Advertisement

Designing Instrumentation for Control

  • Faming Li
  • Maurício C. de Oliveira
  • Robert E. Skelton
Chapter

Abstract

For linear time-invariant systems with full order feedback controllers, this paper completely solves the problem of selecting sensor and actuator precisions required to yield specified upper bounds on control covariances, output covariances, and precision constraints. Moreover, the paper proves that this problem is convex. The contribution here is that selection of sensors and actuators can now be a part of the control design problem, in lieu of the classical control problem, where sensor and actuator resources have already been specified before the “control” problem is defined. Furthermore, an ad hoc algorithm is given to select which sensors and actuators should be selected for the final control design that constrains control covariance, output covariance, and a financial cost constraint (where we assume that precision is linearly related to financial cost). We label this the Economic Design Problem.

Keywords

Linear Matrix Inequality State Feedback Control State Space Equation Full Order Information Architecture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Boyd, S., Baladrishnan, V., Feron, E., EI Ghaoui, L.: Linear matrix inequalities in system and control theory. SIAM, Philadelphia, PA (1994)MATHGoogle Scholar
  2. [2]
    Chmielewski, D.J., Palmer, T., Manousiouthakis, V.: On the theory of optimal sensor selection. AIChE Journal 48(5), 100–1012 (2002)CrossRefGoogle Scholar
  3. [3]
    Gawronski, W., Lim, K.B.: Balanced actuator and sensor placement for flexible structures. International Journal of Control 65, 131–145 (1996)MATHMathSciNetCrossRefGoogle Scholar
  4. [4]
    Iwasaki, T., Skelton, R.E.: All controllers for the general h control problem: Lmi existence conditions and state space formulas. Automatica 30(8), 1307–1317 (1994)MATHMathSciNetCrossRefGoogle Scholar
  5. [5]
    Khargonekar, P.P., Rotea, M.A.: Mixed H2 /H control:a convex optimization approach. IEEE Transactions on Automatic Contnrol 39, 824C837 (1991)Google Scholar
  6. [6]
    Li, F., de Oliverira, M.C., Skelton, R.E.: Integrating Information Architecture and Control or Estimation Design. SICE Journal of Control, Measurement, and System Integration 1, 120–128 (2008)Google Scholar
  7. [7]
    Lim, K.B.: Method for optimal actuator and sensor placement for large flexible structures. Journal of Guidance, Control and Dynamics 15, 49–57 (1992)CrossRefGoogle Scholar
  8. [8]
    Liu, K., Skelton, R., Grigoriadis, K.: Optimal controllers for finite wordlength implementation. IEEE Transactions on Automatic Control 37, 1294–1304 (1992)MATHMathSciNetCrossRefGoogle Scholar
  9. [9]
    Lu, J., Skelton, R.E.: Integrating instrumentation and control design. International journal of control 72(9), 799–814 (1999)MATHMathSciNetCrossRefGoogle Scholar
  10. [10]
    Lu, J., Skelton, R.: Economic design problem: Integrating instrumentation and control. In: Proc. American Control Conferences, vol. 6, pp. 4321–4325. San Diego (1999)Google Scholar
  11. [11]
    Mullis, C.T., Roberts, R.A.: Synthesis of minimum roundoff noise fixed point digital filters. IEEE Transactions on Circuit and System 23(5), 256–262 (1976)MathSciNetGoogle Scholar
  12. [12]
    Naeije, W.J., Bosgra, O.H.: The design of dynamic compensators for linear multivariable systems. In: Proc. 4th IFAC Symposium on Multivariable Technological Systems, pp. 205–213. Fredericton, Canada (1977)Google Scholar
  13. [13]
    Oliveira, M., Geromel, J.C.: Linear output feedback controller design with joint selection of sensors and actuators. IEEE Transaction on Automatic Control 45(12), 2412–2419 (2000)MATHCrossRefGoogle Scholar
  14. [14]
    de Oliveira, M.C., Geromel, J.C., Bernussou, J.: Extended H2 and H norm characterizations and controller parametrizations for discrete-time systems. International Journal of Control 75(9), 666C679 (2002)MathSciNetCrossRefGoogle Scholar
  15. [15]
    Scherer, C., Gahinet, P., Chilali, M.: Mulitobjective output-feedback control via lmi optimization. IEEE Transaction on Automatic Control 42(7), 896–911 (1997)MATHMathSciNetCrossRefGoogle Scholar
  16. [16]
    Skelton, R.E.: Dynamic systems control: linear systems analysis and synthesis. John Wiley & Sons, New York (1988)Google Scholar
  17. [17]
    Skelton, R.E., Delorenzo, M.L.: Space structure control design by variance assignment. Journal of guidance and control 8, 454–462 (1985)MATHCrossRefGoogle Scholar
  18. [18]
    Skelton, R.E., Iwasaki, T., Grigoriadis, K.: A unified algebraic approach to linear control design. Taylor & Francis, London (1998)Google Scholar
  19. [19]
    Skelton, R.E., Li, F.: Economic sensor actuator selection and its application in structure control. In: SPIE International Symposium on Smart Structures. San Diego, USA (2004)Google Scholar
  20. [20]
    Sripad, A., Snyder, D.: A necessary and sufficient condition for quantization error to be uniform and white. IEEE Transactions on Acoustics, Speech and Signal Processing 5(10), 442C448 (1977)Google Scholar
  21. [21]
    Williamson, D., Kadiman, K.: Optimal finite wordlength linear quadratic regulation. IEEE transactions on automatic control 34(12), 1218–1228 (1989)MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Faming Li
    • 1
  • Maurício C. de Oliveira
    • 2
  • Robert E. Skelton
    • 2
  1. 1.Xerox Research CenterWebsterUSA
  2. 2.Department of Mechanical and Aerospace EngineeringUniversity of California San DiegoLa JollaUSA

Personalised recommendations