Skip to main content

Polynomial Optimization Problems are Eigenvalue Problems

  • Chapter
  • First Online:

Abstract

Many problems encountered in systems theory and system identification require the solution of polynomial optimization problems, which have a polynomial objective function and polynomial constraints. Applying the method of Lagrange multipliers yields a set of multivariate polynomial equations. Solving a set of multivariate polynomials is an old, yet very relevant problem. It is little known that behind the scene, linear algebra and realization theory play a crucial role in understanding this problem.We show that determining the number of roots is essentially a linear algebra question, from which we derive the inspiration to develop a root-finding algorithm based on realization theory, using eigenvalue problems. Moreover, since one is only interested in the root that minimizes the objective function, power iterations can be used to obtain the minimizing root directly.We highlight applications in systems theory and system identification, such as analyzing the convergence behaviour of prediction error methods and solving structured total least squares problems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Auzinger, W., Stetter, H.J.: An elimination algorithm for the computation of all zeros  of a system of multivariate polynomial equations. Proc. Int. Conf. Num. Math., pp. 11–30. Birkhäuser (1988)

    Google Scholar 

  2. Barnett, M.P.: Computer algebra in the life sciences. ACM SIGSSAM Bull. 36, 5–32 (2002)

    Article  MATH  Google Scholar 

  3. Buchberger, B.: Ein algorithmus zum auffinden der basiselemente des restklassenringes nach einem nulldimensionalen polynomideal. Ph.D. thesis, University of Innsbruck (1965)

    Google Scholar 

  4. Buchberger, B.: Gröbner bases and systems theory. Multidimens. Systems Signal Process. 12, 223–251 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  5. Cox, D.A., Little, J.B., O’Shea, D.: Ideals, Varieties and Algorithms. Springer-Verlag (1997)

    Google Scholar 

  6. Cox, D.A., Little, J.B., O’Shea, D.: Using Algebraic Geometry, second edn. Springer-Verlag, New York (2005)

    MATH  Google Scholar 

  7. De Moor, B.: Structured total least squares and L 2 approximation problems. Lin. Alg. Appl. 188/189, 163–207 (1993)

    Article  MathSciNet  Google Scholar 

  8. De Moor, B.: Dynamic total linear least squares. In: Proc. 10th IFAC Symp. System Identif., vol. 3, pp. 159–164. Copenhagen, Denmark (1994)

    Google Scholar 

  9. De Moor, B.: Total least squares for affinely structured matrices and the noisy realization problem. IEEE Trans. Signal Process. 42(11), 3104–3113 (1994)

    Article  MathSciNet  Google Scholar 

  10. De Moor, B.: Linear system identification, structured total least squares and the Riemannian SVD. In: S. Van Huffel (ed.) Recent advances in Total Least Squares Techniques and Errors-In-Variables modeling, pp. 225–238. SIAM, Philadelphia (1997)

    Google Scholar 

  11.   De Moor, B., Roorda, B.: L 2 -optimal linear system identification: Structured total least squares for SISO systems. Proc. 33rd Conf. Decis. Control (CDC), Lake Buena Vista, FL (1994)

    Google Scholar 

  12. Eckart, G., Young, G.: The approximation of one matrix by another of lower rank. Psychometrika 1, 211–218 (1936)

    Article  Google Scholar 

  13. Emiris, I.Z., Mourrain, B.: Computer algebra methods for studying and computing molecular conformations. Algorithmica 25, 372–402 (1999)

    Article  MathSciNet  Google Scholar 

  14. Faugère, J.C.: A new efficient algorithm for computing Gröbner bases (F4). J. Pure Appl. Algebra 139(1), 61–88 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  15. Golub, G.H., Van Loan, C.F.: Matrix Computations, third edn. Johns Hopkins University Press, Baltimore, MD, USA (1996)

    MATH  Google Scholar 

  16.   Hanzon, B., Hazewinkel, M. (eds.): Constructive Algebra and Systems Theory. Royal Netherlands Academy of Arts and Sciences (2006)

    Google Scholar 

  17.   Hanzon, B., Hazewinkel, M.: An introduction to constructive algebra and systems theory. In: B. Hanzon, M. Hazewinkel (eds.) Constructive Algebra and Systems Theory, pp. 2–7. Royal Netherlands Academy of Arts and Sciences (2006)

    Google Scholar 

  18. Hanzon, B., Jibetean, D.: Global minimization of a multivariate polynomial using matrix methods. J. Glob. Optim. 27, 1–23 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  19. Jónsson, G.F., Vavasis, S.A.: Accurate solution of polynomial equations using Macaulay resultant matrices. Math. Comput. 74(249), 221–262 (2004)

