Advertisement

Macrophage Pattern Recognition Receptors in Immunity, Homeostasis and Self Tolerance

  • Subhankar Mukhopadhyay
  • Annette Plüddemann
  • Siamon Gordon
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 653)

Abstract

Macrophages, a major component of innate immune defence, express a large repertoire of different classes of pattern recognition receptors and other surface antigens which determine the immunologic and homeostatic potential of these versatile cells. In the light of present knowledge of macrophage surface antigens, we discuss self versus nonself recognition, microbicidal effector functions and self tolerance in the innate immune system.

Keywords

Scavenger Receptor Pattern Recognition Receptor Mannose Receptor Lectin Domain Macrophage Scavenger Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beutler B. Innate immunity: An overview. Mol Immunol 2004; 40(12):845–859.CrossRefPubMedGoogle Scholar
  2. 2.
    Janeway Jr CA. The immune system evolved to discriminate infectious nonself from noninfectious self. Immunol Today 1992; 13(1):11–16.CrossRefPubMedGoogle Scholar
  3. 3.
    Janeway Jr CA, Medzhitov R. Innate immune recognition. Annu Rev Immunol 2002; 20:197–216.CrossRefPubMedGoogle Scholar
  4. 4.
    Taylor PR, Martinez-Pomares L, Stacey M et al. Macrophage receptors and immune recognition. Annu Rev Immunol 2005; 23:901–944.CrossRefPubMedGoogle Scholar
  5. 5.
    Mukhopadhyay S, Herre J, Brown GD et al. The potential for Toll-like receptors to collaborate with other innate immune receptors. Immunology 2004; 112(4):521–530.CrossRefPubMedGoogle Scholar
  6. 6.
    Jeannin P, Bottazzi B, Sironi M et al. Complexity and complementarity of outer membrane protein A recognition by cellular and humoral innate immunity receptors. Immunity 2005; 22(5):551–560.CrossRefPubMedGoogle Scholar
  7. 7.
    Beutler B. Not “molecular patterns” but molecules. Immunity 2003; 19(2): 155–156.CrossRefPubMedGoogle Scholar
  8. 8.
    Gordon S. Pattern recognition receptors: Doubling up for the innate immune response. Cell 2002; 111(7):927–930.CrossRefPubMedGoogle Scholar
  9. 9.
    Goldstein JL, Ho YK, Basu SK et al. Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoprotein, producing massive cholesterol deposition. Proc Natl Acad Sci USA 1979; 76(1):333–337.CrossRefPubMedGoogle Scholar
  10. 10.
    Krieger M. The other side of scavenger receptors: Pattern recognition for host defense. Curr Opin Lipidol 1997; 8(5):275–280.CrossRefPubMedGoogle Scholar
  11. 11.
    Murphy JE, Tedbury PR, Homer-Vanniasinkam S et al. Biochemistry and cell biology of mammalian scavenger receptors. Atherosclerosis 2005; 182(1):1–15.CrossRefPubMedGoogle Scholar
  12. 12.
    Peiser L, Gordon S. The function of scavenger receptors expressed by macrophages and their role in the regulation of inflammation. Microbes Infect 2001; 3(2):149–159.CrossRefPubMedGoogle Scholar
  13. 13.
    Mukhopadhyay S, Gordon S. The role of Scavenger receptors in pathogen recognition and innate immunity. Immunobiology 2004; 209(1–2):39–49.CrossRefPubMedGoogle Scholar
  14. 14.
    Peiser L, Mukhopadhyay S, Gordon S. Scavenger receptors in innate immunity. Curr Opin Immunol 2002; 14(1):123–128.CrossRefPubMedGoogle Scholar
  15. 15.
    Hampton RY, Golenbock DT, Penman M et al. Recognition and plasma clearance of endotoxin by scavenger receptors. Nature 1991; 352(6333):342–344.CrossRefPubMedGoogle Scholar
  16. 16.
    Greenberg JW, Fischer W, Joiner KA. Influence of lipoteichoic acid structure on recognition by the macrophage scavenger receptor. Infect Immun 1996; 64(8):3318–3325.PubMedGoogle Scholar
  17. 17.
