The Menin Gene

  • Hsin-Chieh Jennifer Shen
  • Steven K. Libutti
Part of the Cancer Treatment and Research book series (CTAR, volume 153)


Multiple endocrine neoplasia type I (MEN-1) is an autosomal dominant syndrome featuring tumors of endocrine origin. Heterozygous germline mutations in the MEN-1 tumor suppressor gene predispose MEN-1 patients to tumor development, mainly in parathyroid, pancreatic islet cells, and the anterior pituitary gland. Since the MEN-1-encoded protein, menin, is ubiquitously expressed, the endocrine-specific nature in MEN-1 patients remains unexplained. This chapter provides an overview of the MEN-1 gene, including patterns of mutations identified since its discovery in 1997. Different menin-interacting protein partners and menin’s proposed molecular functions are also discussed. Lastly, various animal models of MEN-1 are described in detail. While analyses utilizing genetic, biochemical, and physiological techniques have led to a better understanding of menin’s mechanisms of action, much is yet to be elucidated about menin’s role in MEN-1 tumorigenesis.


Multiple Endocrine Neoplasia Type Parathyroid Adenoma Fanconi Anemia Histone H3K4 Trimethylation Homozygous Inactivation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Zhuang Z, Vortmeyer AO, Pack S et al (1997) Somatic mutations of the MEN1 tumor suppressor gene in sporadic gastrinomas and insulinomas. Cancer Res 57:4682–4686PubMedGoogle Scholar
  2. 2.
    Lemmens I, Van de Ven WJ, Kas K et al (1997) Identification of the multiple endocrine neoplasia type 1 (MEN1) gene. The European Consortium on MEN1. Hum Mol Genet 6:1177–1183CrossRefPubMedGoogle Scholar
  3. 3.
    Marx S, Spiegel AM, Skarulis MC, Doppman JL, Collins FS, Liotta LA (1998) Multiple endocrine neoplasia type 1: clinical and genetic topics. Ann Intern Med 129:484–494PubMedGoogle Scholar
  4. 4.
    Trump D, Farren B, Wooding C et al (1996) Clinical studies of multiple endocrine neoplasia type 1 (MEN1). Qjm 89:653–669PubMedGoogle Scholar
  5. 5.
    Stratakis CA, Schussheim DH, Freedman SM et al (2000) Pituitary macroadenoma in a 5-year-old: an early expression of multiple endocrine neoplasia type 1. J Clin Endocrinol Metab 85:4776–4780CrossRefPubMedGoogle Scholar
  6. 6.
    Schussheim DH, Skarulis MC, Agarwal SK et al (2001) Multiple endocrine neoplasia type 1: new clinical and basic findings. Trends Endocrinol Metab 12:173–178CrossRefPubMedGoogle Scholar
  7. 7.
    Larsson C, Skogseid B, Oberg K, Nakamura Y, Nordenskjold M (1988) Multiple endocrine neoplasia type 1 gene maps to chromosome 11 and is lost in insulinoma. Nature 332:85–87CrossRefPubMedGoogle Scholar
  8. 8.
    Knudson AG (1996) Hereditary cancer: two hits revisited. J Cancer Res Clin Oncol 122:135–140CrossRefPubMedGoogle Scholar
  9. 9.
    Guru SC, Crabtree JS, Brown KD et al (1999) Isolation, genomic organization, and expression analysis of Men1, the murine homolog of the MEN1 gene. Mamm Genome 10:592–596CrossRefPubMedGoogle Scholar
  10. 10.
    Guru SC, Prasad NB, Shin EJ et al (2001) Characterization of a MEN1 ortholog from Drosophila melanogaster. Gene 263:31–38CrossRefPubMedGoogle Scholar
  11. 11.
    Manickam P, Vogel AM, Agarwal SK et al (2000) Isolation, characterization, expression and functional analysis of the zebrafish ortholog of MEN1. Mamm Genome 11:448–454CrossRefPubMedGoogle Scholar
  12. 12.
    Chandrasekharappa SC, Teh BT (2003) Functional studies of the MEN1 gene. J Intern Med 253:606–615CrossRefPubMedGoogle Scholar
  13. 13.
    La P, Desmond A, Hou Z, Silva AC, Schnepp RW, Hua X (2006) Tumor suppressor menin: the essential role of nuclear localization signal domains in coordinating gene expression. Oncogene 25:3537–3546CrossRefPubMedGoogle Scholar
  14. 14.
    Lemos MC, Thakker RV (2008) Multiple endocrine neoplasia type 1 (MEN1): analysis of 1336 mutations reported in the first decade following identification of the gene. Hum Mutat 29:22–32CrossRefPubMedGoogle Scholar
  15. 15.
    Agarwal SK, Kester MB, Debelenko LV et al (1997) Germline mutations of the MEN1 gene in familial multiple endocrine neoplasia type 1 and related states. Hum Mol Genet 6:1169–1175CrossRefPubMedGoogle Scholar
  16. 16.
    Bassett JH, Forbes SA, Pannett AA et al (1998) Characterization of mutations in patients with multiple endocrine neoplasia type 1. Am J Hum Genet 62:232–244CrossRefPubMedGoogle Scholar
  17. 17.
    Giraud S, Choplin H, Teh BT et al (1997) A large multiple endocrine neoplasia type 1 family with clinical expression suggestive of anticipation. J Clin Endocrinol Metab 82:3487–3492CrossRefPubMedGoogle Scholar
  18. 18.
    Pannett AA, Thakker RV (1999) Multiple endocrine neoplasia type 1. Endocr Relat Cancer 6:449–473CrossRefPubMedGoogle Scholar
  19. 19.
    Teh BT, Kytola S, Farnebo F et al (1998) Mutation analysis of the MEN1 gene in multiple endocrine neoplasia type 1, familial acromegaly and familial isolated hyperparathyroidism. J Clin Endocrinol Metab 83:2621–2626CrossRefPubMedGoogle Scholar
  20. 20.
    Hessman O, Lindberg D, Skogseid B et al (1998) Mutation of the multiple endocrine neoplasia type 1 gene in nonfamilial, malignant tumors of the endocrine pancreas. Cancer Res 58:377–379PubMedGoogle Scholar
  21. 21.
    Shan L, Nakamura Y, Nakamura M et al (1998) Somatic mutations of multiple endocrine neoplasia type 1 gene in the sporadic endocrine tumors. Lab Invest 78:471–475PubMedGoogle Scholar
  22. 22.
    Wang EH, Ebrahimi SA, Wu AY, Kashefi C, Passaro E Jr, Sawicki MP (1998) Mutation of the MENIN gene in sporadic pancreatic endocrine tumors. Cancer Res 58:4417–4420PubMedGoogle Scholar
  23. 23.
    Heppner C, Kester MB, Agarwal SK et al (1997) Somatic mutation of the MEN1 gene in parathyroid tumours. Nat Genet 16:375–378CrossRefPubMedGoogle Scholar
  24. 24.
    Fujii T, Kawai T, Saito K et al (1999) MEN1 gene mutations in sporadic neuroendocrine tumors of foregut derivation. Pathol Int 49:968–973CrossRefPubMedGoogle Scholar
  25. 25.
    Gortz B, Roth J, Krahenmann A et al (1999) Mutations and allelic deletions of the MEN1 gene are associated with a subset of sporadic endocrine pancreatic and neuroendocrine tumors and not restricted to foregut neoplasms. Am J Pathol 154:429–436PubMedGoogle Scholar
  26. 26.
    Vortmeyer AO, Boni R, Pak E, Pack S, Zhuang Z (1998) Multiple endocrine neoplasia 1 gene alterations in MEN1-associated and sporadic lipomas. J Natl Cancer Inst 90:398–399CrossRefPubMedGoogle Scholar
  27. 27.
    Carling T, Correa P, Hessman O et al (1998) Parathyroid MEN1 gene mutations in relation to clinical characteristics of nonfamilial primary hyperparathyroidism. J Clin Endocrinol Metab 83:2960–2963CrossRefPubMedGoogle Scholar
  28. 28.
    Farnebo F, Teh BT, Kytola S et al (1998) Alterations of the MEN1 gene in sporadic parathyroid tumors. J Clin Endocrinol Metab 83:2627–2630CrossRefPubMedGoogle Scholar
  29. 29.
    Ludwig L, Schleithoff L, Kessler H, Wagner PK, Boehm BO, Karges W (1999) Loss of wild-type MEN1 gene expression in multiple endocrine neoplasia type 1-associated parathyroid adenoma. Endocr J 46:539–544CrossRefPubMedGoogle Scholar
  30. 30.
    Pannett AA, Thakker RV (2001) Somatic mutations in MEN type 1 tumors, consistent with the Knudson “two-hit” hypothesis. J Clin Endocrinol Metab 86:4371–4374CrossRefPubMedGoogle Scholar
  31. 31.
    Cupisti K, Hoppner W, Dotzenrath C et al (2000) Lack of MEN1 gene mutations in 27 sporadic insulinomas. Eur J Clin Invest 30:325–329CrossRefPubMedGoogle Scholar
  32. 32.
    Tanaka C, Kimura T, Yang P et al (1998) Analysis of loss of heterozygosity on chromosome 11 and infrequent inactivation of the MEN1 gene in sporadic pituitary adenomas. J Clin Endocrinol Metab 83:2631–2634CrossRefPubMedGoogle Scholar
  33. 33.
    Zhuang Z, Ezzat SZ, Vortmeyer AO et al (1997) Mutations of the MEN1 tumor suppressor gene in pituitary tumors. Cancer Res 57:5446–5451PubMedGoogle Scholar
  34. 34.
    Prezant TR, Levine J, Melmed S (1998) Molecular characterization of the men1 tumor suppressor gene in sporadic pituitary tumors. J Clin Endocrinol Metab 83:1388–1391CrossRefPubMedGoogle Scholar
  35. 35.
    Zablewska B, Bylund L, Mandic SA, Fromaget M, Gaudray P, Weber G (2003) Transcription regulation of the multiple endocrine neoplasia type 1 gene in human and mouse. J Clin Endocrinol Metab 88:3845–3851CrossRefPubMedGoogle Scholar
  36. 36.
    Fromaget M, Vercherat C, Zhang CX et al (2003) Functional characterization of a promoter region in the human MEN1 tumor suppressor gene. J Mol Biol 333:87–102CrossRefPubMedGoogle Scholar
  37. 37.
    Stewart C, Parente F, Piehl F et al (1998) Characterization of the mouse Men1 gene and its expression during development. Oncogene 17:2485–2493CrossRefPubMedGoogle Scholar
  38. 38.
    Bassett JH, Rashbass P, Harding B, Forbes SA, Pannett AA, Thakker RV (1999) Studies of the murine homolog of the multiple endocrine neoplasia type 1 (MEN1) gene, men1. J Bone Miner Res 14:3–10CrossRefPubMedGoogle Scholar
  39. 39.
    Wautot V, Khodaei S, Frappart L et al (2000) Expression analysis of endogenous menin, the product of the multiple endocrine neoplasia type 1 gene, in cell lines and human tissues. Int J Cancer 85:877–881CrossRefPubMedGoogle Scholar
  40. 40.
    Ikeo Y, Sakurai A, Suzuki R et al (2000) Proliferation-associated expression of the MEN1 gene as revealed by in situ hybridization: possible role of the menin as a negative regulator of cell proliferation under DNA damage. Lab Invest 80:797–804PubMedGoogle Scholar
  41. 41.
    Kaji H, Canaff L, Goltzman D, Hendy GN (1999) Cell cycle regulation of menin expression. Cancer Res 59:5097–5101PubMedGoogle Scholar
  42. 42.
    Agarwal SK, Guru SC, Heppner C et al (1999) Menin interacts with the AP1 transcription factor JunD and represses JunD-activated transcription. Cell 96:143–152CrossRefPubMedGoogle Scholar
  43. 43.
    Gobl AE, Berg M, Lopez-Egido JR, Oberg K, Skogseid B, Westin G (1999) Menin represses JunD-activated transcription by a histone deacetylase-dependent mechanism. Biochim Biophys Acta 1447:51–56PubMedGoogle Scholar
  44. 44.
    Jochum W, Passegue E, Wagner EF (2001) AP-1 in mouse development and tumorigenesis. Oncogene 20:2401–2412CrossRefPubMedGoogle Scholar
  45. 45.
    Mechta-Grigoriou F, Gerald D, Yaniv M (2001) The mammalian Jun proteins: redundancy and specificity. Oncogene 20:2378–2389CrossRefPubMedGoogle Scholar
  46. 46.