    Article  Google Scholar 

  20. Lasserre, J.B.: Global optimization with polynomials and the problem of moments. SIAM J. Optim 11(3), 796–817 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  21. Lazard, D.: Résolution des systèmes d’équations algébriques. Theor. Comput. Sci. 15, 77–110 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  22. Lemmerling, P., De Moor, B.: Misfit versus latency. Automatica 37, 2057–2067 (2001)

    Article  MATH  Google Scholar 

  23. Li, T.Y.: Numerical solution of multivariate polynomial systems by homotopy continuation methods. Acta Numer. 6, 399–436 (1997)

    Article  Google Scholar 

  24. Ljung, L.: System identification: theory for the user. Prentice Hall PTR, Upper Saddle River, NJ (1999)

    Google Scholar 

  25.   Ljung, L.: Perspectives on system identification. Proc. 17th IFAC World Congress, pp. 7172–7184. Seoul, Korea (2008)

    Google Scholar 

  26. Ljung, L., Glad, T.: On global identifiability for arbitrary model parametrizations. Automatica 35(2), 265–276 (1994)

    Article  MathSciNet  Google Scholar 

  27. Macaulay, F.S.: On some formulate in elimination. Proc. London Math. Soc. 35, 3–27 (1902)

    Article  Google Scholar 

  28.   Macaulay, F.S.: The algebraic theory of modular systems. Cambridge University Press (1916)

    Google Scholar 

  29. Manocha, D.: Algebraic and numeric techniques for modeling and robotics. Ph.D. thesis, Computer Science Division, Department of Electrical Engineering and Computer Science, University of California, Berkeley (1992)

    Google Scholar 

  30. Manocha, D.: Solving systems of polynomial equations. IEEE Comput. Graph. Appl. 14(2), 46–55 (1994)

    Article  Google Scholar 

  31. Möller, H.M., Stetter, H.J.: Multivariate polynomial equations with multiple zeros solved by matrix eigenproblems. Numer. Math 70, 311–329 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  32. Mourrain, B.: Computing the isolated roots by matrix methods. J. Symb. Comput. 26, 715–738 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  33. Mourrain, B.: A new criterion for normal form algorithms. In: Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, Lecture Notes in Computer Science, vol. 1710, pp. 430–443. Springer, Berlin (1999)

    Chapter  Google Scholar 

  34. Mourrain, B., Trébuchet P.: Solving complete intersections faster. Proc. ISSAC 2000, pp. 231–238. ACM, New York (2000)

    Google Scholar 

  35.   Nocedal, J., Wright, S.J.: Numerical Optimization, second edn. Springer (2006)

    Google Scholar 

  36.   Parrilo, P.A.: Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization. Ph.D. thesis, California Institute of Technology (2000)

    Google Scholar 

  37. Petitjean, S.: Algebraic geometry and computer vision: Polynomial systems, real and complex roots. J. Math. Imaging Vis. 10, 191–220 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  38. Shor, N.Z.: Class of global minimum bounds of polynomial functions. Cybernetics 23(6), 731–734 (1987)

    Article  MATH  Google Scholar 

  39. Stetter, H.J.: Matrix eigenproblems are at the heart of polynomial system solving. ACM SIGSAM Bull. 30(4), 22–25 (1996)

    Article  MATH  Google Scholar 

  40.   Stetter, H.J.: Numerical Polynomial Algebra. SIAM (2004)

    Google Scholar 

  41.   Stetter, H.J.: An introduction to the numerical analysis of multivariate polynomial systems. In: B. Hanzon, M. Hazewinkel (eds.) Constructive Algebra and Systems Theory, pp. 35–47. Royal Netherlands Academy of Arts and Sciences (2006)

    Google Scholar 

  42.   Sylvester, J.J.: On a theory of syzygetic relations of two rational integral functions comprising an application to the theory of sturms function and that of the greatest algebraical common measure. Trans. Roy. Soc. Lond. (1853)

    Google Scholar 

  43. Verschelde, J., Verlinden, J., Cools, R.: Homotopies exploiting Newton polytopes for solving sparse polynomial systems. SIAM J. Numer. Anal. 31, 915–930 (1994)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Dreesen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Dreesen, P., De Moor, B. (2009). Polynomial Optimization Problems are Eigenvalue Problems. In: Hof, P., Scherer, C., Heuberger, P. (eds) Model-Based Control:. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0895-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0895-7_4

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-0894-0

  • Online ISBN: 978-1-4419-0895-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics