Advertisement

Conservation Laws and Lumped System Dynamics

  • Arjan van der Schaft
  • Bernhard Maschke
Chapter

Abstract

Physical systems modeling, aimed at network modeling of complex multi-physics systems, has especially flourished in the fifties and sixties of the 20-th century, see e.g. [11, 12] and references provided therein. With the reinforcement of the ’systems’ legacy in Systems & Control, the growing recognition that ’control’ is not confined to developing algorithms for processing the measurements of the system into control signals (but instead is concerned with the design of the total controlled system), and facing the complexity of modern technological and natural systems, systematic methods for physical systems modeling of large-scale lumpedand distributed-parameter systems capturing their basic physical characteristics are needed more than ever.

Keywords

Boundary Current Boundary Vertex Oriented Graph Open Graph Dirac Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Bamberg, P., Sternberg, S.: A course in mathematics for students physics: 2. Cambridge University Press (1999)Google Scholar
  2. [2]
    Bird, R.B., Stewart, W.E., Lightfoot, E.N.: Transport Phenomena. John Wiley and Sons (2002)Google Scholar
  3. [3]
    Bollobas, B.: Modern Graph Theory. Graduate Texts in Mathematics, vol. 184, Springer, New York (1998)Google Scholar
  4. [4]
    Bosgra, O.H.: Lecture Notes ‘Mathematical Modelling of Dynamical Engineering Systems’. Delft University of Technology.Google Scholar
  5. [5]
    Cervera, J., van der Schaft, A. J., Banos, A.: Interconnection of port-Hamiltonian systems and composition of Dirac structures. Automactica 43, 212–225 (2007)MATHMathSciNetCrossRefGoogle Scholar
  6. [6]
    Courant, T.J.: Dirac manifolds. Trans. Amer, Math. Soc. 319, 631–661 (1990)MATHMathSciNetCrossRefGoogle Scholar
  7. [7]
    Dold, A.: Lectures on Algebraic Topology. Classics in Mathematics, Springer, Berlin (1995)MATHGoogle Scholar
  8. [8]
    Golo, G., Talasila, V., van der Schaft, A.J., Maschke, B.M.: Hamiltonian discretization of boundary control systems. Automatica 40(5), 757–711 (2004)MATHMathSciNetCrossRefGoogle Scholar
  9. [9]
    Kirchhoff, G.: Über die Auflösung der Gleichungen, auf welche man bei der Untersuchung der Linearne  Verteilung galvanischer Ströme gefürht wird. Ann. Phys. Chem., vol. 72, 497–508 (1847)CrossRefGoogle Scholar
  10. [10]
    Kondo, K., Iri, M.: On the theory of trees, cotrees, multi-trees and multi-cotrees. RAAG Memoirs 2, Div. A-VII, 220–261 (1958)Google Scholar
  11. [11]
    MacFarlane, A.G.J.: Dynamical System Models. G.G. Harrap & Co., London (1970)MATHGoogle Scholar
  12. [12]
    Mizoo, Y., Iri, M., Kondo, K.: On the torsion and linkage characteristics and the duality of electric, magnetic and dielectric networks. RAAG Memoirs 2, Div. A-VIII, 261-295 (1958)Google Scholar
  13. [13]
    van der Schaft, A.J.: L 2-Gain and Passivity Techniques in Nonlinear Control. Lect. Notes in Control and Information Sciences, vol. 218, Springer-Verlag, Berlin, (1996), p. 168, 2nd revised and enlarged edition, Springer-Verlag, Laondon (2000) (Springer Communications and Control Engineering series), p. xvi+249.Google Scholar
  14. [14]
    vand der Schaft, A.J., Maschke, B.M.: The Hamiltonian formulation of energy conserving physical systems with external ports. Archiv für Elekrtonik und Übertragungstechnik 49, 362–371 (1995)Google Scholar
  15. [15]
    van der Schaft, A.J., Maschke, B.M.: Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics 42, 166–194 (2002)MATHMathSciNetCrossRefGoogle Scholar
  16. [16]
    van der Schaft, A.J., Maschke, B.M.: Conservation laws and open systems on higher-dimensional networks. In: Proc. 47th IEEE Conf. on Decision and Control, Cancum, Mexico, December 9- 11, 799–804 (2008)Google Scholar
  17. [17]
    Willems, J.C.: The behavioral approach to open and interconnected systems. Control Systems Magazine 27, Dec., 46–99 (2007)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Institute of Mathematics and Computing ScienceUniversity of GroningenAKthe Netherlands
  2. 2.Lab. d’Automatique et de Genie des ProcédésUniversité Claude BernardCedexFrance

Personalised recommendations