    Agarwal SK, Novotny EA, Crabtree JS et al (2003) Transcription factor JunD, deprived of menin, switches from growth suppressor to growth promoter. Proc Natl Acad Sci USA 100:10770–10775CrossRefPubMedGoogle Scholar
  47. 47.
    Yazgan O, Pfarr CM (2001) Differential binding of the Menin tumor suppressor protein to JunD isoforms. Cancer Res 61:916–920PubMedGoogle Scholar
  48. 48.
    Kim H, Lee JE, Cho EJ, Liu JO, Youn HD (2003) Menin, a tumor suppressor, represses JunD-mediated transcriptional activity by association with an mSin3A-histone deacetylase complex. Cancer Res 63:6135–6139PubMedGoogle Scholar
  49. 49.
    Heppner C, Bilimoria KY, Agarwal SK et al (2001) The tumor suppressor protein menin interacts with NF-kappaB proteins and inhibits NF-kappaB-mediated transactivation. Oncogene 20:4917–4925CrossRefPubMedGoogle Scholar
  50. 50.
    Kaji H, Canaff L, Lebrun JJ, Goltzman D, Hendy GN (2001) Inactivation of menin, a Smad3-interacting protein, blocks transforming growth factor type beta signaling. Proc Natl Acad Sci USA 98:3837–3842CrossRefPubMedGoogle Scholar
  51. 51.
    Sowa H, Kaji H, Hendy GN et al (2004) Menin is required for bone morphogenetic protein 2- and transforming growth factor beta-regulated osteoblastic differentiation through interaction with Smads and Runx2. J Biol Chem 279:40267–40275CrossRefPubMedGoogle Scholar
  52. 52.
    Dockray GJ (2003) Keeping neuroendocrine cells in check: roles for TGFbeta, Smads, and menin? Gut 52:1237–1239CrossRefPubMedGoogle Scholar
  53. 53.
    Ratineau C, Bernard C, Poncet G et al (2004) Reduction of menin expression enhances cell proliferation and is tumorigenic in intestinal epithelial cells. J Biol Chem 279:24477–24484CrossRefPubMedGoogle Scholar
  54. 54.
    Sowa H, Kaji H, Canaff L et al (2003) Inactivation of menin, the product of the multiple endocrine neoplasia type 1 gene, inhibits the commitment of multipotential mesenchymal stem cells into the osteoblast lineage. J Biol Chem 278:21058–21069CrossRefPubMedGoogle Scholar
  55. 55.
    Hughes CM, Rozenblatt-Rosen O, Milne TA et al (2004) Menin associates with a trithorax family histone methyltransferase complex and with the hoxc8 locus. Mol Cell 13:587–597CrossRefPubMedGoogle Scholar
  56. 56.
    Yokoyama A, Somervaille TC, Smith KS, Rozenblatt-Rosen O, Meyerson M, Cleary ML (2005) The menin tumor suppressor protein is an essential oncogenic cofactor for MLL-associated leukemogenesis. Cell 123:207–218CrossRefPubMedGoogle Scholar
  57. 57.
    Yokoyama A, Cleary ML (2008) Menin critically links MLL proteins with LEDGF on cancer-associated target genes. Cancer Cell 14:36–46CrossRefPubMedGoogle Scholar
  58. 58.
    Dreijerink KM, Mulder KW, Winkler GS, Hoppener JW, Lips CJ, Timmers HT (2006) Menin links estrogen receptor activation to histone H3K4 trimethylation. Cancer Res 66:4929–4935CrossRefPubMedGoogle Scholar
  59. 59.
    Sukhodolets KE, Hickman AB, Agarwal SK et al (2003) The 32-kilodalton subunit of replication protein A interacts with menin, the product of the MEN1 tumor suppressor gene. Mol Cell Biol 23:493–509CrossRefPubMedGoogle Scholar
  60. 60.
    Jin S, Mao H, Schnepp RW et al (2003) Menin associates with FANCD2, a protein involved in repair of DNA damage. Cancer Res 63:4204–4210PubMedGoogle Scholar
  61. 61.
