Skip to main content

Humor Processing in Human Narcolepsy with Cataplexy

  • Chapter
  • First Online:
Narcolepsy
  • 1251 Accesses

Abstract

In narcolepsy–cataplexy (NC) patients, cataplexy attacks (sudden loss of muscle tone) are most often triggered by strong emotional experiences, in particular positive emotions such as laughter or joking. While muscle atonia associated with cataplexy is thought to implicate ponto-medullary mechanisms, the suprapontine brain mechanisms associated with the cataplectic effects of emotions in human NC remain essentially unknown. Recent animal data suggest that the hypocretin (Hcrt; also called orexin) system, which is deficient in NC patients, is involved not only in the regulation of sleep–wake states but also in emotional and reward processes. Emotion-triggered cataplexy could thus represent an affective consequence of Hcrt deficiency in human NC. In this chapter, we present evidence suggesting that the Hcrt system may play a key modulating role in hypothalamic-limbic circuits that are involved in the integration of emotion, reward, and sleep processes. We show that this hypothesis can be successfully tested using modern functional brain imaging techniques in NC patients. We report recent functional magnetic resonance imaging (fMRI) results showing that humorous pictures elicit reduced hypothalamic response together with enhanced amygdala response in NC patients. We also discuss the implications of these recent findings for current models of cataplexy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 199.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The H-reflex or Hoffmann reflex relies on the contraction of the flexors of the calf, monosynaptically activated following excitation of sensory nerve fibers in the tibial nerve. Its amplitude, measured electromyographically, reflects interneuron modulation of motor-neuron excitability, and diminishes when inhibitory interneurons are excited. The H-reflex strongly decreases during cataplexy episodes triggered by amusement in NC patients [25, 35]. It is decreased during NREM sleep and abolished during REM sleep [36].

References

  1. Bassetti, C. & Aldrich, M.S. Narcolepsy. Neurol Clin 14, 545–571 (1996)

    Article  CAS  PubMed  Google Scholar 

  2. de Lecea, L. et al. The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc Natl Acad Sci U S A 95, 322–327 (1998)

    Article  PubMed  Google Scholar 

  3. Peyron, C. et al. A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains. Nat Med 6, 991–997 (2000)

    Article  CAS  PubMed  Google Scholar 

  4. Sakurai, T. et al. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 92, 573–585 (1998)

    Article  CAS  PubMed  Google Scholar 

  5. Thannickal, T.C. et al. Reduced number of hypocretin neurons in human narcolepsy. Neuron 27, 469–474 (2000)

    Article  CAS  PubMed  Google Scholar 

  6. Thannickal, T.C., Siegel, J.M., Nienhuis, R. & Moore, R.Y. Pattern of hypocretin (orexin) soma and axon loss, and gliosis, in human narcolepsy. Brain Pathol 13, 340–351 (2003)

    Article  PubMed  Google Scholar 

  7. Nishino, S. & Mignot, E. Pharmacological aspects of human and canine narcolepsy. Prog Neurobiol 52, 27–78 (1997)

    Article  CAS  PubMed  Google Scholar 

  8. Adamantidis, A.R., Zhang, F., Aravanis, A.M., Deisseroth, K. & de Lecea, L. Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature 450, 420–424 (2007)

    Article  CAS  PubMed  Google Scholar 

  9. Saper, C.B., Scammell, T.E. & Lu, J. Hypothalamic regulation of sleep and circadian rhythms. Nature 437, 1257–1263 (2005)

    Article  CAS  PubMed  Google Scholar 

  10. Baumann, C.R. & Bassetti, C.L. Hypocretins (orexins) and sleep-wake disorders. Lancet Neurol 4, 673–682 (2005)

    Article  CAS  PubMed  Google Scholar 

  11. Sakurai, T. The neural circuit of orexin (hypocretin): maintaining sleep and wakefulness. Nat Rev Neurosci 8, 171–181 (2007)

    Article  CAS  PubMed  Google Scholar 

  12. Akbari, E., Motamedi, F., Naghdi, N. & Noorbakhshnia, M. The effect of antagonization of orexin 1 receptors in CA1 and dentate gyrus regions on memory processing in passive avoidance task. Behav Brain Res 187, 172–177 (2008)

    CAS  PubMed  Google Scholar 

  13. Narita, M. et al. Direct involvement of orexinergic systems in the activation of the mesolimbic dopamine pathway and related behaviors induced by morphine. J Neurosci 26, 398–405 (2006)

    Article  CAS  PubMed  Google Scholar 

  14. Borgland, S.L., Taha, S.A., Sarti, F., Fields, H.L. & Bonci, A. Orexin A in the VTA is critical for the induction of synaptic plasticity and behavioral sensitization to cocaine. Neuron 49, 589–601 (2006)

    Article  CAS  PubMed  Google Scholar 

  15. Harris, G.C., Wimmer, M. & Aston-Jones, G. A role for lateral hypothalamic orexin neurons in reward seeking. Nature 437, 556–559 (2005)

    Article  CAS  PubMed  Google Scholar 

  16. Boutrel, B. et al. Role for hypocretin in mediating stress-induced reinstatement of cocaine-seeking behavior. Proc Natl Acad Sci U S A 102, 19168–19173 (2005)

    Article  CAS  PubMed  Google Scholar 

  17. Ohno, K. & Sakurai, T. Orexin neuronal circuitry: role in the regulation of sleep and wakefulness. Front Neuroendocrinol 29, 70–87 (2008)

    Article  CAS  PubMed  Google Scholar 

  18. Mignot, E. et al. The role of cerebrospinal fluid hypocretin measurement in the diagnosis of narcolepsy and other hypersomnias. Arch Neurol 59, 1553–1562 (2002)

    Article  PubMed  Google Scholar 

  19. Chemelli, R.M. et al. Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell 98, 437–451 (1999)

    Article  CAS  PubMed  Google Scholar 

  20. Lin, L. et al. The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell 98, 365–376 (1999)

    Article  CAS  PubMed  Google Scholar 

  21. Mattarozzi, K. et al. Clinical, behavioural and polysomnographic correlates of cataplexy in patients with narcolepsy/cataplexy. Sleep Med 9, 425–433 (2008)

    Article  PubMed  Google Scholar 

  22. Sturzenegger, C. & Bassetti, C.L. The clinical spectrum of narcolepsy with cataplexy: a reappraisal. J Sleep Res 13, 395–406 (2004)

    Article  PubMed  Google Scholar 

  23. Anic-Labat, S. et al. Validation of a cataplexy questionnaire in 983 sleep-disorders patients. Sleep 22, 77–87 (1999)

    CAS  PubMed  Google Scholar 

  24. Mignot, E., Hayduk, R., Black, J., Grumet, F.C. & Guilleminault, C. HLA DQB1*0602 is associated with cataplexy in 509 narcoleptic patients. Sleep 20, 1012–1020 (1997)

    CAS  PubMed  Google Scholar 

  25. Guilleminault, C. & Gelb, M. Clinical aspects and features of cataplexy. Adv Neurol 67, 65–77 (1995)

    CAS  PubMed  Google Scholar 

  26. Overeem, S., Mignot, E., van Dijk, J.G. & Lammers, G.J. Narcolepsy: clinical features, new pathophysiologic insights, and future perspectives. J Clin Neurophysiol 18, 78–105 (2001)

    Article  CAS  PubMed  Google Scholar 

  27. Gelb, M. et al. Stability of cataplexy over several months – information for the design of therapeutic trials. Sleep 17, 265–273 (1994)

    CAS  PubMed  Google Scholar 

  28. Guilleminault, C., Wilson, R.A. & Dement, W.C. A study on cataplexy. Arch Neurol 31, 255–261 (1974)

    CAS  PubMed  Google Scholar 

  29. Nishino, S., Tafti, M., Sampathkumaran, R., Dement, W.C. & Mignot, E. Circadian distribution of rest/activity in narcoleptic and control dogs: assessment with ambulatory activity monitoring. J Sleep Res 6, 120–127 (1997)