    Zhu FG, Reich CF, Pisetsky DS. The role of the macrophage scavenger receptor in immune stimulation by bacterial DNA and synthetic oligonucleotides. Immunology 2001; 103(2):226–234.CrossRefPubMedGoogle Scholar
  18. 18.
    Dunne DW, Resnick D, Greenberg J et al. The type I macrophage scavenger receptor binds to Gram-positive bacteria and recognizes lipoteichoic acid. Proc Natl Acad Sci USA 1994; 91(5):1863–1867.CrossRefPubMedGoogle Scholar
  19. 19.
    Peiser L, Gough PJ, Kodama T et al. Macrophage class A scavenger receptor-mediated phagocytosis of Escherichia coli: Role of cell heterogeneity, microbial strain, and culture conditions in vitro. Infect Immun 2000; 68(4): 1953–1963.CrossRefPubMedGoogle Scholar
  20. 20.
    Suzuki H, Kurihara Y, Takeya M et al. The multiple roles of macrophage scavenger receptors (MSR) in vivo: Resistance to atherosclerosis and susceptibility to infection in MSR knockout mice. J Atheroscler Thromb 1997; 4(1):1–11.PubMedGoogle Scholar
  21. 21.
    Thomas CA, Li Y, Kodama T et al. Protection from lethal Gram-positive infection by macrophage scavenger receptor-dependent phagocytosis. J Exp Med 2000; 191(1):147–156.CrossRefPubMedGoogle Scholar
  22. 22.
    Peiser L, De Winther MP, Makepeace K et al. The class A macrophage scavenger receptor is a major pattern recognition receptor for Neisseria meningitidis which is independent of lipopolysaccharide and not required for secretory responses. Infect Immun 2002; 70(10):5346–5354.CrossRefPubMedGoogle Scholar
  23. 23.
    El Khoury J, Hickman SE, Thomas CA et al. Scavenger receptor-mediated adhesion of microglia to beta-amyloid fibrils. Nature 1996; 382(6593):716–719.CrossRefPubMedGoogle Scholar
  24. 24.
    Yan SD, Chen X, Fu J et al. RAGE and amyloid-beta peptide neurotoxicity in Alzheimer’s disease. Nature 1996; 382(6593):685–691.CrossRefPubMedGoogle Scholar
  25. 25.
    Fraser I, Hughes D, Gordon S. Divalent cation-independent macrophage adhesion inhibited by monoclonal antibody to murine scavenger receptor. Nature 1993; 364(6435):343–346.CrossRefPubMedGoogle Scholar
  26. 26.
    Yokota T, Ehlin-Henriksson B, Hansson GK. Scavenger receptors mediate adhesion of activated B lymphocytes. Exp Cell Res 1998; 239(1): 16–22.CrossRefPubMedGoogle Scholar
  27. 27.
    Kraal G, van der Laan LJ, Elomaa O et al. The macrophage receptor MARCO. Microbes Infect 2000; 2(3):313–316.CrossRefPubMedGoogle Scholar
  28. 28.
    Arredouani M, Yang Z, Ning Y et al. The scavenger receptor MARCO is required for lung defense against pneumococcal pneumonia and inhaled particles. J Exp Med 2004; 200(2):267–272.CrossRefPubMedGoogle Scholar
  29. 29.
    Mukhopadhyay S, Chen Y, Sankala M et al. MARCO, an innate activation marker of macrophages, is a class A scavenger receptor for Neisseria meningitidis. Eur J Immunol 2006; 36(4):940–949.CrossRefPubMedGoogle Scholar
  30. 30.
    Palecanda A, Paulauskis J, Al-Mutairi E et al. Role of the scavenger receptor MARCO in alveolar macrophage binding of unopsonized environmental particles. J Exp Med 1999; 189(9): 1497–1506.CrossRefPubMedGoogle Scholar
  31. 31.
    Sakaguchi H, Takeya M, Suzuki H et al. Role of macrophage scavenger receptors in diet-induced atherosclerosis in mice. Lab Invest 1998; 78(4):423–434.PubMedGoogle Scholar
  32. 32.
    Karlsson MC, Guinamard R, Bolland S et al. Macrophages control the retention and trafficking of B lymphocytes in the splenic marginal zone. J Exp Med 2003; 198(2):333–340.CrossRefPubMedGoogle Scholar
  33. 33.
    Chen Y, Pikkarainen T, Elomaa O et al. Defective microarchitecture of the spleen marginal zone and impaired response to a thymus-independent type 2 antigen in mice lacking scavenger receptors MARCO and SR-A. J Immunol 2005; 175(12):8173–8180.PubMedGoogle Scholar
  34. 34.
    Bin LH, Nielson LD, Liu X et al. Identification of uteroglobin-related protein 1 and macrophage scavenger receptor with collagenous structure as a lung-specific ligand-receptor pair. J Immunol 2003; 171(2):924–930.PubMedGoogle Scholar
  35. 35.
    Nakamura K, Funakoshi H, Tokunaga F et al. Molecular cloning of a mouse scavenger receptor with C-type lectin (SRCL)(1), a novel member of the scavenger receptor family. Biochim Biophys Acta 2001; 1522(1):53–58.PubMedGoogle Scholar
  36. 36.
    Ohtani K, Suzuki Y, Eda S et al. The membrane-type collectin CL-P1 is a scavenger receptor on vascular endothelial cells. J Biol Chem 2001; 276(47):44222–44228.CrossRefPubMedGoogle Scholar
  37. 37.
    Yoshida T, Tsuruta Y, Iwasaki M et al. SRCL/CL-P1 recognizes GalNAc and a carcinoma-associated antigen, Tn antigen. J Biochem (Tokyo) 2003; 133(3):271–277.Google Scholar
  38. 38.
    Platt N, da Silva RP, Gordon S. Class A scavenger receptors and the phagocytosis of apoptotic cells. Immunol Lett 1999; 65(1–2):15–19.CrossRefPubMedGoogle Scholar
  39. 39.
    Sankala M, Brannstrom A, Schulthess T et al. Characterization of recombinant soluble macrophage scavenger receptor MARCO. J Biol Chem 2002; 277(36):33378–33385.CrossRefPubMedGoogle Scholar
  40. 40.
    Elomaa O, Kangas M, Sahlberg C et al. Cloning of a novel bacteria-binding receptor structurally related to scavenger receptors and expressed in a subset of macrophages. Cell 1995; 80(4):603–609.CrossRefPubMedGoogle Scholar
  41. 41.
    East L, Isacke CM. The mannose receptor family. Biochim Biophys Acta 2002; 1572(2–3):364–386.PubMedGoogle Scholar
  42. 42.
    Geijtenbeek TB, Torensma R, van Vliet SJ et al. Identification of DC-SIGN, a novel dendritic cell-specific ICAM-3 receptor that supports primary immune responses. Cell 2000; 100(5):575–585.CrossRefPubMedGoogle Scholar
  43. 43.
    Geijtenbeek TB, Krooshoop DJ, Bleijs DA et al. DC-SIGN-ICAM-2 interaction mediates dendritic cell trafficking. Nat Immunol 2000; 1(4):353–357.CrossRefPubMedGoogle Scholar
  44. 44.
    Guo Y, Feinberg H, Conroy E et al. Structural basis for distinct ligand-binding and targeting properties of the receptors DC-SIGN and DC-SIGNR. Nat Struct Mol Biol 2004; 11(7):591–598.CrossRefPubMedGoogle Scholar
  45. 45.
    Appelmelk BJ, van Die I, van Vliet SJ et al. Cutting edge: Carbohydrate profiling identifies new pathogens that interact with dendritic cell-specific ICAM-3-grabbing nonintegrin on dendritic cells. J Immunol 2003; 170(4):1635–1639.PubMedGoogle Scholar
  46. 46.
    Koppel EA, van Gisbergen KP, Geijtenbeek TB et al. Distinct functions of DC-SIGN and its homologues L-SIGN (DC-SIGNR) and mSIGNR1 in pathogen recognition and immune regulation. Cell Microbiol 2005; 7(2):157–165.PubMedCrossRefGoogle Scholar
  47. 47.
    van Die I, van Vliet SJ, Nyame AK et al. The dendritic cell-specific C-type lectin DC-SIGN is a receptor for Schistosoma mansoni egg antigens and recognizes the glycan antigen Lewis x. Glycobiology 2003; 13(6):471–478.CrossRefPubMedGoogle Scholar
  48. 48.
    Tassaneetrithep B, Burgess TH, Granelli-Piperno A et al. DC-SIGN (CD209) mediates dengue virus infection of human dendritic cells. J Exp Med 2003; 197(7):823–829.CrossRefPubMedGoogle Scholar
  49. 49.
    Sakuntabhai A, Turbpaiboon C, Casademont I et al. A variant in the CD209 promoter is associated with severity of dengue disease. Nat Genet 2005; 37(5):507–513.CrossRefPubMedGoogle Scholar
  50. 50.
    van Kooyk Y, Appelmelk B, Geijtenbeek TB. A fatal attraction: Mycobacterium tuberculosis and HIV-1 target DC-SIGN to escape immune surveillance. Trends Mol Med 2003; 9(4):153–159.CrossRefPubMedGoogle Scholar
  51. 51.
    Geijtenbeek TB, Van Vliet SJ, Koppel EA et al. Mycobacteria target DC-SIGN to suppress dendritic cell function. J Exp Med 2003; 197(1):7–17.CrossRefPubMedGoogle Scholar
  52. 52.
    van Gisbergen KP, Aarnoudse CA, Meijer GA et al. Dendritic cells recognize tumor-specific glycosylation of carcinoembryonic antigen on colorectal cancer cells through dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin. Cancer Res 2005; 65(13):5935–5944.CrossRefPubMedGoogle Scholar
  53. 53.
    van Gisbergen KP, Sanchez-Hernandez M, Geijtenbeek TB et al. Neutrophils mediate immune modulation of dendritic cells through glycosylation-dependent interactions between Mac-1 and DC-SIGN. J Exp Med 2005; 201(8):1281–1292.CrossRefPubMedGoogle Scholar
  54. 54.
    Lee SJ, Zheng NY, Clavijo M et al. Normal host defense during systemic candidiasis in mannose receptor-deficient mice. Infect Immun 2003; 71(1):437–445.CrossRefPubMedGoogle Scholar
  55. 55.
    Mullin NP, Hall KT, Taylor ME. Characterization of ligand binding to a carbohydrate-recognition domain of the macrophage mannose receptor. J Biol Chem 1994; 269(45):28405–28413.PubMedGoogle Scholar
  56. 56.
    Zhang J, Zhu J, Imrich A et al. Pneumocystis activates human alveolar macrophage NF-kappaB signaling through mannose receptors. Infect Immun 2004; 72(6):3147–3160.CrossRefPubMedGoogle Scholar
  57. 57.
    O’Riordan DM, Standing JE, Limper AH. Pneumocystis carinii glycoprotein A binds macrophage mannose receptors. Infect Immun 1995; 63(3):779–784.PubMedGoogle Scholar
  58. 58.
    Ezekowitz RA, Sastry K, Bailly P et al. Molecular characterization of the human macrophage mannose receptor: Demonstration of multiple carbohydrate recognition-like domains and phagocytosis of yeasts in Cos-1 cells. J Exp Med 1990; 172(6):1785–1794.CrossRefPubMedGoogle Scholar
  59. 59.
    Marodi L, Korchak HM, Johnston Jr RB. Mechanisms of host defense against Candida species. I. Phagocytosis by monocytes and monocyte-derived macrophages. J Immunol 1991; 146(8):2783–2789.PubMedGoogle Scholar
  60. 60.
    Fiete DJ, Beranek MC, Baenziger JU. A cysteine-rich domain of the “mannose” receptor mediates GalNAc-4-SO4 binding. Proc Natl Acad Sci USA 1998; 95(5):2089–2093.CrossRefPubMedGoogle Scholar
  61. 61.
    Lee SJ, Evers S, Roeder D et al. Mannose receptor-mediated regulation of serum glycoprotein homeostasis. Science 2002; 295(5561):1898–1901.CrossRefPubMedGoogle Scholar
  62. 62.
    Hiltbold EM, Vlad AM, Ciborowski P et al. The mechanism of unresponsiveness to circulating tumor antigen MUC1 is a block in intracellular sorting and processing by dendritic cells. J Immunol 2000; 165(7):3730–3741.PubMedGoogle Scholar
  63. 63.
    Brown GD, Gordon S. Immune recognition: A new receptor for beta-glucans. Nature 2001; 413(6851):36–37.CrossRefPubMedGoogle Scholar
  64. 64.
    Adachi Y, Ishii T, Ikeda Y et al. Characterization of beta-glucan recognition site on C-type lectin, dectin 1. Infect Immun 2004; 72(7):4159–4171.CrossRefPubMedGoogle Scholar
  65. 65.
    Herre J, Gordon S, Brown GD. Dectin-1 and its role in the recognition of beta-glucans by macrophages. Mol Immunol 2004; 40(12):869–876.CrossRefPubMedGoogle Scholar
  66. 66.
    Steele C, Marrero L, Swain S et al. Alveolar macrophage-mediated killing of Pneumocystis carinii f. sp. muris involves molecular recognition by the Dectin-1 beta-glucan receptor. J Exp Med 2003; 198(11):1677–1688.CrossRefPubMedGoogle Scholar
  67. 67.
    Ariizumi K, Shen GL, Shikano S et al. Identification of a novel, dendritic cell-associated molecule, dectin-1, by subtractive cDNA cloning. J Biol Chem 2000; 275(26):20157–20167.CrossRefPubMedGoogle Scholar
  68. 68.
    Engering A, Geijtenbeek TB, van Vliet SJ et al. The dendritic cell-specific adhesion receptor DC-SIGN internalizes antigen for presentation to T cells. J Immunol 2002; 168(5):2118–2126.PubMedGoogle Scholar
  69. 69.
    Ludwig IS, Lekkerkerker AN, Depla E et al. Hepatitis C virus targets DC-SIGN and L-SIGN to escape lysosomal degradation. J Virol 2004; 78(15):8322–8332.CrossRefPubMedGoogle Scholar
  70. 70.
    Marzi A, Gramberg T, Simmons G et al. DC-SIGN and DC-SIGNR interact with the glycoprotein of Marburg virus and the S protein of severe acute respiratory syndrome coronavirus. J Virol 2004; 78(21):12090–12095.CrossRefPubMedGoogle Scholar
  71. 71.
    Cambi A, Gijzen K, de Vries JM et al. The C-type lectin DC-SIGN (CD209) is an antigen-uptake receptor for Candida albicans on dendritic cells. Eur J Immunol 2003; 33(2):532–538.CrossRefPubMedGoogle Scholar
  72. 72.
    Serrano-Gomez D, Dominguez-Soto A, Ancochea J et al. Dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin mediates binding and internalization of Aspergillus fumigatus conidia by dendritic cells and macrophages. J Immunol 2004; 173(9):5635–5643.PubMedGoogle Scholar
  73. 73.
    Kang YS, Kim JY, Bruening SA et al. The C-type lectin SIGN-R1 mediates uptake of the capsular polysaccharide of Streptococcus pneumoniae in the marginal zone of mouse spleen. Proc Natl Acad Sci USA 2004; 101(1):215–220.CrossRefPubMedGoogle Scholar
  74. 74.
    Taylor PR, Brown GD, Herre J et al. The role of SIGNR1 and the beta-glucan receptor (dectin-1) in the nonopsonic recognition of yeast by specific macrophages. J Immunol 2004; 172(2):1157–1162.PubMedGoogle Scholar
  75. 75.
    Geijtenbeek TB, Groot PC, Nolte MA et al. Marginal zone macrophages express a murine homologue of DC-SIGN that captures blood-borne antigens in vivo. Blood 2002; 100(8):2908–2916.CrossRefPubMedGoogle Scholar
  76. 76.
    Martinez-Pomares L, Crocker PR, Da Silva R et al. Cell-specific glycoforms of sialoadhesin and CD45 are counter-receptors for the cysteine-rich domain of the mannose receptor. J Biol Chem 1999; 274(49):35211–35218.CrossRefPubMedGoogle Scholar
  77. 77.
    Zamze S, Martinez-Pomares L, Jones H et al. Recognition of bacterial capsular polysaccharides and lipopolysaccharides by the macrophage mannose receptor. J Biol Chem 2002; 277(44):41613–41623.CrossRefPubMedGoogle Scholar
  78. 78.
    Imai K, Yoshimura T. Endocytosis of lysosomal acid phosphatase; involvement of mannose receptor and effect of lectins. Biochem Mol Biol Int 1994; 33(6):1201–1206.PubMedGoogle Scholar
  79. 79.
    Shepherd VL, Hoidal JR. Clearance of neutrophil-derived myeloperoxidase by the macrophage mannose receptor. Am J Respir Cell Mol Biol 1990; 2(4):335–340.PubMedGoogle Scholar
  80. 80.
    Reading PC, Miller JL, Anders EM. Involvement of the mannose receptor in infection of macrophages by influenza virus. J Virol 2000; 74(11):5190–5197.CrossRefPubMedGoogle Scholar
  81. 81.
    Turville SG, Cameron PU, Handley A et al. Diversity of receptors binding HIV on dendritic cell subsets. Nat Immunol 2002; 3(10):975–983.CrossRefPubMedGoogle Scholar
  82. 82.
    Mi Y, Shapiro SD, Baenziger JU. Regulation of lutropin circulatory half-life by the mannose/ N-acetylgalactosamine-4-SO4 receptor is critical for implantation in vivo. J Clin Invest 2002; 109(2):269–276.PubMedGoogle Scholar
  83. 83.
    Thomas EK, Nakamura M, Wienke D et al. Endo180 binds to the C-terminal region of type I collagen. J Biol Chem 2005; 280(24):22596–22605.CrossRefPubMedGoogle Scholar
  84. 84.
    Shimaoka T, Kume N, Minami M et al. LOX-1 supports adhesion of Gram-positive and Gram-negative bacteria. J Immunol 2001; 166(8):5108–5114.PubMedGoogle Scholar
  85. 85.
    Chen M, Masaki T, Sawamura T. LOX-1, the receptor for oxidized low-density lipoprotein identified from endothelial cells: Implications in endothelial dysfunction and atherosclerosis. Pharmacol Ther 2002; 95(1):89–100.CrossRefPubMedGoogle Scholar
  86. 86.
    Chen M, Narumiya S, Masaki T et al. Conserved C-terminal residues within the lectin-like domain of LOX-1 are essential for oxidized low-density-lipoprotein binding. Biochem J 2001; 355:289–296.CrossRefPubMedGoogle Scholar
  87. 87.
    Delneste Y, Magistrelli G, Gauchat J et al. Involvement of LOX-1 in dendritic cell-mediated antigen cross-presentation. Immunity 2002; 17(3):353–362.CrossRefPubMedGoogle Scholar
  88. 88.
    Yokoyama WM. Natural killer cell receptors. Curr Opin Immunol 1998; 10(3):298–305.CrossRefPubMedGoogle Scholar
  89. 89.
    Oldenborg PA, Zheleznyak A, Fang YF et al. Role of CD47 as a marker of self on red blood cells. Science 2000; 288(5473):2051–2054.CrossRefPubMedGoogle Scholar
  90. 90.
    Barclay AN, Wright GJ, Brooke G et al. CD200 and membrane protein interactions in the control of myeloid cells. Trends Immunol 2002; 23(6):285–290.CrossRefPubMedGoogle Scholar
  91. 91.
    Hoek RM, Ruuls SR, Murphy CA et al. Downregulation of the macrophage lineage through interaction with OX2 (CD200). Science 2000; 290(5497): 1768–1771.CrossRefPubMedGoogle Scholar
  92. 92.
    McGreal EP, Miller JL, Gordon S. Ligand recognition by antigen-presenting cell C-type lectin receptors. Curr Opin Immunol 2005; 17(1):18–24.CrossRefPubMedGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2009

Authors and Affiliations

  • Subhankar Mukhopadhyay
    • 1
  • Annette Plüddemann
    • 1
  • Siamon Gordon
    • 1
  1. 1.Sir William Dunn School of PathologyOxfordUK

Personalised recommendations