    Schnepp RW, Hou Z, Wang H et al (2004) Functional interaction between tumor suppressor menin and activator of S-phase kinase. Cancer Res 64:6791–6796CrossRefPubMedGoogle Scholar
  62. 62.
    Ohkura N, Kishi M, Tsukada T, Yamaguchi K (2001) Menin, a gene product responsible for multiple endocrine neoplasia type 1, interacts with the putative tumor metastasis suppressor nm23. Biochem Biophys Res Commun 282:1206–1210CrossRefPubMedGoogle Scholar
  63. 63.
    Yaguchi H, Ohkura N, Tsukada T, Yamaguchi K (2002) Menin, the multiple endocrine neoplasia type 1 gene product, exhibits GTP-hydrolyzing activity in the presence of the tumor metastasis suppressor nm23. J Biol Chem 277:38197–38204CrossRefPubMedGoogle Scholar
  64. 64.
    Obungu VH, Lee Burns A, Agarwal SK, Chandrasekharapa SC, Adelstein RS, Marx SJ (2003) Menin, a tumor suppressor, associates with nonmuscle myosin II-A heavy chain. Oncogene 22:6347–6358CrossRefPubMedGoogle Scholar
  65. 65.
    Lopez-Egido J, Cunningham J, Berg M, Oberg K, Bongcam-Rudloff E, Gobl A (2002) Menin’s interaction with glial fibrillary acidic protein and vimentin suggests a role for the intermediate filament network in regulating menin activity. Exp Cell Res 278:175–183CrossRefPubMedGoogle Scholar
  66. 66.
    La P, Silva AC, Hou Z et al (2004) Direct binding of DNA by tumor suppressor menin. J Biol Chem 279:49045–49054CrossRefPubMedGoogle Scholar
  67. 67.
    Karnik SK, Hughes CM, Gu X et al (2005) Menin regulates pancreatic islet growth by promoting histone methylation and expression of genes encoding p27Kip1 and p18INK4c. Proc Natl Acad Sci USA 102:14659–14664CrossRefPubMedGoogle Scholar
  68. 68.
    Milne TA, Hughes CM, Lloyd R et al (2005) Menin and MLL cooperatively regulate expression of cyclin-dependent kinase inhibitors. Proc Natl Acad Sci USA 102:749–754CrossRefPubMedGoogle Scholar
  69. 69.
    Franklin DS, Godfrey VL, O’Brien DA, Deng C, Xiong Y (2000) Functional collaboration between different cyclin-dependent kinase inhibitors suppresses tumor growth with distinct tissue specificity. Mol Cell Biol 20:6147–6158CrossRefPubMedGoogle Scholar
  70. 70.
    Yokoyama A, Wang Z, Wysocka J et al (2004) Leukemia proto-oncoprotein MLL forms a SET1-like histone methyltransferase complex with menin to regulate Hox gene expression. Mol Cell Biol 24:5639–5649CrossRefPubMedGoogle Scholar
  71. 71.
    Chen YX, Yan J, Keeshan K et al (2006) The tumor suppressor menin regulates hematopoiesis and myeloid transformation by influencing Hox gene expression. Proc Natl Acad Sci USA 103:1018–1023CrossRefPubMedGoogle Scholar
  72. 72.
    Scacheri PC, Davis S, Odom DT et al (2006) Genome-wide analysis of menin binding provides insights into MEN1 tumorigenesis. PLoS Genet 2:e51CrossRefPubMedGoogle Scholar
  73. 73.
    Shen HC, Rosen JE, Yang LM et al (2008) Parathyroid tumor development involves deregulation of homeobox genes. Endocr Relat Cancer 15:267–275CrossRefPubMedGoogle Scholar
  74. 74.
    La P, Schnepp RW, Petersen CD, Silva AC, Hua X (2004) Tumor suppressor menin regulates expression of insulin-like growth factor binding protein 2. Endocrinology 145:3443–3450CrossRefPubMedGoogle Scholar
  75. 75.
    La P, Yang Y, Karnik SK et al (2007) Menin-mediated caspase 8 expression in suppressing multiple endocrine neoplasia type 1. J Biol Chem 282:31332–31340CrossRefPubMedGoogle Scholar
  76. 76.
    Schnepp RW, Mao H, Sykes SM et al (2004) Menin induces apoptosis in murine embryonic fibroblasts. J Biol Chem 279:10685–10691CrossRefPubMedGoogle Scholar
  77. 77.
    Bertolino P, Tong WM, Galendo D, Wang ZQ, Zhang CX (2003) Heterozygous Men1 mutant mice develop a range of endocrine tumors mimicking multiple endocrine neoplasia type 1. Mol Endocrinol 17:1880–1892CrossRefPubMedGoogle Scholar
  78. 78.
    Crabtree JS, Scacheri PC, Ward JM et al (2001) A mouse model of multiple endocrine neoplasia, type 1, develops multiple endocrine tumors. Proc Natl Acad Sci USA 98:1118–1123CrossRefPubMedGoogle Scholar
  79. 79.
    Bertolino P, Radovanovic I, Casse H, Aguzzi A, Wang ZQ, Zhang CX (2003) Genetic ablation of the tumor suppressor menin causes lethality at mid-gestation with defects in multiple organs. Mech Dev 120:549–560CrossRefPubMedGoogle Scholar
  80. 80.
    Loffler KA, Biondi CA, Gartside M et al (2007) Broad tumor spectrum in a mouse model of multiple endocrine neoplasia type 1. Int J Cancer 120:259–267CrossRefPubMedGoogle Scholar
  81. 81.
    Libutti SK, Crabtree JS, Lorang D et al (2003) Parathyroid gland-specific deletion of the mouse Men1 gene results in parathyroid neoplasia and hypercalcemic hyperparathyroidism. Cancer Res 63:8022–8028PubMedGoogle Scholar
  82. 82.
    Bertolino P, Tong WM, Herrera PL, Casse H, Zhang CX, Wang ZQ (2003) Pancreatic beta-cell-specific ablation of the multiple endocrine neoplasia type 1 (MEN1) gene causes full penetrance of insulinoma development in mice. Cancer Res 63:4836–4841PubMedGoogle Scholar
  83. 83.
    Biondi CA, Gartside MG, Waring P et al (2004) Conditional inactivation of the MEN1 gene leads to pancreatic and pituitary tumorigenesis but does not affect normal development of these tissues. Mol Cell Biol 24:3125–3131CrossRefPubMedGoogle Scholar
  84. 84.
    Crabtree JS, Scacheri PC, Ward JM et al (2003) Of mice and MEN1: Insulinomas in a conditional mouse knockout. Mol Cell Biol 23:6075–6085CrossRefPubMedGoogle Scholar
  85. 85.
    Scacheri PC, Crabtree JS, Kennedy AL et al (2004) Homozygous loss of menin is well tolerated in liver, a tissue not affected in MEN1. Mamm Genome 15:872–877CrossRefPubMedGoogle Scholar
  86. 86.
    Shen HC, He M, Powell A et al (2009) Recapitulation of pancreatic neuroendocrine tumors in human multiple endocrine neoplasia type I syndrome via Pdx1-directed inactivation of Men1. Cancer Res 69:1858–1866CrossRefPubMedGoogle Scholar
  87. 87.
    Sowa H, Kaji H, Kitazawa R et al (2004) Menin inactivation leads to loss of transforming growth factor beta inhibition of parathyroid cell proliferation and parathyroid hormone secretion. Cancer Res 64:2222–2228CrossRefPubMedGoogle Scholar
  88. 88.
    Lemmens IH, Forsberg L, Pannett AA et al (2001) Menin interacts directly with the homeobox-containing protein Pem. Biochem Biophys Res Commun 286:426–431CrossRefPubMedGoogle Scholar
  89. 89.
    Busygina V, Kottemann MC, Scott KL, Plon SE, Bale AE (2006) Multiple Endocrine Neoplasia Type 1 Interacts with Forkhead Transcription Factor CHES1 in DNA Damage Response. Cancer Res 66:8397–8403CrossRefPubMedGoogle Scholar
  90. 90.
    Yaguchi H, Ohkura N, Takahashi M, Nagamura Y, Kitabayashi I, Tsukada T (2004) Menin missense mutants associated with multiple endocrine neoplasia type 1 are rapidly degraded via the ubiquitin-proteasome pathway. Mol Cell Biol 24:6569–6580CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of SurgeryDirector, Montefiore-Einstein Center for Cancer Care.BronxUSA

Personalised recommendations