Disinhibition of Prefrontal Cortex Neurons in Schizophrenia



A large body of evidence has implicated abnormal functioning of the prefrontal cortex (PFC) in the pathophysiology of schizophrenia (Robbins 1996; Andreasen et al. 1997; Winterer and Wvneinberger 2004; Lewis and Moghaddam 2006). These abnormalities are found at molecular and functional levels and are thought to be the basis of cognitive deficits in individuals with schizophrenia. However, little is known about the physiological mechanisms that contribute to this malfunction. Here we review some of the literature that points to PFC abnormalities in schizophrenia and recent theories that unify the multimodal functional and postmortem findings in schizophrenia.


NMDA Receptor Pyramidal Neuron Antipsychotic Drug NMDA Receptor Antagonist Glutamate Neurotransmission 


  1. Aalto, S., Hirvonen, J., Kajander, J., Scheinin, H., Nagren, K., Vilkman, H., Gustafsson, L., Syvalahti, E. & Hietala, J. (2002) Ketamine does not decrease striatal dopamine D2 receptor binding in man. Psychopharmacology (Berl) 164:401–406CrossRefGoogle Scholar
  2. Abi-Dargham, A., Gil, R., Krystal, J., Baldwin, R. M., Seibyl, J. P., Bowers, M., van Dyck, C. H., Charney, D. S., Innis, R. B. & Laruelle, M. (1998) Increased striatal dopamine transmission in schizophrenia: Confirmation in a second cohort. American Journal of Psychiatry 155: 761–767PubMedGoogle Scholar
  3. Abi-Dargham, A., Rodenhiser, J., Printz, D., Zea-Ponce, Y., Gil, R., Kegeles, L., Weiss, R., Cooper, T., Mann, J., Van Heertum, R., Gorman, J. & Laruelle, M. (2000) Increased baseline occupancy of D2 receptors by dopamine in schizophrenia. Proceedings of the National Academy of Sciences of USA 97:8104–8109Google Scholar
  4. Adams, B. & Moghaddam, B. (1998) Corticolimbic dopamine neurotransmission is temporally dissociated from the cognitive and locomotor effects of phencyclidine. Journal of Neuroscience 18:5545–5554PubMedGoogle Scholar
  5. Adams, B. W., Bradberry, C. W. & Moghaddam, B. (2002) NMDA antagonist effects on striatal dopamine release: microdialysis studies in awake monkeys. Synapse 43:12–18CrossRefPubMedGoogle Scholar
  6. Adler, C. M., Goldberg, T. E., Malhotra, A. K., Pickar, D. & Breier, A. (1998) Effects of ketamine on thought disorder, working memory, and semantic memory in healthy volunteers. Biological Psychiatry 43:811–816CrossRefPubMedGoogle Scholar
  7. Akbarian, S., Kim, J. J., Potkin, S. G., Hagman, J. O., Tafazzoli, A., Bunney, W. E., Jr. & Jones, E. G. (1995) Gene expression for glutamic acid decarboxylase is reduced without loss of neurons in prefrontal cortex of schizophrenics [see comments]. Archives of General Psychiatry 52:258–266PubMedGoogle Scholar
  8. Andreasen, N. C., Arndt, S., Swayze, V., II, Cizadlo, T., Flaum, M., O’Leary, D., Erhardt, J. C. & Yuh, W. T. (1994) Thalamic abnormalities in schizophrenia visualized through magnetic resonance image averaging. Science 266:294–298CrossRefPubMedGoogle Scholar
  9. Andreasen, N. C., Nopoulos, P., O’Leary, D. S., Miller, D. D., Wassink, T. & Flaum, M. (1999) Defining the phenotype of schizophrenia: cognitive dysmetria and its neural mechanisms. Biological Psychiatry 46:908–920CrossRefPubMedGoogle Scholar
  10. Andreasen, N. C., O’Leary, D. S., Flaum, M., Nopoulos, P., Watkins, G. L., Boles Ponto, L. L. & Hichwa, R. D. (1997) Hypofrontality in schizophrenia: distributed dysfunctional circuits in neuroleptic-naive patients. Lancet 349:1730–1734CrossRefPubMedGoogle Scholar
  11. Aniline, O. & Pitts, F. N., Jr. (1982) Phencyclidine (PCP): A review and perspectives. Critical Reviews in Toxicology 10:145–177CrossRefPubMedGoogle Scholar
  12. Aradi, I., Santhakumar, V., Chen, K. & Soltesz, I. (2002) Postsynaptic effects of GABAergic synaptic diversity: regulation of neuronal excitability by changes in IPSC variance. Neuropharmacology 43:511–522CrossRefPubMedGoogle Scholar
  13. Arnsten, A. F., Cai, J. X., Murphy, B. L. & Goldman-Rakic, P. S. (1994) Dopamine D1 receptor mechanisms in the cognitive performance of young adult and aged monkeys. Psychopharmacology 116:143–151CrossRefPubMedGoogle Scholar
  14. Bakshi, V. P., Swerdlow, N. R. & Geyer, M. A. (1994) Clozapine antagonizes phencyclidine-induced deficits in sensorimotor gating of the startle response. Journal of Pharmacology & Experimental Therapeutics 271:787–794Google Scholar
  15. Beasley, C. L. & Reynolds, G. P. (1997) Parvalbumin-immunoreactive neurons are reduced in the prefrontal cortex of schizophrenics. Schizophr Res 24:349–355CrossRefPubMedGoogle Scholar
  16. Benes, F. & Berretta, S. (2001) GABAergic interneurons: implications for understanding schizophrenia and bipolar disorder. Neuropsychopharmacology 25:1–27CrossRefPubMedGoogle Scholar
  17. Benes, F. M. & Lange, N. (2001) Two-dimensional versus three-dimensional cell counting: a practical perspective. Trends Neuroscience 24:11–17CrossRefGoogle Scholar
  18. Benes, F. M., McSparren, J., Bird, E. D., SanGiovanni, J. P. & Vincent, S. L. (1991) Deficits in small interneurons in prefrontal and cingulate cortices of schizophrenic and schizoaffective patients. Archives of General Psychiatry 48:996–1001PubMedGoogle Scholar
  19. Benes, F. M., Vincent, S. L., Alsterberg, G., Bird, E. D. & SanGiovanni, J. P. (1992) Increased GABAA receptor binding in superficial layers of cingulate cortex in schizophrenics. Journal of Neuroscience 12:924–929PubMedGoogle Scholar
  20. Benes, F. M., Vincent, S. L., Marie, A. & Khan, Y. (1996) Up-regulation of GABAA receptor binding on neurons of the prefrontal cortex in schizophrenic subjects. Neuroscience 75: 1021–1031CrossRefPubMedGoogle Scholar
  21. Bowyer, J. F., Spuhler, K. P. & Weiner, N. (1984) Effects of phencyclidine, amphetamine and related compounds on dopamine release from and uptake into striatal synaptosomes. Journal of Pharmacology & Experimental Therapeutics 229:671–680Google Scholar
  22. Breier, A., Su, T. P., Saunders, R., Carson, R. E., Kolachana, B. S., de Bartolomeis, A., Weinberger, D. R., Weisenfeld, N., Malhotra, A. K., Eckelman, W. C. & Pickar, D. (1997) Schizophrenia is associated with elevated amphetamine-induced synaptic dopamine concentrations: evidence from a novel positron emission tomography method. Proceedings of the National Academy of Sciences USA 94:2569–2574Google Scholar
  23. Calabresi, P., De Murtas, M., Mercuri, N. B. & Bernardi, G. (1992) Chronic neuroleptic treatment: D2 dopamine receptor supersensitivity and striatal glutamatergic transmission. Annals of Neurology 31:366–373CrossRefPubMedGoogle Scholar
  24. Carlsson, A. (1977) Does dopamine play a role in schizophrenia? Psychological Medicine 7: 583–597CrossRefPubMedGoogle Scholar
  25. Carlsson, A., Svensson, A. & Carlsson, M. L. (1993) Future strategies in the discovery of new antipsychotic agents: focus on dopamine–glutamate interactions. In: Brunello, N., Mendlewicz, J. & Racagni, G. (eds.) New Generation of Antipsychotic Drugs: Novel Mechanisms of Action, Karger, Basel, pp. 118–129Google Scholar
  26. Carlsson, M. & Carlsson, A. (1990) Interactions between glutamatergic and monoaminergic systems within the basal ganglia – implications for schizophrenia and Parkinson’s disease. Trends in Neurosciences 13:272–276CrossRefPubMedGoogle Scholar
  27. Cepeda, C., Hurst, R. S., Altemus, K. L., Flores-Hernandez, J., Calvert, C. R., Jokel, E. S., Grandy, D. K., Low, M. J., Rubinstein, M., Ariano, M. A. & Levine, M. S. (2001) Facilitated glutamatergic transmission in the striatum of D2 dopamine receptor-deficient mice. Journal of Neurophysiology 85:659–670PubMedGoogle Scholar
  28. Chartoff, E. H., Heusner, C. L. & Palmiter, R. D. (2005) Dopamine is not required for the hyperlocomotor response to NMDA receptor antagonists. Neuropsychopharmacology 30:1324–1333PubMedGoogle Scholar
  29. Clinton, S. & Meador-Woodruff, J. (2004) Abnormalities of the NMDA receptor and associated intracellular molecules in the thalamus in schizophrenia and bipolar disorder. Neuropsychopharmacology 29:1353–1362CrossRefPubMedGoogle Scholar
  30. Conrad, A., Abebe, T., Ron, A., Forsythe, S. & Scheibel, B. (1991) Hippocampal pyramidal cell disarray in schizophrenia as a bilateral phenomenon. Archives of General Psychiatry 48: 413–417PubMedGoogle Scholar
  31. Corbett, R., Camacho, F., Woods, A. T., Kerman, L. L., Fishkin, R. J., Brooks, K. & Dunn, R. W. (1995) Antipsychotic agents antagonize non-competitive N-methyl-d-aspartate antagonist-induced behaviors. Psychopharmacology (Berl) 120:67–74CrossRefGoogle Scholar
  32. Creese, I., Burt, D. & Snyder, S. (1976) Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. Science 192:481–483CrossRefPubMedGoogle Scholar
  33. Cuomo, V., Cagiano, R., Colonna, M., Renna, G. & Racagni, G. (1986) Influence of SCH 23390, a DA1-receptor antagonist, on the behavioural responsiveness to small and large doses of apomorphine in rats. Neuropharmacology 25:1297–1300CrossRefPubMedGoogle Scholar
  34. Daniel, D., Berman, K. & Weinberger, D. (1989) The effect of apomorphine on regional cerebral bloodflow in schizophrenia. Journal of Neuropsychiatry & Clinical Neuroscience 1: 377–384Google Scholar
  35. Daniel, D. G., Weinberger, D. R., Jones, D. W., Zigun, J. R., Cippola, R., Handel, S., Bigelow, L. B., Goldberg, T. E., Berman, K. F. & Kleinman, J. E. (1991) The effect of amphetamine on regional cerebral blood flow during cognitive activation in schizophrenia. Journal of Neuroscience 11:1907–1917PubMedGoogle Scholar
  36. Davis, K. L., Kahn, R. S., Ko, G. & Davidson, M. (1991) Dopamine in schizophrenia: a review and reconceptualization. American Journal of Psychiatry 148:1474–1486PubMedGoogle Scholar
  37. Durstewitz, D. (2006) A few important points about dopamine’s role in neural network dynamics. Pharmacopsychiatry 39(Suppl 1):S72–S75CrossRefPubMedGoogle Scholar
  38. Farde, L., Wiesel, F. A., Halldin, C. & Sedvall, G. (1988) Central D2-dopamine receptor occupancy in schizophrenic patients treated with antipsychotic drugs. Archives of General Psychiatry 45:71–76PubMedGoogle Scholar
  39. Geddes, J., Freemantle, N., Harrison, P. & Bebbington, P. (2000) Atypical antipsychotics in the treatment of schizophrenia: systematic overview and meta-regression analysis. BMJ 321: 1371–1376CrossRefPubMedGoogle Scholar
  40. Gemperle, A. Y., Enz, A., Pozza, M. F., Luthi, A. & Olpe, H. R. (2003) Effects of clozapine, haloperidol and iloperidone on neurotransmission and synaptic plasticity in prefrontal cortex and their accumulation in brain tissue: an in vitro study. Neuroscience 117:681–695CrossRefPubMedGoogle Scholar
  41. Geraud, G., Arne-Bes, M., Guell, A. & Bes, A. (1987) Reversibility of hemodynamic hypofrontality in schizophrenia. Journal of Cerebral Blood Flow & Metabolism 7:9–12Google Scholar
  42. Goldman-Rakic, P. S. (1987) Circuitry of primate prefrontal cortex and regulation of behavior by representational memory. In: Plum, F. & Mountcastle, V. (eds.) Handbook of Physiology :The Nervous System, American Physiological Society, Bethesda, MD, pp. 373–417Google Scholar
  43. Goldman-Rakic, P. S., Castner, S. A., Svensson, T. H., Siever, L. J. & Williams, G. V. (2004) Targeting the dopamine D1 receptor in schizophrenia: insights for cognitive dysfunction. Psychopharmacology (Berl) 174:3–16CrossRefGoogle Scholar
  44. Harrison, P. J., McLaughlin, D. & Kerwin, R. W. (1991) Decreased hippocampal expression of a glutamate receptor gene in schizophrenia. Lancet 337:450–452CrossRefPubMedGoogle Scholar
  45. Harrison, P. J. & Owen, M. J. (2003) Genes for schizophrenia? Recent findings and their pathophysiological implications.[comment]. Lancet 361:417–419CrossRefPubMedGoogle Scholar
  46. Heinz, A., Romero, B., Gallinat, J., Juckel, G. & Weinberger, D. R. (2003) Molecular brain imaging and the neurobiology and genetics of schizophrenia. Pharmacopsychiatry 36(Suppl 3): S152–S157PubMedGoogle Scholar
  47. Hiramatsu, M., Cho, A. K. & Nabeshima, T. (1989) Comparison of the behavioral and biochemical effects of the NMDA receptor antagonists, MK-801 and phencyclidine. European Journal of Pharmacology 166:359–366CrossRefPubMedGoogle Scholar
  48. Homayoun, H. & Moghaddam, B. (2008) Orbitofrontal Cortex Neurons as a Common Cellular Target for Different Classes of Antipsychotic Drugs. Society for Neuroscience Abstract, Washington DCGoogle Scholar
  49. Jackson, M., Homayoun, H. & Moghaddam, B. (2004) NMDA receptor hypofunction produces concomitant firing rate potentiation and burst activity reduction in the prefrontal cortex. Proceedings of the National Academy of Sciences of USA 101:6391–6396Google Scholar
  50. Jackson, M. E., Frost, A. & Moghaddam, B. (2001) Stimulation of prefrontal cortex at physiologically relevant frequencies inhibits dopamine release in the nucleus accumbens. Journal of Neurochemistry 78:920–923CrossRefPubMedGoogle Scholar
  51. Javitt, D. C. & Zukin, S. R. (1991) Recent advances in the phencyclidine model of schizophrenia. American Journal of Psychiatry 148:1301–1308PubMedGoogle Scholar
  52. Jeste, D. & Lohr, J. (1989) Hippocampal pathological findings in schizophrenia. A morphometric study. Archives of General Psychiatry 46:1019–1024PubMedGoogle Scholar
  53. Kapur, S., Zipursky, R., Jones, C., Remington, G. & Houle, S. (2000) Relationship between dopamine D(2) occupancy, clinical response, and side effects: a double-blind PET study of first-episode schizophrenia. American Journal of Psychiatry 157:514–520CrossRefPubMedGoogle Scholar
  54. Keefe, R. (2001) Neurocognition. In: Breier, A., Tran, P. V., Herrea, J. M., Tollefson, G. D. & Bymaster, F. P. (eds.) Current Issues in the Psychopharmacology of Schizophrenia, Lippincott Williams & Wilkins, Philadelphia, pp. 209–223Google Scholar
  55. Kim, J., Kornhuber, H., Schmid-Burgk, W. & Holzmuller, B. (1980) Low cerebrospinal fluid glutamate in schizophrenic patients and a new hypothesis on schizophrenia. Neuroscience Letters 20:379–382CrossRefPubMedGoogle Scholar
  56. Koga, E. & Momiyama, T. (2000) Presynaptic dopamine D2-like receptors inhibit excitatory transmission onto rat ventral tegmental dopaminergic neurons. Journal of Physiology 523(Pt 1): 163–173CrossRefPubMedGoogle Scholar
  57. Krystal, J. H., D’Souza, D. C., Karper, L. P., Bennett, A., Abi-Dargham, A., Abi-Saab, D., Cassello, K., Bowers M. B., Jr., Vegso, S., Heninger, G. R. & Charney, D. S. (1999) Interactive effects of subanesthetic ketamine and haloperidol in healthy humans. Psychopharmacology 145: 193–204CrossRefPubMedGoogle Scholar
  58. Krystal, J. H., Karper, L. P., Seibyl, J. P., Freeman, G. K., Delaney, R., Bremner, J. D., Heninger, G. R., Bowers, M., Jr. & Charney, D. S. (1994) Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans: psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Archives of General Psychiatry 51:199–214PubMedGoogle Scholar
  59. Kuczenski, R. & Segal, D. S. (1999) Sensitization of amphetamine-induced stereotyped behaviors during the acute response. Journal of Pharmacology and Experimental Therapeutics 288: 699–709PubMedGoogle Scholar
  60. Lahti, A. C., Koffel, B., LaPorte, D. & Tamminga, C. A. (1995) Subanesthetic doses of ketamine stimulate psychosis in schizophrenia. Neuropsychopharmacology 13:9–19CrossRefPubMedGoogle Scholar
  61. Laruelle, M., Abi-Dargham, A., van Dyck, C., Gil, R., D’Souza, C., Erdos, J., McCance, E., Rosenblatt, W., Fingado, C., Zoghbi, S., Baldwin, R., Seibyl, J., Krystal, J., Charney, D. & Innis, R. (1996) SPECT imaging of amphetamine-induced dopamine release in drug-free schizophrenic subjects. Proceedings of the National Academy of Sciences USA 93:9235–9340Google Scholar
  62. Lavin, A. & Grace, A. (2001) Stimulation of D1-type dopamine receptors enhances excitability in prefrontal cortical pyramidal neurons in a state-dependent manner. Neuroscience 104: 335–346CrossRefPubMedGoogle Scholar
  63. Lewis, D. A., Cho, R. Y., Carter, C. S., Eklund, K., Forster, S., Kelly, M. A. & Montrose, D. (2008) Subunit-selective modulation of GABA type A receptor neurotransmission and cognition in schizophrenia. American Journal of Psychiatry 165:1585–1593CrossRefPubMedGoogle Scholar
  64. Lewis, D. A., Hashimoto, T. & Volk, D. W. (2005) Cortical inhibitory neurons and schizophrenia. Nature Reviews Neuroscience 6:312–324CrossRefPubMedGoogle Scholar