    CAS  PubMed  Google Scholar 

  30. Nishino, S., Reid, M.S., Dement, W.C. & Mignot, E. Neurop-harmacology and neurochemistry of canine narcolepsy. Sleep 17, S84–S92 (1994)

    CAS  PubMed  Google Scholar 

  31. Espana, R.A., McCormack, S.L., Mochizuki, T. & Scammell, T.E. Running promotes wakefulness and increases cataplexy in orexin knockout mice. Sleep 30, 1417–1425 (2007)

    PubMed  Google Scholar 

  32. Overeem, S., Lammers, G.J. & van Dijk, J.G. Weak with laughter. Lancet 354, 838 (1999)

    CAS  PubMed  Google Scholar 

  33. Lammers, G.J., Overeem, S., Tijssen, M.A. & van Dijk, J.G. Effects of startle and laughter in cataplectic subjects: a neurophysiological study between attacks. Clin Neurophysiol 111, 1276–1281 (2000)

    Article  CAS  PubMed  Google Scholar 

  34. Overeem, S., Reijntjes, R., Huyser, W., Lammers, G.J. & van Dijk, J.G. Corticospinal excitability during laughter: implications for cataplexy and the comparison with REM sleep atonia. J Sleep Res 13, 257–264 (2004)

    Article  PubMed  Google Scholar 

  35. Hishikawa, Y. & Shimizu, T. Physiology of REM sleep, cataplexy, and sleep paralysis. Adv Neurol 67, 245–271 (1995)

    CAS  PubMed  Google Scholar 

  36. Sandrini, G. et al. Effects of sleep on spinal nociceptive reflexes in humans. Sleep 24, 13–17 (2001)

    CAS  PubMed  Google Scholar 

  37. Tucci, V. et al. Emotional information processing in patients with narcolepsy: a psychophysiologic investigation. Sleep 26, 558–564 (2003)

    PubMed  Google Scholar 

  38. Khatami, R., Birkmann, S. & Bassetti, C.L. Amygdala dysfunction in narcolepsy-cataplexy. J Sleep Res 16, 226–229 (2007)

    Article  PubMed  Google Scholar 

  39. Vrana, S.R., Spence, E.L. & Lang, P.J. The startle probe response: a new measure of emotion? J Abnorm Psychol 97, 487–491 (1988)

    Article  CAS  PubMed  Google Scholar 

  40. Siegel, J.M. et al. Neuronal degeneration in canine narcolepsy. J Neurosci 19, 248–257 (1999)

    CAS  PubMed  Google Scholar 

  41. Gulyani, S., Wu, M.F., Nienhuis, R., John, J. & Siegel, J.M. Cataplexy-related neurons in the amygdala of the narcoleptic dog. Neuroscience 112, 355–365 (2002)

    Article  CAS  PubMed  Google Scholar 

  42. Schwartz, S. et al. Abnormal activity in hypothalamus and amygdala during humour processing in human narcolepsy with cataplexy. Brain 131, 514–522 (2008)

    Article  PubMed  Google Scholar 

  43. Desseilles, M. et al. Neuroimaging insights into the pathophysiology of sleep disorders. Sleep 31, 777–794 (2008)

    PubMed  Google Scholar 

  44. Overeem, S. et al. Voxel-based morphometry in hypocretin-deficient narcolepsy. Sleep 26, 44–46 (2003)

    PubMed  Google Scholar 

  45. Brenneis, C. et al. Voxel-based morphometry in narcolepsy. Sleep Med 6, 531–536 (2005)

    Article  PubMed  Google Scholar 

  46. Kaufmann, C., Schuld, A., Pollmacher, T. & Auer, D.P. Reduced cortical gray matter in narcolepsy: preliminary findings with voxel-based morphometry. Neurology 58, 1852–1855 (2002)

    PubMed  Google Scholar 

  47. Draganski, B. et al. Hypothalamic gray matter changes in narcoleptic patients. Nat Med 8, 1186–1188 (2002)

    Article  CAS  PubMed  Google Scholar 

  48. Buskova, J., Vaneckova, M., Sonka, K., Seidl, Z. & Nevsimalova, S. Reduced hypothalamic gray matter in narcolepsy with cataplexy. Neuro Endocrinol Lett 27, 769–772 (2006)

    CAS  PubMed  Google Scholar 

  49. Lodi, R. et al. In vivo evidence of neuronal loss in the hypothalamus of narcoleptic patients. Neurology 63, 1513–1515 (2004)

    CAS  PubMed  Google Scholar 

  50. Ellis, C.M., Simmons, A., Lemmens, G., Williams, S.C. & Parkes, J.D. Proton spectroscopy in the narcoleptic syndrome. Is there evidence of a brainstem lesion? Neurology 50, S23–S26 (1998)

    CAS  PubMed  Google Scholar 

  51. De Stefano, N., Matthews, P.M. & Arnold, D.L. Reversible decreases in N-acetylaspartate after acute brain injury. Magn Reson Med 34, 721–727 (1995)

    Article  PubMed  Google Scholar 

  52. Nishino, S. & Kanbayashi, T. Symptomatic narcolepsy, cataplexy and hypersomnia, and their implications in the hypothalamic hypocretin/orexin system. Sleep Med Rev 9, 269–310 (2005)

    Article  PubMed  Google Scholar 

  53. Joo, E.Y., Tae, W.S., Kim, J.H., Kim, B.T. & Hong, S.B. Glucose hypometabolism of hypothalamus and thalamus in narcolepsy. Ann Neurol 56, 437–440 (2004)

    Article  CAS  PubMed  Google Scholar 

  54. Joo, E.Y. et al. Cerebral perfusion abnormality in narcolepsy with cataplexy. Neuroimage 28, 410–416 (2005)

    Article  PubMed  Google Scholar 

  55. Hong, S.B., Tae, W.S. & Joo, E.Y. Cerebral perfusion changes during cataplexy in narcolepsy patients. Neurology 66, 1747–1749 (2006)

    Article  PubMed  Google Scholar 

  56. Chabas, D. et al. Functional imaging of cataplexy during status cataplecticus. Sleep 30, 153–156 (2007)

    PubMed  Google Scholar 

  57. Ellis, C.M. et al. Functional magnetic resonance imaging neuroactivation studies in normal subjects and subjects with the narcoleptic syndrome. Actions of modafinil. J Sleep Res 8, 85–93 (1999)

    Article  CAS  PubMed  Google Scholar 

  58. Wild, B., Rodden, F.A., Grodd, W. & Ruch, W. Neural correlates of laughter and humour. Brain 126, 2121–2138 (2003)

    Article  PubMed  Google Scholar 

  59. Arroyo, S. et al. Mirth, laughter and gelastic seizures. Brain 116(4), 757–780 (1993)

    Article  PubMed  Google Scholar 

  60. Kuzniecky, R.I. et al. Multimodality MRI in mesial temporal sclerosis: relative sensitivity and specificity. Neurology 49, 774–778 (1997)

    CAS  PubMed  Google Scholar 

  61. Wild, B., Erb, M., Eyb, M., Bartels, M. & Grodd, W. Why are smiles contagious? An fMRI study of the interaction between perception of facial affect and facial movements. Psychiatry Res 123, 17–36 (2003)

    Article  PubMed  Google Scholar 

  62. Goel, V. & Dolan, R.J. The functional anatomy of humor: segregating cognitive and affective components. Nat Neurosci 4, 237–238 (2001)

    Article  CAS  PubMed  Google Scholar 

  63. Moran, J.M., Wig, G.S., Adams, R.B., Jr., Janata, P. & Kelley, W.M. Neural correlates of humor detection and appreciation. Neuroimage 21, 1055–1060 (2004)

    Article  PubMed  Google Scholar 

  64. Mobbs, D., Greicius, M.D., Abdel-Azim, E., Menon, V. & Reiss, A.L. Humor modulates the mesolimbic reward centers. Neuron 40, 1041–1048 (2003)

    Article  CAS  PubMed  Google Scholar 

  65. O’Doherty, J.P., Buchanan, T.W., Seymour, B. & Dolan, R.J. Predictive neural coding of reward preference involves dissociable responses in human ventral midbrain and ventral striatum. Neuron 49, 157–166 (2006)

    Article  PubMed  Google Scholar 

  66. Watson, K.K., Matthews, B.J. & Allman, J.M. Brain activation during sight gags and language-dependent humor. Cereb Cortex 17, 314–324 (2007)

    Article  PubMed  Google Scholar 

  67. Critchley, H.D., Mathias, C.J. & Dolan, R.J. Neural activity in the human brain relating to uncertainty and arousal during anticipation. Neuron 29, 537–545 (2001)

    Article  CAS  PubMed  Google Scholar 

  68. Reiss, A.L. et al. Anomalous hypothalamic responses to humor in cataplexy. PLoS ONE 3, e2225 (2008)

    Article  PubMed  Google Scholar 

  69. Sullivan, G.M. et al. Lesions in the bed nucleus of the stria terminalis disrupt corticosterone and freezing responses elicited by a contextual but not by a specific cue-conditioned fear stimulus. Neuroscience 128, 7–14 (2004)

    Article  CAS  PubMed  Google Scholar 

  70. Price, J.L. Free will versus survival: brain systems that underlie intrinsic constraints on behavior. J Comp Neurol 493, 132–139 (2005)

    Article  PubMed  Google Scholar 

  71. LeDoux, J.E. Emotion circuits in the brain. Annu Rev Neurosci 23, 155–184 (2000)

    Article  CAS  PubMed  Google Scholar 

  72. Bisetti, A. et al. Excitatory action of hypocretin/orexin on neurons of the central medial amygdala. Neuroscience 142, 999–1004 (2006)

    Article  CAS  PubMed  Google Scholar 

  73. Marcus, J.N. et al. Differential expression of orexin receptors 1 and 2 in the rat brain. J Comp Neurol 435, 6–25 (2001)

    Article  CAS  PubMed  Google Scholar 

  74. Date, Y. et al. Orexins, orexigenic hypothalamic peptides, interact with autonomic, neuroendocrine and neuroregulatory systems. Proc Natl Acad Sci U S A 96, 748–753 (1999)

    Article  CAS  PubMed  Google Scholar 

  75. Fadel, J. & Deutch, A.Y. Anatomical substrates of orexin–dopamine interactions: lateral hypothalamic projections to the ventral tegmental area. Neuroscience 111, 379–387 (2002)

    Article  CAS  PubMed  Google Scholar 

  76. Vittoz, N.M. & Berridge, C.W. Hypocretin/orexin selectively increases dopamine efflux within the prefrontal cortex: involvement of the ventral tegmental area. Neuropsychopharmacology 31, 384–395 (2006)

    Article  CAS  PubMed  Google Scholar 

  77. Hariri, A.R., Mattay, V.S., Tessitore, A., Fera, F. & Weinberger, D.R. Neocortical modulation of the amygdala response to fearful stimuli. Biol Psychiatry 53, 494–501 (2003)

    Article  PubMed  Google Scholar 

  78. Milad, M.R. & Quirk, G.J. Neurons in medial prefrontal cortex signal memory for fear extinction. Nature 420, 70–74 (2002)

    Article  CAS  PubMed  Google Scholar 

  79. Phelps, E.A., Delgado, M.R., Nearing, K.I. & LeDoux, J.E. Extinction learning in humans: role of the amygdala and vmPFC. Neuron 43, 897–905 (2004)

    Article  CAS  PubMed  Google Scholar 

  80. Georgescu, D. et al. Involvement of the lateral hypothalamic peptide orexin in morphine dependence and withdrawal. J Neurosci 23, 3106–3111 (2003)

