Y, Jager U, Hubner B, Bardroff M, Pradel I, Boss M, Bittlingmaier R, Bataa T, Frisch C, Brocks B, Honegger A, Urban M (2008) The human combinatorial antibody library HuCAL GOLD combines diversification of all six CDRs according to the natural immune system with a novel display method for efficient selection of high-affinity antibodies. J Mol Biol 376:1182–1200CrossRefGoogle Scholar
  230. Rothlisberger D, Honegger A, Pluckthun A (2005) Domain interactions in the Fab fragment: a comparative evaluation of the single-chain Fv and Fab format engineered with variable domains of different stability. J Mol Biol 347:773–789CrossRefGoogle Scholar
  231. Rubina AY, Dementieva EI, Stomakhin AA, Darii EL, Pan'kov SV, Barsky VE, Ivanov SM, Konovalova EV, Mirzabekov AD (2003) Hydrogel-based protein microchips: manufacturing, properties, and applications. Biotechniques 34:1008–1014Google Scholar
  232. Rubina AY, Kolchinsky A, Makarov AA, Zasedatelev AS (2008) Why 3-D? Gel-based microarrays in proteomics. Proteomics 8:817–831CrossRefGoogle Scholar
  233. Rubinstein ND, Mayrose I, Halperin D, Yekutieli D, Gershoni JM, Pupko T (2008) Computational characterization of B-cell epitopes. Mol Immunol 45:3477–3489CrossRefGoogle Scholar
  234. Ryan BJ, Fagain CO (2007) Arginine-to-lysine substitutions influence recombinant horseradish peroxidase stability and immobilisation effectiveness. BMC Biotechnol 7:86CrossRefGoogle Scholar
  235. Saerens D, Frederix F, Reekmans G, Conrath K, Jans K, Brys L, Huang L, Bosmans E, Maes G, Borghs G, Muyldermans S (2005) Engineering camel single-domain antibodies and immobilization chemistry for human prostate-specific antigen sensing. Anal Chem 77:7547–7555CrossRefGoogle Scholar
  236. Saerens D, Huang L, Bonroy K, Muyldermans S (2008) Antibody fragments as probe in biosensor development. Sensors 8:4669–4686CrossRefGoogle Scholar
  237. San Paulo A, Garcia R (2000) Protein biochips: on the threshold of success. Biophys J 78:1599–1605CrossRefGoogle Scholar
  238. Saphire EO, Stanfield RL, Crispin MDM, Parren PWHI, Rudd PM, Dwek RA, Burton DR, Wilson IA (2002) Contrasting IgG structures reveal extreme asymmetry and flexibility. J Mol Biol 319:9–18CrossRefGoogle Scholar
  239. Schatz PJ (1993) Use of peptide libraries to map the substrate-specificity of a peptide-modifying enzyme – a 13 residue consensus peptide specifies biotinylation in Escherichia coli. Biotechnology 11:1138–1143Google Scholar
  240. Schenk JA, Sellrie F, Bottger V, Menning A, Stocklein WFM, Micheel B (2007) Generation and application of a fluorescein-specific single chain antibody. Biochimie 89:1304–1311CrossRefGoogle Scholar
  241. Schirrmann T, Al-Halabi L, Dubel S, Hust M (2008) Production systems for recombinant antibodies. Front Biosci 13:4576–4594CrossRefGoogle Scholar
  242. Schmidt TGM, Skerra A (2007) The Strep-tag system for one-step purification and high-affinity detection or capturing of proteins. Nat Protoc 2:1528–1535CrossRefGoogle Scholar
  243. Schmiedl A, Breitling F, Winter CH, Queitsch I, Dubel S (2000) Effects of unpaired cysteines on yield, solubility and activity of different recombinant antibody constructs expressed in E. coli. J Immunol Methods 242:101–114CrossRefGoogle Scholar
  244. Scholler N, Garvik B, Quarles T, Jiang S, Urban N (2006) Method for generation of in vivo biotinylated recombinant antibodies by yeast mating. J Immunol Methods 317:132–143CrossRefGoogle Scholar
  245. Schreiber G (2002) Kinetic studies of protein-protein interactions. Curr Opin Struct Biol 12:41–47CrossRefGoogle Scholar