  65. Lewis, D. A., Hayes, T. L., Lund, J. S. & Oeth, K. M. (1992) Dopamine and neural circuitry of primate prefrontal cortex: implications for schizophrenia research. Neuropsychopharmacology 6:127–134PubMedGoogle Scholar
  66. Lewis, D. A. & Moghaddam, B. (2006) Cognitive dysfunction in schizophrenia: convergence of gamma-aminobutyric acid and glutamate alterations. Archives of Neurology 63: 1372–1376CrossRefPubMedGoogle Scholar
  67. Lieberman, J. A. (2007) Effectiveness of antipsychotic drugs in patients with chronic schizophrenia: efficacy, safety and cost outcomes of CATIE and other trials. Journal of Clinical Psychiatry 68:e04CrossRefPubMedGoogle Scholar
  68. Luby, E., Cohen, B., Rosenbaum, G., Gottlieb, J. & Kelley, R. (1959) Study of a new schizophrenomimetic drug-sernyl. American Medical Association Archives of Neurology and Psychiatry 81:363–369Google Scholar
  69. Malhotra, A. K., Pinals, D. A., Weingartner, H., Sirocco, K., Missar, C. D., Pickar, D. & Breier, A. (1996) NMDA receptor function and human coginition: the effects of ketamine in healthy volunteers. Neuropsychopharmacology 14:301–307CrossRefPubMedGoogle Scholar
  70. McGaughy, J., Kaiser, T. & Sarter, M. (1996) Behavioral vigilance following infusions of 192 IgG-saporin into the basal forebrain: selectively of the following behavioral impairment and relation to cortical AChE-positive fiber density. Behavioral Neuroscience 110:247–265CrossRefPubMedGoogle Scholar
  71. Moghaddam, B. (2003) Bringing order to the glutamate chaos in schizophrenia. Neuron 40: 881–884CrossRefPubMedGoogle Scholar
  72. Olney, J. & Farber, N. (1995) Glutamate receptor dysfunction and schizophrenia. Archives of General Psychiatry 52:998–1007PubMedGoogle Scholar
  73. Patil, S. T., Zhang, L., Martenyi, F., Lowe, S. L., Jackson, K. A., Andreev, B. V., Avedisova, A. S., Bardenstein, L. M., Gurovich, I. Y., Morozova, M. A., Mosolov, S. N., Neznanov, N. G., Reznik, A. M., Smulevich, A. B., Tochilov, V. A., Johnson, B. G., Monn, J. A. & Schoepp, D. D. (2007) Activation of mGlu2/3 receptors as a new approach to treat schizophrenia: a randomized Phase 2 clinical trial. Nature Medicine 13:1102–1107CrossRefPubMedGoogle Scholar
  74. Pierri, J. N., Chaudry, A. S., Woo, T. U. & Lewis, D. A. (1999) Alterations in chandelier neuron axon terminals in the prefrontal cortex of schizophrenic subjects. American Journal of Psychiatry 156:1709–1719PubMedGoogle Scholar
  75. Pilowsky, L. S., Bressan, R. A., Stone, J. M., Erlandsson, K., Mulligan, R. S., Krystal, J. H. & Ell, P. J. (2006) First in vivo evidence of an NMDA receptor deficit in medication-free schizophrenic patients. Molecular Psychiatry 11(2):118–119Google Scholar
  76. Randrup, A. & Munkvad, I. (1965) Special antagonism of amphetamine-induced abnormal behaviour. Inhibition of stereotyped activity with increase of some normal activities. Psychopharmacologia 7:416–422CrossRefPubMedGoogle Scholar
  77. Rimvall, K., Sheikh, S. N. & Martin, D. L. (1993) Effects of increased gamma-aminobutyric acid levels on GAD67 protein and mRNA levels in rat cerebral cortex. Journal of Neurochemistry 60:714–20CrossRefPubMedGoogle Scholar
  78. Robbins, T. (1996) Dissociating executive functions of the prefrontal cortex. Philosophical Transactions of the Royal Society of London-Series B: Biological Sciences 351:1463–1470CrossRefPubMedGoogle Scholar
  79. Robbins, T. W. (1998) Arousal and attention: psychopharmacological and neuropsychological studies in experimental animals. In: Parasuraman, R. (eds.) The Attentive Brain, MIT Press, Cambridge, MA, pp. 189–220Google Scholar
  80. Seamans, J. K. & Yang, C. R. (2004) The principal features and mechanisms of dopamine modulation in the prefrontal cortex. Progress in Neurobiology 74:1–58CrossRefPubMedGoogle Scholar
  81. Seeman, P. & Lee, T. (1975) Antipsychotic drugs: direct correlation between clinical potency and presynaptic action on dopamine neurons. Science 188:1217–1219CrossRefPubMedGoogle Scholar
  82. Sheikh, S. N. & Martin, D. L. (1998) Elevation of brain GABA levels with vigabatrin (gamma-vinylGABA) differentially affects GAD65 and GAD67 expression in various regions of rat brain. Journal of Neuroscience Research 52:736–741CrossRefPubMedGoogle Scholar
  83. Tsai, G., Passani, L. A., Slusher, B. S., Carter, R., Baer, L., Kleinman, J. E. & Coyle, J. T. (1995) Abnormal excitatory neurotransmitter metabolism in schizophrenic brains. Archives of General Psychiatry 52:829–836PubMedGoogle Scholar
  84. Verma, A. & Moghaddam, B. (1996) NMDA receptor antagonists impair prefrontal cortex function as assessed via spatial delayed alternation performance in rats: modulation by dopamine. Journal of Neuroscience 16:373–379PubMedGoogle Scholar
  85. Volk, D. W., Austin, M. C., Pierri, J. N., Sampson, A. R. & Lewis, D. A. (2000) Decreased glutamic acid decarboxylase67 messenger RNA expression in a subset of prefrontal cortical gamma-aminobutyric acid neurons in subjects with schizophrenia. Archives of General Psychiatry 57:237–245CrossRefPubMedGoogle Scholar
  86. Wang, H. & Pickel, V. M. (2002) Dopamine D2 receptors are present in prefrontal cortical afferents and their targets in patches of the rat caudate-putamen nucleus. Journal of Comparative Neurology 442:392–404CrossRefPubMedGoogle Scholar
  87. Weinberger, D. R. (1987) Implications of normal brain development for the pathogenesis of schizophrenia. Archives of General Psychiatry 44:660–669PubMedGoogle Scholar
  88. Weinberger, D. R. & Laruelle, M. (2001) Neurochemical and neuropharmacological imaging in schizophrenia. In: Davis, K. L., Charney D., Coyle J. T. & Nemeroff C. (eds.) Neuropsychopharmacology – The Fifth Generation of Progress, Lippincott Williams & Wilkins, Philadelphia, pp. 833–855Google Scholar
  89. Winterer, G. & Weinberger, D. (2004) Genes, dopamine and cortical signal-to-noise ratio in schizophrenia. Trends in Neurosciences 27:683–690CrossRefPubMedGoogle Scholar
  90. Wolf, M., Deutch, A. & Roth, R.H. (1987) The neuropharmacology of dopamine. In: F.A. Henn, F.A. & DeLisi, L.E. (eds.) Handbook of Schizophrenia Vol. 2 Neurochemistry and Neuropharmacology, Elsevier Science Publishers, Amsterdam, pp. 101–147Google Scholar
  91. Woo, T. U., Whitehead, R. E., Melchitzky, D. S. & Lewis, D. A. (1998) A subclass of prefrontal gamma-aminobutyric acid axon terminals are selectively altered in schizophrenia. Proceedings of the National Academy of Sciences of USA 95:5341–5346Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of NeuroscienceUniversity of PittsburghPittsburghUSA

Personalised recommendations