    CAS  PubMed  Google Scholar 

  81. Parkes, J.D., Baraitser, M., Marsden, C.D. & Asselman, P. Natural history, symptoms and treatment of the narcoleptic syndrome. Acta Neurol Scand 52, 337–353 (1975)

    Article  CAS  PubMed  Google Scholar 

  82. Schwartz, S. et al. Emotional and motor responses during game playing in narcoleptic patients: a functional MRI study. J Sleep Res 15, 32 (2006)

    Article  Google Scholar 

  83. Overeem, S., Lammers, G.J. & van Dijk, J.G. Cataplexy: ‘tonic immobility’ rather than ‘REM-sleep atonia’? Sleep Med 3, 471–477 (2002)

    Article  PubMed  Google Scholar 

  84. Talarovicova, A., Krskova, L. & Kiss, A. Some assessments of the amygdala role in suprahypothalamic neuroendocrine regulation: a minireview. Endocr Regul 41, 155–162 (2007)

    CAS  PubMed  Google Scholar 

  85. Misslin, R. The defense system of fear: behavior and neurocircuitry. Neurophysiol Clin 33, 55–66 (2003)

    Article  PubMed  Google Scholar 

  86. Phan, K.L., Wager, T., Taylor, S.F. & Liberzon, I. Functional neuroanatomy of emotion: a meta-analysis of emotion activation studies in PET and fMRI. Neuroimage 16, 331–348 (2002)

    Article  PubMed  Google Scholar 

  87. LeDoux, J. The emotional brain, fear, and the amygdala. Cell Mol Neurobiol 23, 727–738 (2003)

    Article  PubMed  Google Scholar 

  88. Bassetti, C. Cataplexy: ‘REM-atonia or tonic immobility’? Sleep Med 3, 465–466 (2002)

    Article  PubMed  Google Scholar 

  89. Kayaba, Y. et al. Attenuated defense response and low basal blood pressure in orexin knockout mice. Am J Physiol Regul Integr Comp Physiol 285, R581–R593 (2003)

    PubMed  Google Scholar 

  90. Zhang, W., Sakurai, T., Fukuda, Y. & Kuwaki, T. Orexin neuron-mediated skeletal muscle vasodilation and shift of baroreflex during defense response in mice. Am J Physiol Regul Integr Comp Physiol 290, R1654–R1663 (2006)

    CAS  PubMed  Google Scholar 

  91. Winsky-Sommerer, R. et al. Interaction between the corticotropin-releasing factor system and hypocretins (orexins): a novel circuit mediating stress response. J Neurosci 24, 11439–11448 (2004)

    Article  CAS  PubMed  Google Scholar 

  92. Winsky-Sommerer, R., Boutrel, B. & de Lecea, L. Stress and arousal: the corticotrophin-releasing factor/hypocretin circuitry. Mol Neurobiol 32, 285–294 (2005)

    Article  CAS  PubMed  Google Scholar 

  93. Fuse, T., Forsyth, J.P., Marx, B., Gallup, G.G. & Weaver, S. Factor structure of the Tonic Immobility Scale in female sexual assault survivors: an exploratory and Confirmatory Factor Analysis. J Anxiety Disord 21, 265–283 (2007)

    Article  PubMed  Google Scholar 

  94. Maquet, P. et al. Functional neuroanatomy of human rapid-eye-movement sleep and dreaming. Nature 383, 163–166 (1996)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Swiss National Science Foundation (# 3200B0-104100, # 3100A0-102133), by the National Centre of Competence in Research (NCCR) Affective sciences financed by the Swiss National Science Foundation (# 51NF40-104897), and the Geneva Center for Neurosciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sophie Schwartz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ponz, A., Schwartz, S. (2010). Humor Processing in Human Narcolepsy with Cataplexy. In: Goswami, M., Pandi-Perumal, S., Thorpy, M. (eds) Narcolepsy. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0854-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0854-4_11

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-0853-7

  • Online ISBN: 978-1-4419-0854-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics