Narcolepsy pp 135-165 | Cite as

Symptomatic Narcolepsy or Hypersomnia, with and Without Hypocretin (Orexin) Deficiency

  • T. Kanbayashi
  • M. Nakamura
  • T. Shimizu
  • S. Nishino
Chapter

Abstract

Human narcolepsy is a chronic sleep disorder affecting 1:2,000 individuals. The disease is characterized by excessive daytime sleepiness (EDS), cataplexy, and other abnormal manifestations of REM sleep, such as sleep paralysis and hypnagogic hallucinations. Recently, it was discovered that the pathophysiology of (idiopathic) narcolepsy–cataplexy is linked to hypocretin ligand deficiency in the brain and cerebrospinal fluid (CSF), as well as the positivity of the human leukocyte antigen (HLA) DR2/DQ6 (DQB1*0602).

The symptoms of narcolepsy can also occur during the course of other neurological conditions (i.e., symptomatic narcolepsy). We define symptomatic narcolepsy as those cases that meet the International Sleep Disorders Narcolepsy Criteria, and which are also associated with a significant underlying neurological disorder that accounts for EDS and temporal associations. To date, we have counted 116 symptomatic cases of narcolepsy reported in literature. As, several authors previously reported, inherited disorders (n = 38), tumors (n = 33), and head trauma (n = 19) are the three most frequent causes for symptomatic narcolepsy. Of the 116 cases, 10 are associated with multiple sclerosis, one case of acute disseminated encephalomyelitis, and relatively rare cases were reported with vascular disorders (n = 6), encephalitis (n = 4) and degeneration (n = 1), and heredodegenerative disorder (three cases in a family). EDS without cataplexy or any REM sleep abnormalities is also often associated with these neurological conditions, and defined as symptomatic cases of EDS. Although it is difficult to rule out the comorbidity of idiopathic narcolepsy in some cases, review of the literature reveals numerous unquestionable cases of symptomatic narcolepsy. These include cases with HLA negative and/or late onset, and cases in which the occurrences of the narcoleptic symptoms are parallel with the rise and fall of the causative disease.

A review of these cases (especially those with brain tumors) illustrates a clear picture that the hypothalamus is most often involved. Several cases of symptomatic cataplexy (without EDS) were also reported and in contrast, these cases appear to be often associated with nonhypothalamic structures. CSF hypocretin-1 measurement were also carried out in a limited number of symptomatic cases of narcolepsy/EDS, including narcolepsy/EDS associated with tumors (n = 5), head trauma (n = 3), vascular disorders (n = 5), encephalopathies (n = 3), degeneration (n = 30), demyelinating disorder (n = 7), genetic/congenital disorders (n = 11), and others (n = 2). Reduced CSF hypocretin-1 levels were seen in most symptomatic narcolepsy cases of EDS with various etiologies and EDS in these cases is sometimes reversible with an improvement of the causative neurological disorder and an improvement of the hypocretin status. It is also noted that some symptomatic EDS cases (with Parkinson diseases and the thalamic infarction) appeared, but they are not linked with hypocretin ligand deficiency.

Recently, the new possible pathophysiology of symptomatic narcolepsy in patients with MS and its related disorders was revealed. These cases often show unique bilateral symmetric hypothalamic lesions associated with significant hypocretin ligand deficiency. We found that these patients often share the clinical characteristics of neuromyelitis optica (NMO), including optic neuritis or spinal cord lesions and the detection of NMO-IgG (or anti-aquaporin-4 [AQP4] antibodies). AQP4 is highly expressed in the hypothalamic periventricular regions, an immune attack to AQP4 may thus possibly be responsible for the bilateral and hypothalamic lesions and hypocretin deficiency in narcolepsy/EDS associated with these inflammatory demyelinating diseases.

In contrast to idiopathic narcolepsy cases, an occurrence of cataplexy is not tightly associated with hypocretin ligand deficiency in symptomatic cases. Since CSF hypocretin measures are still experimental, cases with sleep abnormalities/cataplexy are habitually selected for CSF hypocretin measures.

Therefore, it is still not known whether all or a large majority of cases with low CSF hypocretin-1 levels, with central nervous system interventions, exhibit EDS/cataplexy. It appears that further studies of the involvement of the hypocretin system in symptomatic narcolepsy and EDS are helpful to understand the pathophysiological mechanisms for the occurrence of EDS and cataplexy.

Keywords

Narcolepsy Cataplexy Sleepiness Hypocretin Orexin Cerebrospinal fluid Tumor Multiple sclerosis Neuromyelitis optic Aquaporin-4 

Notes

Acknowledgment

We would like to thank Dr. Yasunori Oka for his helpful comments on the clinical aspects of MS patients with sleep disorders. We would also like to thank Ms. Yoshiko Sakai for writing and editing English for this chapter.

References

  1. 1.
    Nishino S, Okura M, Mignot E. Narcolepsy: genetic predisposition and neuropharmacological mechanisms. Sleep Med Rev 2000;4:57–99.PubMedCrossRefGoogle Scholar
  2. 2.
    Mignot E, Lammers G, Ripley B, et al. The role of cerebrospinal fluid hypocretin measurement in the diagnosis of narcolepsy and other hypersomnias. Arch Neurol 2002;59: 1553–62.PubMedCrossRefGoogle Scholar
  3. 3.
    Nishino S, Ripley B, Overeem S, Lammers G, Mignot E. Hypocretin (orexin) deficiency in human narcolepsy. Lancet 2000;355:39–40.PubMedCrossRefGoogle Scholar
  4. 4.
    Nishino S, Ripley B, Overeem S, et al. Low cerebrospinal fluid hypocretin (Orexin) and altered energy homeostasis in human narcolepsy. Ann Neurol 2001;50:381–8.PubMedCrossRefGoogle Scholar
  5. 5.
    Dalal M, Schuld A, Haack M, et al. Normal plasma levels of orexin A (hypocretin-1) in narcoleptic patients. Neurology 2001;56:1749–51.PubMedGoogle Scholar
  6. 6.
    Kanbayashi T, Inoue Y, Chiba S, et al. CSF hypocretin-1 (orexin-A) concentrations in narcolepsy with and without cataplexy and idiopathic hypersomnia. J Sleep Res 2002;11:91–3.PubMedCrossRefGoogle Scholar
  7. 7.
    Krahn L, Pankratz V, Oliver L, Boeve B, Silber M. Hypocretin (orexin) levels in cerebrospinal fluid of patients with narcolepsy: relationship to cataplexy and HLA DQB1*0602 status. Sleep 2002;25:733–6.PubMedGoogle Scholar
  8. 8.
    Bassetti C, Gugger M, Bischof M, et al. The narcoleptic borderland: a multimodal diagnostic approach including cerebrospinal fluid levels of hypocretin-1 (orexin A). Sleep Med 2003;4:7–12.PubMedCrossRefGoogle Scholar
  9. 9.
    Ebrahim I, Sharief M, de Lacy S, et al. Hypocretin (orexin) deficiency in narcolepsy and primary hypersomnia. J Neurol Neurosurg Psychiatry 2003;74:127–30.PubMedCrossRefGoogle Scholar
  10. 10.
    de Lecea L, Kilduff T, Peyron C, et al. The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc Natl Acad Sci USA 1998;95:322–7.PubMedCrossRefGoogle Scholar
  11. 11.
    Sakurai T, Amemiya A, Ishii M, et al. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 1998;92:573–85.PubMedCrossRefGoogle Scholar
  12. 12.
    Willie J, Chemelli R, Sinton C, Yanagisawa M. To eat or to sleep? Orexin in the regulation of feeding and wakefulness. Annu Rev Neurosci 2001;24:429–58.PubMedCrossRefGoogle Scholar
  13. 13.
    Ripley B, Overeem S, Fujiki N, et al. CSF hypocretin/orexin levels in narcolepsy and other neurological conditions. Neurology 2001;57:2253–8.PubMedGoogle Scholar
  14. 14.
    Kanbayashi T, Inoue Y, Kawanishi K, et al. CSF hypocretin measures in patients with obstructive sleep apnea. J Sleep Res 2003;12:339–41.PubMedGoogle Scholar
  15. 15.
    Medicine AAoS. International classification of sleep disorders, 2nd ed: Diagnostic and coding manual. Westchester, IL: American Academy of Sleep Medicine, 2005.Google Scholar
  16. 16.
    Arii J, Kanbayashi T, Tanabe Y, et al. CSF hypocretin-1 (orexin-A) levels in childhood narcolepsy and neurologic disorders. Neurology 2004;63:2440–2.PubMedGoogle Scholar
  17. 17.
    von Economo C. Sleep as a problem of localization. J Nerv Ment Dis 1930;71:249–59.CrossRefGoogle Scholar
  18. 18.
    Adie J. Idiopathic narcolepsy: a disease sui generis, with remarks on the mechanism of sleep. Brain 1926;49:257–306.CrossRefGoogle Scholar
  19. 19.
    Kandt R, Emerson R, Singer H, Valle D, Moser H. Cataplexy in variant forms of Niemann-Pick disease. Ann Neurol 1982;12:284–8.PubMedCrossRefGoogle Scholar
  20. 20.
    Parkes J. Genetic factors in human sleep disorders with special reference to Norrie disease, Prader-Willi syndrome and Moebius syndrome. J Sleep Res 1999;8:14–22.PubMedCrossRefGoogle Scholar
  21. 21.
    Martinez-Rodriguez J, Lin L, Iranzo A, et al. Decreased hypocretin-1 (Orexin-A) levels in the cerebrospinal fluid of patients with myotonic dystrophy and excessive daytime sleepiness. Sleep 2003;26:287-90.PubMedGoogle Scholar
  22. 22.
    Heyck H, Hess R. Zur Narkolepsiefrage, Klinik und Electroenzephalogramm. Fortschr Neurol Psychiat 1954; 12:531–79.Google Scholar
  23. 23.
    Roth B. Narkolepsie a hypersomnies hlediska fysiologie spanku. Statni zkravotnicke nakladatelstvi. Prague; 1957Google Scholar
  24. 24.
    Roth B. Narkolepsie und Hypersomnie vom Standpunkt der Physiologie des Schlafes. Berlin: VEB Verlag Volk und Gesundheit, 1962.Google Scholar
  25. 25.
    Devic M, Aimard P, Michel F, Masquin M. Clinical study of essential narcolepsies and cataplexies. Rev Neurol (Paris) 1967;116:471-90.Google Scholar
  26. 26.
    Bonduelle M, Bouygues P, Delahousse J, Faveret C. Posttraumatic narcolepsy. Lille Med 1959;4:719–21.PubMedGoogle Scholar
  27. 27.
    Bonduelle M, Bouygues P, Delahousse J, Faveret C. Posttraumatic narcolepsy. Rev Prat 1959;31:83–7.PubMedGoogle Scholar
  28. 28.
    Bonduelle M, Degos C. Symptomatic narcolepsies: a critical study. In: Guilleminault C, Dement W, Passouant P, eds. Narcolepsy. New York: Spectrum, 1976:313–32.Google Scholar
  29. 29.
    Autret A, Lucas B, Henry-Lebras F, de Toffol B. Symptomatic narcolepsies. Sleep 1994;17:S21–4.PubMedGoogle Scholar
  30. 30.
    Aldrich M, Naylor M. Narcolepsy associated with lesions of the diencephalon. Neurology 1989;39:1505–8.PubMedGoogle Scholar
  31. 31.
    Souques A. Narcolepsie d’origine traumatique: ses rapports avec une lesion de la region infundibulo-hypophysaire. Rev Neurol 1918;33:521–4.Google Scholar
  32. 32.
    Francois H, Vernier L. Etude anatomo-clinique d’un cas tumeur de IIIeme ventricule cerebral. Rev Neurol 1919; 32:921–5.Google Scholar
  33. 33.
    Andre-Thomas A, Jumentie J, Chausseblanche. Lethargie intermittente traduisant l’existence d’une tumeur du IIIeme ventricule - observation anatomo-clinique. Rev Neurol (Paris) 1923;39:67–73.Google Scholar
  34. 34.
    Alajouanine T, Lagrange, Baruk H. Tumeur de la glande pineale diagnostiquee cliniquement chez l’adulte. Bull Soc Med Hop Paris 1925;49:1309–14.Google Scholar
  35. 35.
    Lechelle P, Alajouanine T, Thevenard A. Deux cas de tumeur du lobe frontale a forme somnolente. Bull Soc Med Hop Paris 1925;49:1347–52.Google Scholar
  36. 36.
    Souques A, Baruk H, Bertrand I. Tumeurs de l’infudibulum avec lethargie isolee. Rev Neurol 1926;1:532–40.Google Scholar
  37. 37.
    Lhermitte J, Tournay A. Le sommeil normal et pathologique. Rev Neurol 1927;34:751–822, 885–87.Google Scholar
  38. 38.
    Lhermitte J, Kyriaco N. Hypersomnie periodique regulierement rythmee par les regles dans un cas de tumeur basilaire du cerveau. Rev Neurol 1929;2:715–21.Google Scholar
  39. 39.
    Fulton J, Bailey P. Tumors in the third ventricle. J Nerv Ment Dis 1929;69:1–25, 145–64, 261–77.Google Scholar
  40. 40.
    Lankford D, Wellman J, O’Hara C. Posttraumatic narcolepsy in mild to moderate closed head injury. Sleep 1994;17:S25–8.PubMedGoogle Scholar
  41. 41.
    Nishino S, Kanbayashi T. Symptomatic narcolepsy, cataplexy and hypersomnia, and their implications in the hypothalamic hypocretin/orexin system. Sleep Med Rev 2005;9:269–310.PubMedCrossRefGoogle Scholar
  42. 42.
    Anderson M, Salmon M. Symptomatic cataplexy. J Neurol Neurosurg Psychiatry 1977;40:186–91.PubMedCrossRefGoogle Scholar
  43. 43.
    Stahl S, Layzer R, Aminoff M, Townsend J, Feldon S. Continuous cataplexy in a patient with a midbrain tumor: the limp man syndrome. Neurology 1980;30:1115–8.PubMedGoogle Scholar
  44. 44.
    Schoenhuber R, Angiari P, Peserico L. Narcolepsy symptomatic of a pontine glioma. Ital J Neurol Sci 1981;2:379–80.PubMedGoogle Scholar
  45. 45.
    Pritchard P, Dreifuss F, Skinner R, Pickett J, Biggs P. Symptomatic narcolepsy. Neurology 1983;33:239.Google Scholar
  46. 46.
    Schwartz W, Stakes J, Hobson J. Transient cataplexy after removal of a craniopharyngioma. Neurology 1984;34:1372–5.PubMedGoogle Scholar
  47. 47.
    Gurewitz R, Blum I, Lavie P, et al. Recurrent hypothermia, hypersomnolence, central sleep apnea, hypodipsia, hypernatremia, hypothyroidism, hyperprolactinemia and growth hormone deficiency in a boy – treatment with clomipramine. Acta Endocrinol Suppl (Copenh) 1986;279:468–72.Google Scholar
  48. 48.
    Rubinstein I, Gray T, Moldofsky H, Hoffstein V. Neurosarcoidosis associated with hypersomnolence treated with corticosteroids and brain irradiation. Chest 1988;94:205–6.PubMedCrossRefGoogle Scholar
  49. 49.
    Kowatch R, Parmelee D, Morin C. Narcolepsy in a child following removal of a craniopharyngioma. Sleep Res 1989;18:250.Google Scholar
  50. 50.
    Onofrj M, Curatola L, Ferracci F, Fulgente T. Narcolepsy associated with primary temporal lobe B-cells lymphoma in a HLA DR2 negative subject. J Neurol Neurosurg Psychiatry 1992;55:852–3.PubMedCrossRefGoogle Scholar
  51. 51.
    Clavelou P, Tournilhac M, Vidal C, Georget A, Picard L, Merienne L. Narcolepsy associated with arteriovenous malformation of the diencephalon. Sleep 1995;18:202–5.PubMedGoogle Scholar
  52. 52.
    Servan J, Marchand F, Garma L, Seilhean D, Hauw J, Delattre J. Narcolepsy disclosing neurosarcoidosis. Rev Neurol (Paris) 1995;151:281–3.Google Scholar
  53. 53.
    Ma T, Ang L, Mamelak M, Kish S, Young B, Lewis A. Narcolepsy secondary to fourth ventricular subependymoma. Can J Neurol Sci 1996;23:59–62.PubMedGoogle Scholar
  54. 54.
    Malik S, Boeve B, Krahn L, Silber M. Narcolepsy associated with other central nervous system disorders. Neurology 2001;57:539–41.PubMedGoogle Scholar
  55. 55.
    Marcus C, Trescher W, Halbower A, Lutz J. Secondary narcolepsy in children with brain tumors. Sleep 2002;25:435–9.PubMedGoogle Scholar
  56. 56.
    Snow A, Gozal E, Malhotra A, et al. Severe hypersomnolence after pituitary/hypothalamic surgery in adolescents: clinical characteristics and potential mechanisms. Pediatrics 2002;110:e74.PubMedCrossRefGoogle Scholar
  57. 57.
    Rosen G, Bendel A, Neglia J, Moertel C, Mahowald M. Sleep in children with neoplasms of the central nervous system: case review of 14 children. Pediatrics 2003;112:e46–54.PubMedCrossRefGoogle Scholar
  58. 58.
    Arii J, Kanbayashi T, Tanabe Y, Ono J, Nishino S, Kohno Y. A hypersomnolent girl with decreased CSF hypocretin level after removal of a hypothalamic tumor. Neurology 2001;56: 1775–6.PubMedGoogle Scholar
  59. 59.
    Krahn L, Boeve B, Oliver L, Silber M. Hypocretin (orexin) and melatonin values in a narcoleptic-like sleep disorder after pinealectomy. Sleep Med 2002;3:521–3.PubMedCrossRefGoogle Scholar
  60. 60.
    Dempsey O, McGeoch P, de Silva R, Douglas N. Acquired narcolepsy in an acromegalic patient who underwent pituitary irradiation. Neurology 2003;61:537–40.PubMedGoogle Scholar
  61. 61.
    Nokura K, Kanbayashi T, Ozeki T, et al. Hypersomnia secondary to hypothalamic damage and csf orexin-a level in four cases. Sleep 2004;27:A249.Google Scholar
  62. 62.
    Gill A. Idiopathic and traumatic narcolepsy. Lancet 1941;240:474–9.Google Scholar
  63. 63.
    Guilleminault C, Faull K, Miles L. Post-traumatic daytime sleepiness: a review of 20 patients. Neurology 1983;33:1584–9.PubMedGoogle Scholar
  64. 64.
    Maccario M, Ruggles K, Meriwether M. Post-traumatic narcolepsy. Mil Med 1987;152:370–1.PubMedGoogle Scholar
  65. 65.
    Good J, Barry E, Fishman P. Posttraumatic narcolepsy: the complete syndrome with tissue typing. Case report. J Neurosurg 1989;71:765–7.PubMedCrossRefGoogle Scholar
  66. 66.
    Maeda M, Tamaoka A, Hayashi A, Mizusawa H, Shoji S. A case of HLA-DR2, DQw1 negative post-traumatic narcolepsy. Rinsho Shinkeigaku 1995;35:811–3.PubMedGoogle Scholar
  67. 67.
    Francisco G, Ivanhoe C. Successful treatment of post-traumatic narcolepsy with methylphenidate: a case report. Am J Phys Med Rehabil 1996;75:63–5.PubMedCrossRefGoogle Scholar
  68. 68.
    Dauvilliers Y, Baumann C, Carlander B, et al. CSF hypocretin-1 levels in narcolepsy, Kleine-Levin syndrome, and otherhypersomnias and neurological conditions. J Neurol Neurosurg Psychiatry 2003;74:1667–73.PubMedCrossRefGoogle Scholar
  69. 69.
    Arii J, Kanbayashi T, Miyamoto H, Suzuki H, Kondo H, Ishii M. A case with post-traumatic hypersomnia and low hypocretin/orexin level. JSSR Abstract 2004:257.Google Scholar
  70. 70.
    Bruck D, Broughton R. Diagnostic ambiguities in a case of post-traumatic narcolepsy with cataplexy. Brain Inj 2004;18:321–6.PubMedCrossRefGoogle Scholar
  71. 71.
    Berg O, Hanley J. Narcolepsy in two cases of multiple sclerosis. Acta Neurol Scand 1963;39:252–6.PubMedCrossRefGoogle Scholar
  72. 72.
    Ekbom K. Familial multiple sclerosis associated with narcolepsy. Arch Neurol 1966;15:337–44.PubMedGoogle Scholar
  73. 73.
    Schrader H, Gotlibsen O, Skomedal G. Multiple sclerosis and narcolepsy/cataplexy in a monozygotic twin. Neurology 1980;30:105–8.PubMedGoogle Scholar
  74. 74.
    Younger D, Pedley T, Thorpy M. Multiple sclerosis and narcolepsy: possible similar genetic susceptibility. Neurology 1991;41:447–8.PubMedGoogle Scholar
  75. 75.
    Iseki K, Mezaki T, Oka Y, et al. Hypersomnia in MS. Neurology 2002;59:2006–7.PubMedGoogle Scholar
  76. 76.
    Oka Y, Kanbayashi T, Mezaki T, et al. Low CSF hypocretin-1/orexin-A associated with hypersomnia secondary to hypothalamic lesion in a case of multiple sclerosis. J Neurol 2004;251:885–6.PubMedCrossRefGoogle Scholar
  77. 77.
    von Economo C. Encephalitis lethargica: its sequela and treatment. London: Oxford University Press, 1931.Google Scholar
  78. 78.
    Stiefler G. Narkolepsie nach Enzephalitis Lethargica. Wien Klin 1924;37:1044–6.Google Scholar
  79. 79.
    Barker W. Studies in epilepsy: personality patterns, situational stress and the symptoms of narcolepsy. Psychosom Med 1948;10:193–202.PubMedGoogle Scholar
  80. 80.
    Smith C, Hamilton J. Psychological factors in the narcolepsy-cataplexy syndrome. Psychosom Med 1959;21:40–9.PubMedGoogle Scholar
  81. 81.
    Mamelak M. A perspective on narcolepsy. Encephale 1992;18:347–51.PubMedGoogle Scholar
  82. 82.
    Siegel J. Brainstem mechanisms generating REM sleep. In: Kryger M, Roth T, Dement WC, eds. Principles and Practice of Sleep Medicine, 3rd ed. Philadelphia, PA: W.B. Saunders, 2000:112–33.Google Scholar
  83. 83.
    Peyron C, Faraco J, Rogers W, et al. A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains. Nat Med 2000;6:991–7.PubMedCrossRefGoogle Scholar
  84. 84.
    Thannickal T, Moore R, Nienhuis R, et al. Reduced number of hypocretin neurons in human narcolepsy. Neuron 2000; 27:469–74.PubMedCrossRefGoogle Scholar
  85. 85.
    Melberg A, Ripley B, Lin L, Hetta J, Mignot E, Nishino S. Hypocretin deficiency in familial symptomatic narcolepsy. Ann Neurol 2001;49:136–7.PubMedCrossRefGoogle Scholar
  86. 86.
    Melberg A, Dahl N, Hetta J, et al. Neuroimaging study in autosomal dominant cerebellar ataxia, deafness, and narcolepsy. Neurology 1999;53:2190–2.PubMedGoogle Scholar
  87. 87.
    Scammell T, Nishino S, Mignot E, Saper C. Narcolepsy and low CSF orexin (hypocretin) concentration after a diencephalic stroke. Neurology 2001;56:1751–3.PubMedGoogle Scholar
  88. 88.
    Vela-Bueno A, Kales A, Soldatos C, et al. Sleep in the Prader-Willi syndrome. Clinical and polygraphic findings. Arch Neurol 1984;41:294–6.PubMedGoogle Scholar
  89. 89.
    Helbing-Zwanenburg B, Kamphuisen H, Mourtazaev M. The origin of excessive daytime sleepiness in the Prader-Willi syndrome. J Intellect Disabil Res 1993;37:533–41.PubMedCrossRefGoogle Scholar
  90. 90.
    Vgontzas A, Bixler E, Kales A, et al. Daytime sleepiness and REM abnormalities in Prader-Willi syndrome: evidence of generalized hypoarousal. Int J Neurosci 1996;87:127–39.PubMedCrossRefGoogle Scholar
  91. 91.
    Manni R, Politini L, Nobili L, et al. Hypersomnia in the Prader Willi syndrome: clinical-electrophysiological features and underlying factors. Clin Neurophysiol 2001;112:800–5.PubMedCrossRefGoogle Scholar
  92. 92.
    Tobias E, Tolmie J, Stephenson J. Cataplexy in the Prader-Willi syndrome. Arch Dis Child 2002;87:170.PubMedCrossRefGoogle Scholar
  93. 93.
    Nevsimalova S, Vankova J, Stepanova I, Seemanova E, Mignot E, Nishino S. Hypocretin Deficiency in Prader-Willi syndrome. Eur J Neurol. 2005 Jan;12(1):70–2.Google Scholar
  94. 94.
    Fronczek R, Lammers GJ, Balesar R, Unmehopa UA, Swaab DF. The number of hypothalamic hypocretin (orexin) neurons is not affected in Prader-Willi syndrome. J Clin Endocrinol Metab 2005;90:5466–70.PubMedCrossRefGoogle Scholar
  95. 95.
    Vankova J, Stepanova I, Jech R, et al. Sleep disturbances and hypocretin deficiency in Niemann-Pick disease type C. Sleep 2003;26:427–30.PubMedGoogle Scholar
  96. 96.
    Vanier M. Maladie de Niemann-Pick: etude biochimique de 107 cas (97 familles). Manifestations clinique et approche physiopathologique du type C. Lyon; 1983.Google Scholar
  97. 97.
    Kanbayashi T, Abe M, Fujimoto S, et al. Hypocretin deficiency in niemann-pick type C with cataplexy. Neuropediatrics 2003;34:52–3.PubMedCrossRefGoogle Scholar
  98. 98.
    Philip P, Ghorayeb I, Leger D, et al. Objective measurement of sleepiness in summer vacation long-distance drivers. Electroencephalogr Clin Neurophysiol 1997;102:383–9.PubMedCrossRefGoogle Scholar
  99. 99.
    Oyama K, Takahashi T, Shoji Y, et al. Niemann-Pick disease type C: cataplexy and hypocretin in cerebrospinal fluid. Tohoku J Exp Med 2006;209:263–7.PubMedCrossRefGoogle Scholar
  100. 100.
    Coccagna G, Mantovani M, Parchi C, Mironi F, Lugaresi E. Alveolar hypoventilation and hyperosmnia in myotonic dystrophy. J Neurol Neurosurg Psychiatry 1975;38: 977–84.PubMedCrossRefGoogle Scholar
  101. 101.
    Park J, Radtke R. Hypersomnolence in myotonic dystrophy: demonstration of sleep onset REM sleep. J Neurol Neurosurg Psychiatry 1995;58:512–3.PubMedCrossRefGoogle Scholar
  102. 102.
    Gibbs Jr, Ciafaloni E, Radtke R. Excessive daytime somnolence and increased rapid eye movement pressure in myotonic dystrophy. Sleep 2002;25:672–5.Google Scholar
  103. 103.
    Katz E, McGrath S, Marcus C. Late-onset central hypoventilation with hypothalamic dysfunction: a distinct clinical syndrome. Pediatr Pulmonol 2000;29:62–8.PubMedCrossRefGoogle Scholar
  104. 104.
    Ciafaloni E, Mignot E, Sansone V, et al. The hypocretin neurotransmission system in myotonic dystrophy type 1. Neurology 2008;70:226–30.PubMedCrossRefGoogle Scholar
  105. 105.
    Marcus C, Mignot E. Letter to the editor regarding our previous publication: “Secondary narcolepsy in children with brain tumors,” Sleep 2002;25:435–439. Sleep 2003; 26:228.PubMedGoogle Scholar
  106. 106.
    Kubota H, Kanbayashi T, Tanabe Y, et al. Decreased cerebrospinal fluid hypocretin-1 levels near the onset of narcolepsy in 2 prepubertal children. Sleep 2003;26:555–7.PubMedGoogle Scholar
  107. 107.
    Tachibana N, Taniike M, Okinaga T, Ripley B, Mignot E, Nishino S. Hypersomnolence and increased REM sleep with low cerebrospinal fluid hypocretin level in a patient after removal of craniopharyngioma. Sleep Med 2005; 6:567–9.PubMedCrossRefGoogle Scholar
  108. 108.
    Dauvilliers Y, Abril B, Charif M, et al. Reversal of symptomatic tumoral narcolepsy, with normalization of CSF hypocretin level. Neurology 2007;69:1300–1.PubMedCrossRefGoogle Scholar
  109. 109.
    Tohyama J, Kanazawa O, Akasaka N, Kamimura T. A case of bilateral paramedian thalamic infarction in childhood with the sensory disturbance and the sensory loss of taste. No To Hattatsu 2004;36:65–9.PubMedGoogle Scholar
  110. 110.
    Guilleminault C, Quera-Salva M, Goldberg M. Pseudo-hypersomnia and pre-sleep behaviour with bilateral paramedian thalamic lesions. Brain 1993;116:1549–63.PubMedCrossRefGoogle Scholar
  111. 111.
    Bassetti C, Mathis J, Gugger M, Lovblad K, Hess C. Hypersomnia following paramedian thalamic stroke: a report of 12 patients. Ann Neurol 1996;39:471–80.PubMedCrossRefGoogle Scholar
  112. 112.
    Kashiwagi M, Tanabe T, Hara K, et al. Sleepiness due to Wernicke’s encephalopathy wirh bilateral hypothalamic lesion in a 5-year-old girl. Sleep 2004;27:A315.Google Scholar
  113. 113.
    Yamato H, Tanozaki M, Seino Y, Wakasaya Y, Suda T, Baba M. A hypersomnia case due to limbic encephalitis with decreased orexin level. Rinsho Shinkeigaku 2004;44:482.Google Scholar
  114. 114.
    Lagrange A, Blaivas M, Gomez-Hassan D, Malow B. Rasmussen’s syndrome and new-onset narcolepsy, cataplexy, and epilepsy in an adult. Epilepsy Behav 2003;4:788–92.PubMedCrossRefGoogle Scholar
  115. 115.
    Mathis J, Hess CW, Bassetti C. Isolated mediotegmental lesion causing narcolepsy and rapid eye movement sleep behaviour disorder: a case evidencing a common pathway in narcolepsy and rapid eye movement sleep behaviour disorder. J Neurol Neurosurg Psychiatry 2007;78:427–9.PubMedCrossRefGoogle Scholar
  116. 116.
    Overeem S, van Hilten J, Ripley B, Mignot E, Nishino S, Lammers G. Normal hypocretin-1 levels in Parkinson’s disease patients with excessive daytime sleepiness. Neurology 2002;58:498–9.PubMedGoogle Scholar
  117. 117.
    Drouot X, Moutereau S, Nguyen J, et al. Low levels of ventricular CSF orexin/hypocretin in advanced PD. Neurology 2003;61:540–3.PubMedGoogle Scholar
  118. 118.
    Fronczek R, Overeem S, Lee SY, et al. Hypocretin (orexin) loss in Parkinson’s disease. Brain 2007;130:1577–85.PubMedCrossRefGoogle Scholar
  119. 119.
    Thannickal TC, Lai YY, Siegel JM. Hypocretin (orexin) cell loss in Parkinson’s disease. Brain 2007;130:1586–95.PubMedCrossRefGoogle Scholar
  120. 120.
    Hoehn MM, Yahr MD. Parkinsonism: onset, progression and mortality. Neurology 1967;17:427–42.PubMedGoogle Scholar
  121. 121.
    Yasui K, Inoue Y, Kanbayashi T, Nomura T, Kusumi M, Nakashima K. CSF orexin levels of Parkinson’s disease, dementia with Lewy bodies, progressive supranuclear palsy and corticobasal degeneration. J Neurol Sci 2006;250:120–3.PubMedCrossRefGoogle Scholar
  122. 122.
    Maeda T, Nagata K, Kondo H, Kanbayashi T. Parkinson’s disease comorbid with narcolepsy presenting low CSF hypocretin/orexin level. Sleep Med 2006;7:662.PubMedCrossRefGoogle Scholar
  123. 123.
    Baumann C, Ferini-Strambi L, Waldvogel D, Werth E, Bassetti CL. Parkinsonism with excessive daytime sleepiness – a narcolepsy-like disorder? J Neurol 2005;252:139–45.PubMedCrossRefGoogle Scholar
  124. 124.
    Baumann CR, Dauvilliers Y, Mignot E, Bassetti CL. Normal CSF hypocretin-1 (orexin A) levels in dementia with Lewy bodies associated with excessive daytime sleepiness. Eur Neurol 2004;52:73–6.PubMedCrossRefGoogle Scholar
  125. 125.
    Friedman LF, Zeitzer JM, Lin L, et al. In Alzheimer disease, increased wake fragmentation found in those with lower hypocretin-1. Neurology 2007;68:793–4.PubMedCrossRefGoogle Scholar
  126. 126.
    Martinez-Rodriguez JE, Seppi K, Cardozo A, et al. Cerebrospinal fluid hypocretin-1 levels in multiple system atrophy. Mov Disord 2007;22:1822–4.PubMedCrossRefGoogle Scholar
  127. 127.
    Abdo WF, Bloem BR, Kremer HP, Lammers GJ, Verbeek MM, Overeem S. CSF hypocretin-1 levels are normal in multiple-system atrophy. Parkinsonism Relat Disord 2008;14:342–4.PubMedCrossRefGoogle Scholar
  128. 128.
    Hattori Y, Hattori T, Mukai E, et al. Excessive daytime sleepiness and low CSF orexin-A/hypocretin-I levels in a patient with probable progressive supranuclear palsy. No To Shinkei 2003;55:1053–6.PubMedGoogle Scholar
  129. 129.
    Sugiura K, Kanbayashi T, Hattori N, Inoue Y. A case with narcolepsy which symptoms were exacerbated by comorbidity of progressive supranuclear palsy. Suimin Iryou 2007;2:101–4.Google Scholar
  130. 130.
    Bliwise D, Rye D, Dihenia B, Gurecki P. Greater daytime sleepiness in subcortical stroke relative to Parkinson’s disease and Alzheimer’s disease. J Geriatr Psychiatry Neurol 2002;15:61–7.PubMedCrossRefGoogle Scholar
  131. 131.
    Desarnaud F, Murillo-Rodriguez E, Lin L, et al. The diurnal rhythm of hypocretin in young and old F344 rats. Sleep 2004;27:851–6.PubMedGoogle Scholar
  132. 132.
    Ebrahim IO, Semra YK, De Lacy S, et al. CSF hypocretin (Orexin) in neurological and psychiatric conditions. J Sleep Res 2003;12:83–4.PubMedCrossRefGoogle Scholar
  133. 133.
    Petersen A, Stewenius Y, Bjorkqvist M, Gisselsson D. Euploidy in somatic cells from R6/2 transgenic Huntington’s disease mice. BMC Cell Biol 2005;6:34.PubMedCrossRefGoogle Scholar
  134. 134.
    Petersen A, Bjorkqvist M. Hypothalamic-endocrine aspects in Huntington’s disease. Eur J Neurosci 2006;24:961–7.PubMedCrossRefGoogle Scholar
  135. 135.
    Baumann CR, Hersberger M, Bassetti CL. Hypocretin-1 (orexin A) levels are normal in Huntington’s disease. J Neurol 2006;253:1232–3.PubMedCrossRefGoogle Scholar
  136. 136.
    Bjorkqvist M, Petersen A, Nielsen J, et al. Cerebrospinal fluid levels of orexin-A are not a clinically useful biomarker for Huntington disease. Clin Genet 2006;70:78–9.PubMedCrossRefGoogle Scholar
  137. 137.
    Gaus SE, Lin L, Mignot E. CSF hypocretin levels are normal in Huntington’s disease patients. Sleep 2005;28:1607–8.PubMedGoogle Scholar
  138. 138.
    Meier A, Mollenhauer B, Cohrs S, et al. Normal hypocretin-1 (orexin-A) levels in the cerebrospinal fluid of patients with Huntington’s disease. Brain Res 2005;1063:201–3.PubMedCrossRefGoogle Scholar
  139. 139.
    Gerashchenko D, Murillo-Rodriguez E, Lin L, et al. Relationship between CSF hypocretin levels and hypocretin neuronal loss. Exp Neurol 2003;184:1010–6.PubMedCrossRefGoogle Scholar
  140. 140.
    Zhang S, Lin L, Kaur S, et al. The development of hypocretin (orexin) deficiency in hypocretin/ataxin-3 transgenic rats. Neuroscience 2007;148:34–43.PubMedCrossRefGoogle Scholar
  141. 141.
    Baumann CR, Stocker R, Imhof HG, et al. Hypocretin-1 (orexin A) deficiency in acute traumatic brain injury. Neurology 2005;65:147–9.PubMedCrossRefGoogle Scholar
  142. 142.
    Dohi K, Ripley B, Fujiki N, et al. CSF orexin-A/hypocretin-1 concentrations in patients with intracerebral hemorrhage (ICH). Regul Pept 2008;145:60–4.PubMedCrossRefGoogle Scholar
  143. 143.
    Baumann CR, Werth E, Stocker R, Ludwig S, Bassetti CL. Sleep-wake disturbances 6 months after traumatic brain injury: a prospective study. Brain 2007;130:1873–83.PubMedCrossRefGoogle Scholar
  144. 144.
    Anic-Labat S, Guilleminault C, Kraemer HC, Meehan J, Arrigoni J, Mignot E. Validation of a cataplexy questionnaire in 983 sleep-disorders patients. Sleep 1999;22:77–87.PubMedGoogle Scholar
  145. 145.
    Billiard M. Other hypersomnias. In: M. B, ed. Sleep: Physiology, Investigations, and Medicine. New York: Kluwer Academic/Plenum, 2003.Google Scholar
  146. 146.
    Poirier G, Montplaisir J, Dumont M, et al. Clinical and sleep laboratory study of narcoleptic symptoms in multiple sclerosis. Neurology 1987;37:693–5.PubMedGoogle Scholar
  147. 147.
    Tachibana N, Howard RS, Hirsch NP, Miller DH, Moseley IF, Fish D. Sleep problems in multiple sclerosis. Eur Neurol 1994;34:320–3.PubMedCrossRefGoogle Scholar
  148. 148.
    Kato T, Kanbayashi T, Yamamoto K, et al. Hypersomnia and low CSF hypocretin-1 (orexin-A) concentration in a patient with multiple sclerosis showing bilateral hypothalamic lesions. Intern Med 2003;42:743–5.PubMedCrossRefGoogle Scholar
  149. 149.
    Pittock SJ, Weinshenker BG, Lucchinetti CF, Wingerchuk DM, Corboy JR, Lennon VA. Neuromyelitis optica brain lesions localized at sites of high aquaporin 4 expression. Arch Neurol 2006;63:964–8.PubMedCrossRefGoogle Scholar
  150. 150.
    Nakashima I, Fujihara K, Miyazawa I, et al. Clinical and MRI features of Japanese patients with multiple sclerosis positive for NMO-IgG. J Neurol Neurosurg Psychiatry 2006;77:1073–5.PubMedCrossRefGoogle Scholar
  151. 151.
    Nozaki H, Katada S, Sato M, Tanaka K, Nishizawa M. A case with hypersomnia and paresthesia due to diffuse MS leisons from hypothalamus to spine. Rinsho Shinkeigaku 2004;44:59.Google Scholar
  152. 152.
    Nakamura M, Nishii M, Maki S, Nakamuara M, Suenaga T. A MS cases with EDS and bilateral hypothlamic lesions. Rinsho Shinkeigaku 2005;45:187.Google Scholar
  153. 153.
    Carlander B, Vincent T, Le Floch A, Pageot N, Camu W, Dauvilliers Y. Hypocretinergic dysfunction in neuromyelitis optica with coma-like episodes. J Neurol Neurosurg Psychiatry 2008;79:333–4.PubMedCrossRefGoogle Scholar
  154. 154.
    Kubota H, Kanbayashi T, Tanabe Y, Takanashi J, Kohno Y. A case of acute disseminated encephalomyelitis presenting hypersomnia with decreased hypocretin level in cerebrospinal fluid. J Child Neurol 2002;17:537–9.PubMedCrossRefGoogle Scholar
  155. 155.
    Gledhill R, Bartel P, Yoshida Y, Nishino S, Scammell T. Narcolepsy caused by acute disseminated encephalomyelitis. Arch Neurol 2004;61:758–60.PubMedCrossRefGoogle Scholar
  156. 156.
    Yoshikawa S, Suzuki S, Yamamoto K, et al. A case of acute disseminated encephalomyelitis associated with hypersomnia and low CSF hypocretin levels. Pediatric Neurology 2004.Google Scholar
  157. 157.
    Yano T, Kanbayashi T, Sawaishi Y, Shimizu T, Takada G. An infant case of hypersomnia with acute disseminated encephalomyelitis due to hypothalamic dysfunction. Sleep 2004;27:A238.Google Scholar
  158. 158.
    Yamashita S, Ueno K, Hashimoto Y, Teramoto H, Uchino M. A case of acute disseminated encephalomyelitis accompanying Mycoplasma pneumoniae infection. No To Shinkei 1999;51:799–803.PubMedGoogle Scholar
  159. 159.
    Kanbayashi T, Goto A, Hishikawa Y, et al. Hypersomnia due to acute disseminated encephalomyelitis in a 5-year-old girl. Sleep Med 2001;2:347–50.PubMedCrossRefGoogle Scholar
  160. 160.
    Cochen V, Arnulf I, Demeret S, et al. Vivid dreams, hallucinations, psychosis and REM sleep in Guillain-Barre syndrome. Brain 2005;128:2535–45.PubMedCrossRefGoogle Scholar
  161. 161.
    Hochman MS, Kobetz SA, Handwerker JV. Inappropriate secretion of antidiuretic hormone associated with Guillain-Barre syndrome. Ann Neurol 1982;11:322–3.PubMedCrossRefGoogle Scholar
  162. 162.
    Schenck CH, Bundlie SR, Ettinger MG, Mahowald MW. Chronic behavioral disorders of human REM sleep: a new category of parasomnia. Sleep 1986;9:293–308.PubMedGoogle Scholar
  163. 163.
    Guilleminault C, Mondini S. Mononucleosis and chronic daytime sleepiness. A long-term follow-up study. Arch Intern Med 1986;146:1333–5.PubMedCrossRefGoogle Scholar
  164. 164.
    Kanbayashi T, Ishiguro H, Aizawa R, et al. Hypocretin-1 (orexin-A) concentrations in cerebrospinal fluid are low in patients with Guillain-Barre syndrome. Psychiatry Clin Neurosci 2002;56:273–4.PubMedCrossRefGoogle Scholar
  165. 165.
    Nishino S, Kanbayashi T, Fujiki N, et al. CSF hypocretin levels in Guillain-Barre syndrome and other inflammatory neuropathies. Neurology 2003;61:823–5.PubMedGoogle Scholar
  166. 166.
    Baumann CR, Bassetti CL. CSF hypocretin levels in Guillain-Barre syndrome and other inflammatory neuropathies. Neurology 2004;62:2337; author replyPubMedGoogle Scholar
  167. 167.
    Griffin JW, Li CY, Ho TW, et al. Guillain-Barre syndrome in northern China. The spectrum of neuropathological changes in clinically defined cases. Brain 1995;118(Pt 3): 577–95.PubMedCrossRefGoogle Scholar
  168. 168.
    Ho TW, Mishu B, Li CY, et al. Guillain-Barre syndrome in northern China. Relationship to Campylobacter jejuni infection and anti-glycolipid antibodies. Brain 1995;118(Pt 3):597–605.PubMedCrossRefGoogle Scholar
  169. 169.
    Overeem S, Dalmau J, Bataller L, et al. Hypocretin-1 CSF levels in anti-Ma2 associated encephalitis. Neurology 2004;62:138–40.PubMedGoogle Scholar
  170. 170.
    Lecendreux M, Maret S, Bassetti C, Mouren M, Tafti M. Clinical efficacy of high-dose intravenous immunoglobulins near the onset of narcolepsy in a 10-year-old boy. J Sleep Res 2003;12:347–8.PubMedGoogle Scholar
  171. 171.
    Mignot E. Sleep, sleep disorders and hypocretin (orexin). Sleep Med 2004;5:S2–8.PubMedCrossRefGoogle Scholar
  172. 172.
    Ripley B, Fujiki N, Okura M, Mignot E, Nishino S. Hypocretin levels in sporadic and familial cases of canine narcolepsy. Neurobiol Dis 2001;8:525–34.PubMedCrossRefGoogle Scholar
  173. 173.
    Nokura K, Kanbayashi T, Ozeki T, et al. Hypersomnia, asterixis and cataplexy in association with orexin A-reduced hypothalamic tumor. J Neurol 2004;251:1534–5.PubMedCrossRefGoogle Scholar
  174. 174.
    Saji N, Kawarai T, Tadano M, Shimizu H, Kita Y, Susuki K, Kanbayashi T. Does CSF hypocretin-1 decrease in Bickerstaff’s brainstem encephalitis? Clin Neurol Neurosurg 2007;109(6):547–8.PubMedCrossRefGoogle Scholar
  175. 175.
    Castillo PR, Mignot E, Woodruff BK, Boeve BF. Undetectable CSF hypocretin-1 in Hashimoto’s encephalopathy associated with coma. Neurology 2004;62(10):1909.PubMedGoogle Scholar
  176. 176.
    Voderholzer U, Riemann D, Gann H, et al. Transient total sleep loss in cerebral Whipple’s disease: a longitudinal study. J Sleep Res 2002;11(4):321–9.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • T. Kanbayashi
    • 1
  • M. Nakamura
  • T. Shimizu
  • S. Nishino
  1. 1.Department of NeuropsychiatryAkita University School of MedicineAkitaJapan

Personalised recommendations