  246. Schwesinger F, Ros R, Strunz T, Anselmetti D, Guntherodt HJ, Honegger A, Jermutus L, Tiefenauer L, Pluckthun A (2000) Unbinding forces of single antibody–antigen complexes correlate with their thermal dissociation rates. Proc Natl Acad Sci USA 97:9972–9977CrossRefGoogle Scholar
  247. Sennhauser G, Grutter MG (2008) Chaperone-assisted crystallography with DARPins. Structure 16:1443–1453CrossRefGoogle Scholar
  248. Shen Z, Stryker GA, Mernaugh RL, Yu L, Yan HP, Zeng XQ (2005) Single-chain fragment variable antibody piezoimmunosensors. Anal Chem 77:797–805CrossRefGoogle Scholar
  249. Shiroishi M, Tsumoto K, Tanaka Y, Yokota A, Nakanishi T, Kondo H, Kumagai I (2007) Structural consequences of mutations in interfacial Tyr residues of a protein antigen–anti body complex – the case of HyHEL-10-HEL. J Biol Chem 282:6783–6791CrossRefGoogle Scholar
  250. Shmanai V, Nikolayeva T, Vinokurova L, Litoshka A (2001) Oriented antibody immobilization to polystyrene macrocarriers for immunoassay modified with hydrazide derivatives of poly(meth)acrylic acid. BMC Biotechnol 1:4CrossRefGoogle Scholar
  251. Sidhu SS, Koide S (2007) Phage display for engineering and analyzing protein interaction interfaces. Curr Opin Struct Biol 17:481–487CrossRefGoogle Scholar
  252. Siegel RW, Baugher W, Rahn T, Drengler S, Tyner J (2008) Affinity maturation of tacrolimus antibody for improved immunoassay performance. Clin Chem 54:1008–1017CrossRefGoogle Scholar
  253. Sinacola JR, Robinson AS (2002) Rapid refolding and polishing of single-chain antibodies from Escherichia coli inclusion bodies. Protein Expr Purif 26:301–308CrossRefGoogle Scholar
  254. Sinha N, Mohan S, Lipschultz CA, Smith-Gill SJ (2002) Differences in electrostatic properties at antibody–antigen binding sites: implications for specificity and cross-reactivity. Biophys J 83:2946–2968CrossRefGoogle Scholar
  255. Skerra A, Pluckthun A (1988) Assembly of a functional immunoglobulin-Fv fragment in Escherichia coli. Science 240:1038–1041CrossRefGoogle Scholar
  256. Smith GP (1985) Filamentous fusion phage – novel expression vectors that display cloned antigens on the virion surface. Science 228:1315–1317CrossRefGoogle Scholar
  257. Soderlind E, Strandberg L, Jirholt P, Kobayashi N, Alexeiva V, Aberg AM, Nilsson A, Jansson B, Ohlin M, Wingren C, Danielsson L, Carlsson R, Borrebaeck CAK (2000) Recombining germline-derived CDR sequences for creating diverse single-framework antibody libraries. Nat Biotechnol 18:852–856CrossRefGoogle Scholar
  258. Solar I, Gershoni JM (1995) Linker modification introduces useful molecular-instability in a single-chain antibody. Protein Eng 8:717–723CrossRefGoogle Scholar
  259. Steinhauer C, Wingren C, Hager ACM, Borrebaeck CAK (2002) Single framework recombinant antibody fragments designed for protein chip applications. Biotechniques: 38–45Google Scholar
  260. Steinhauer C, Wingren C, Khan F, He MY, Taussig MJ, Borrebaeck CAK (2006) Improved affinity coupling for antibody microarrays: Engineering of double-(His)(6)-tagged single framework recombinant antibody fragments. Proteomics 6:4227–4234CrossRefGoogle Scholar
  261. Stone E, Hirama T, Tanha J, Tong-Sevinc H, Li SH, MacKenzie CR, Zhang JB (2007) The assembly of single domain antibodies into bispecific decavalent molecules. J Immunol Methods 318:88–94CrossRefGoogle Scholar
  262. Strandh M, Ohlin M, Borrebaeck CAK, Ohlson S (1998) New approach to steroid separation based on a low affinity IgM antibody. J Immunol Methods 214:73–79CrossRefGoogle Scholar
  263. Su TJ, Lu JR, Thomas RK, Cui ZF, Penfold J (1998) The adsorption of lysozyme at the silica-water interface: a neutron reflection study. J Colloid Interf Sci 203:419–429CrossRefGoogle Scholar
  264. Sundberg EJ, Urrutia M, Braden BC, Isern J, Tsuchiya D, Fields BA, Malchiodi EL, Tormo J, Schwarz FP, Mariuzza RA (2000) Estimation of the hydrophobic effect in an antigen–antibody protein–protein interface. Biochemistry 39:15375–15387CrossRefGoogle Scholar
  265. Suzuki S, Otani T, Iwasaki S, Ito K, Omura H, Tanaka Y (2003) Monitoring of 15 pesticides in rainwater in Utsunomiya, eastern Japan, 1999–2000. J Pestic Sci 28:1–7CrossRefGoogle Scholar
  266. Swaim CL, Smith JB, Smith DL (2004) Unexpected products from the reaction of the synthetic cross-linker 3, 3′-dithiobis(sulfosuccinimidyl propionate), DTSSP with peptides. J Am Soc Mass Spectr 15:736–749CrossRefGoogle Scholar
  267. Takahashi Y, Ohashi T, Nagoya T, Sakaguchi M, Yasueda H, Nitta H (2001) Possibility of real-time measurement of an airborne Cryptomeria japonica pollen allergen based on the principle of surface plasmon resonance. Aerobiologia 17:313–318CrossRefGoogle Scholar
  268. Tam FCH, Ma CH, Leung DTM, Sutton B, Lim PL (2007) Carrier-specificity of a phosphorylcholine-binding antibody requires the presence of the constant domains and is not dependent on the unique VH49 glycine or VH30 threonine residues. J Immunol Methods 321:152–163CrossRefGoogle Scholar
  269. Tanha J, Xu P, Chen ZG, Ni F, Kaplan H, Narang SA, MacKenzie CR (2001) Optimal design features of camelized human single-domain antibody libraries. J Biol Chem 276:24774–24780CrossRefGoogle Scholar
  270. Thielges MC, Zimmermann J, Yu W, Oda M, Romesberg FE (2008) Exploring the energy landscape of antibody–antigen complexes: protein dynamics, flexibility, and molecular recognition. Biochemistry 47:7237–7247CrossRefGoogle Scholar
  271. Thies MJW, Talamo F, Mayer M, Bell S, Ruoppolo M, Marino G, Buchner J (2002) Folding and oxidation of the antibody domain C(H)3. J Mol Biol 319:1267–1277CrossRefGoogle Scholar
  272. Thomson NH (2005) The substructure of immunoglobulin G resolved to 25 kDa using amplitude modulation AFM in air. Ultramicroscopy 105:103–110CrossRefGoogle Scholar
  273. Thorpe IF, Brooks CL (2007) Molecular evolution of affinity and flexibility in the immune system. Proc Natl Acad Sci USA 104:8821–8826CrossRefGoogle Scholar
  274. Timmerman P, Beld J, Puijk WC, Meloen RH (2005) Rapid and quantitative cyclization of multiple peptide loops onto synthetic scaffolds for structural mimicry of protein surfaces. Chembiochem 6:821–824CrossRefGoogle Scholar
  275. Timmerman P, Puijk WC, Meloen RH (2007) Functional reconstruction and synthetic mimicry of a conformational epitope using CLIPS (TM) technology. J Mol Recognit 20:283–299CrossRefGoogle Scholar
  276. Tiselius A, Kabat EA (1939) An electrophoretic study of immune sera and purified antibody preparations. J Exp Med 69:119–131CrossRefGoogle Scholar
  277. Tonegawa S (1983) Somatic generation of antibody diversity. Nature 302:575–581CrossRefGoogle Scholar
  278. Torrance L, Ziegler A, Pittman H, Paterson M, Toth R, Eggleston I (2006) Oriented immobilisation of engineered single-chain antibodies to develop biosensors for virus detection. J Virol Methods 134:164–170CrossRefGoogle Scholar
  279. Torres M, Casadevall A (2008) The immunoglobulin constant region contributes to affinity and specificity. Trends Immunol 29:91–97CrossRefGoogle Scholar
  280. Treethammathurot B, Ovartlarnporn C, Wungsintaweekul J, Duncan R, Wiwattanapatapee R (2008) Effect of PEG molecular weight and linking chemistry on the biological activity and thermal stability of PEGylated trypsin. Int J Pharm 357:252–259CrossRefGoogle Scholar
  281. Tskhovrebova L, Trinick J (2004) Properties of titin immunoglobulin and fibronectin-3 domains. J Biol Chem 279:46351–46354CrossRefGoogle Scholar
  282. van Oss CJ (2003) Long-range and short-range mechanisms of hydrophobic attraction and hydrophilic repulsion in specific and aspecific interactions. J Mol Recognit 16:177–190CrossRefGoogle Scholar
  283. Verbelen C, Gruber HJ, Dufrene YF (2007) The NTA-HiS(6) bond is strong enough for AFM single-molecular recognition studies. J Mol Recognit 20:490–494CrossRefGoogle Scholar
  284. Visiongain (2008) Therapeutic monoclonal antibodies report 2008–2023. VisiongainGoogle Scholar
  285. Wan L, Cai HW, Yang H, Lu YR, Li YY, Li XW, Li SF, Zhang J, Li YP, Cheng JQ, Lu XF (2008) High-level expression of a functional humanized single-chain variable fragment antibody against CD25 in Pichia pastoris. Appl Microbiol Biotechnol 81:33–41CrossRefGoogle Scholar
  286. Wang Q, Chan TR, Hilgraf R, Fokin VV, Sharpless KB, Finn MG (2003) Bioconjugation by copper(I)-catalyzed azide-alkyne [3+2] cycloaddition. J Am Chem Soc 125:3192–3193CrossRefGoogle Scholar
  287. Wang ST, Feng JN, Guo JW, Guo LM, Li Y, Sun YX, Qin WS, Hu MR, Han GC, Shen BF (2006a) A novel designed single domain antibody on 3-D structure of ricin A chain remarkably blocked ricin-induced cytotoxicity. Mol Immunol 43:1912–1919CrossRefGoogle Scholar
  288. Wang W, Singh S, Zeng DL, King K, Nema S (2007) Antibody structure, instability, and formulation. J Pharm Sci 96:1–26CrossRefGoogle Scholar
  289. Wang XQ, Wang YN, Xu H, Shan HH, Lub JR (2008) Dynamic adsorption of monoclonal antibody layers on hydrophilic silica surface: a combined study by spectroscopic ellipsometry and AFM. J Colloid Interf Sci 323:18–25CrossRefGoogle Scholar
  290. Wang ZH, Viana AS, Jin G, Abrantes LM (2006b) Immunosensor interface based on physical and chemical immunogylobulin G adsorption onto mixed self-assembled monolayers. Bioelectrochemistry 69:180–186CrossRefGoogle Scholar
  291. Watzke A, Kohn M, Gutierrez-Rodriguez M, Wacker R, Schroder H, Breinbauer R, Kuhlmann J, Alexandrov K, Niemeyer CM, Goody RS, Waldmann H (2006) Site-selective protein immobilization by Staudinger ligation. Angew Chem Int ed 45:1408–1412CrossRefGoogle Scholar
  292. Whelan JP, Kusterbeck AW, Wemhoff GA, Bredehorst R, Ligler FS (1993) Continuous-flow immunosensor for detection of explosives. Anal Chem 65:3561–3565CrossRefGoogle Scholar
  293. Willuda J, Honegger A, Waibel R, Schubiger PA, Stahel R, Zangemeister-Wittke U, Pluckthun A (1999) High thermal stability is essential for tumor targeting of antibody fragments: engineering of a humanized anti-epithelial glycoprotein-2 (epithelial cell adhesion molecule) single-chain Fv fragment. Cancer Res 59:5758–5767Google Scholar
  294. Wingren C, Steinhauer C, Ingvarsson J, Persson E, Larsson K, Borrebaeck CAK (2005) Microarrays based on affinity-tagged single-chain Fv antibodies: sensitive detection of analyte in complex proteomes. Proteomics 5:1281–1291CrossRefGoogle Scholar
  295. Winkler K, Kramer A, Kuttner G, Seifert M, Scholz C, Wessner H, Schneider-Mergener J, Hohne W (2000) Changing the antigen binding specificity by single point mutations of an anti-p24 (HIV-1) antibody. J Immunol 165:4505–4514Google Scholar
  296. Wong LS, Thirlway J, Micklefield J (2008) Direct site-selective covalent protein immobilization catalyzed by a phosphopantetheinyl transferase. J Am Chem Soc 130:12456–12464CrossRefGoogle Scholar
  297. Worn A, Pluckthun A (1998) Mutual stabilization of V-L and V-H in single-chain antibody fragments, investigated with mutants engineered for stability. Biochemistry 37:13120–13127CrossRefGoogle Scholar
  298. Worn A, Pluckthun A (1999) Different equilibrium stability behavior of ScFv fragments: identification, classification, and improvement by protein engineering. Biochemistry 38:8739–8750CrossRefGoogle Scholar
  299. Worn A, Pluckthun A (2001) Stability engineering of antibody single-chain Fv fragments. J Mol Biol 305:989–1010CrossRefGoogle Scholar
  300. Wu L, Xiao BT, Jia XL, Zhang Y, Lu SQ, Chen J, Long M (2007) Impact of carrier stiffness and microtopology on two-dimensional kinetics of P-selectin and P-selectin glycoprotein ligand-1 (PSGL-1) interactions. J Biol Chem 282:9846–9854CrossRefGoogle Scholar
  301. Xiang T, Lundell E, Sun Z, Liu H (2007) Structural effect of a recombinant monoclonal antibody on hinge region peptide bond hydrolysis. J Chromatogr B Analyt Technol Biomed Life Sci 858:254–262CrossRefGoogle Scholar
  302. Xu H, Zhao XB, Grant C, Lu JR, Williams DE, Penfold J (2006) Orientation of a monoclonal antibody adsorbed at the solid/solution interface: a combined study using atomic force microscopy and neutron reflectivity. Langmuir 22:6313–6320CrossRefGoogle Scholar
  303. Xu H, Zhao XB, Lu JR, Williams DE (2007) Relationship between the structural conformation of monoclonal antibody layers and antigen binding capacity. Biomacromolecules 8:2422–2428CrossRefGoogle Scholar
  304. Yokota A, Tsumoto K, Shiroishi M, Kondo H, Kumagai I (2003) The role of hydrogen bonding via interfacial water molecules in antigen–antibody complexation – the HyHEL-10-HEL interaction. J Biol Chem 278:5410–5418CrossRefGoogle Scholar
  305. Yoshimoto K, Hoshino Y, Ishii T, Nagasaki Y (2008). Binding enhancement of antigen-functionalized PEGylated gold nanoparticles onto antibody-immobilized surface by increasing the functionalized antigen using alpha-sulfanyl-omega-amino-PEG. Chemical Communications: 5369–5371.Google Scholar
  306. Young NM, MacKenzie CR, Narang SA, Oomen RP, Baenziger JE (1995) Thermal stabilization of a single-chain Fv antibody fragment by introduction of a disulphide bond. FEBS Lett 377:135–139CrossRefGoogle Scholar
  307. Yu JP, Jiang YX, Ma XY, Lin Y, Fang XH (2007) Energy landscape of aptamer/protein complexes studied by single-molecule force spectroscopy. Chem Asian J 2:284–289CrossRefGoogle Scholar
  308. Zhang Z, Zhang M, Chen SF, Horbetta TA, Ratner BD, Jiang SY (2008) Blood compatibility of surfaces with superlow protein adsorption. Biomaterials 29:4285–4291CrossRefGoogle Scholar
  309. Zhao ZJ, Liu XM (2005) Preparation of monoclonal antibody and development of enzyme-linked immunosorbent assay specific for Escherichia coli O157 in foods. Biomed Environ Sci 18:254–259MATHMathSciNetGoogle Scholar
  310. Zhou J, Zhang LZ, Leng YS, Tsao HK, Sheng YJ, Jiang SY (2006) Unbinding of the streptavidin-biotin complex by atomic force microscopy: a hybrid simulation study. J Chem Phys 125:104905CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Detection DepartmentDefence Science and Technology LaboratoryPorton DownUK

Personalised recommendations