Advertisement

Transporters: Importance in Drug Absorption, Distribution, and Removal

Chapter

Abstract

There is an increasing appreciation of the role that transport proteins play in the absorption, distribution, and elimination of a wide variety of drugs in clinical use. These transporters can be divided into efflux transporters belonging to the ATP-binding cassette (ABC) family and solute carrier (SLC) family members that mediate the influx or bidirectional movement of drugs across the cell membrane. Their coordinated expression and activities at the basolateral and apical side of transporting epithelia are significant determinants of drug disposition, drug–drug interactions, and variability in drug response and toxicity. This chapter focuses on the major SLC and ABC drug transporters expressed in intestine, liver, and kidney, with special emphasis on their distribution, mode of action, and drug substrate specificity.

Keywords

Basolateral Membrane Organic Anion Organic Cation Brush Border Membrane Efflux Transporter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aller SG, Yu J, Ward A, Weng Y, Chittaboina S, Zhuo R, Harrell PM, Trinh YT, Zhang Q, Urbatsch IL and Chang G (2009) Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding. Science 323:1718–1722.CrossRefPubMedGoogle Scholar
  2. Alrefai WA and Gill RK (2007) Bile acid transporters: structure, function, regulation and pathophysiological implications. Pharm Res 24:1803–1823.CrossRefPubMedGoogle Scholar
  3. Bailey PD, Boyd CA, Collier ID, George JP, Kellett GL, Meredith D, Morgan KM, Pettecrew R and Price RA (2006) Affinity prediction for substrates of the peptide transporter PepT1. Chem Commun (Camb)3:323–325.Google Scholar
  4. Balakrishnan A and Polli JE (2006) Apical sodium dependent bile acid transporter (ASBT, SLC10A2): a potential prodrug target. Mol Pharm 3:223–230.CrossRefPubMedGoogle Scholar
  5. Ballatori N (2005) Biology of a novel organic solute and steroid transporter, OSTalpha-OSTbeta. Exp Biol Med (Maywood) 230:689–698.Google Scholar
  6. Ballatori N, Christian WV, Lee JY, Dawson PA, Soroka CJ, Boyer JL, Madejczyk MS and Li N (2005) OSTalpha-OSTbeta: a major basolateral bile acid and steroid transporter in human intestinal, renal, and biliary epithelia. Hepatology 42:1270–1279.CrossRefPubMedGoogle Scholar
  7. Borst P, de Wolf C and van de Wetering K (2007) Multidrug resistance-associated proteins 3, 4, and 5. Pflugers Arch 453:661–673.CrossRefPubMedGoogle Scholar
  8. Brandsch M, Knutter I and Bosse-Doenecke E (2008) Pharmaceutical and pharmacological importance of peptide transporters. J Pharm Pharmacol 60:543–585.CrossRefPubMedGoogle Scholar
  9. Ciarimboli G (2008) Organic cation transporters. Xenobiotica 38:936–971.CrossRefPubMedGoogle Scholar
  10. Cusatis G and Sparreboom A (2008) Pharmacogenomic importance of ABCG2. Pharmacogenomics 9:1005–1009.CrossRefPubMedGoogle Scholar
  11. Dean M and Allikmets R (2001) Complete characterization of the human ABC gene family. J Bioenerg Biomembr 33:475–479.CrossRefPubMedGoogle Scholar
  12. Deeley RG, Westlake C and Cole SP (2006) Transmembrane transport of endo- and xenobiotics by mammalian ATP-binding cassette multidrug resistance proteins. Physiol Rev 86:849–899.CrossRefPubMedGoogle Scholar
  13. Dietrich CG, Geier A and Oude Elferink RP (2003) ABC of oral bioavailability: transporters as gatekeepers in the gut. Gut 52:1788–1795.CrossRefPubMedGoogle Scholar
  14. Dobson PD and Kell DB (2008) Carrier-mediated cellular uptake of pharmaceutical drugs: an exception or the rule?. Nat Rev Drug Discov 7:205–220.CrossRefPubMedGoogle Scholar
  15. El-Sheikh AA, Masereeuw R and Russel FG (2008) Mechanisms of renal anionic drug transport. Eur J Pharmacol 585:245–255.CrossRefPubMedGoogle Scholar
  16. El-Sheikh AA, van den Heuvel JJ, Koenderink JB and Russel FG (2007) Interaction of nonsteroidal anti-inflammatory drugs with multidrug resistance protein (MRP) 2/ABCC2- and MRP4/ABCC4-mediated methotrexate transport. J Pharmacol Exp Ther 320:229–235.CrossRefPubMedGoogle Scholar
  17. Endres CJ, Hsiao P, Chung FS and Unadkat JD (2006) The role of transporters in drug interactions. Eur J Pharm Sci 27:501–517.CrossRefPubMedGoogle Scholar
  18. Fredriksson R, Nordstrom KJ, Stephansson O, Hagglund MG and Schioth HB (2008) The solute carrier (SLC) complement of the human genome: phylogenetic classification reveals four major families. FEBS Lett 582:3811–3816.CrossRefPubMedGoogle Scholar
  19. Glaeser H, Bailey DG, Dresser GK, Gregor JC, Schwarz UI, McGrath JS, Jolicoeur E, Lee W, Leake BF, Tirona RG and Kim RB (2007) Intestinal drug transporter expression and the impact of grapefruit juice in humans. Clin Pharmacol Ther 81:362–370.CrossRefPubMedGoogle Scholar
  20. Hagenbuch B and Gui C (2008) Xenobiotic transporters of the human organic anion transporting polypeptides (OATP) family. Xenobiotica 38:778–801.CrossRefPubMedGoogle Scholar
  21. Hilgendorf C, Ahlin G, Seithel A, Artursson P, Ungell AL and Karlsson J (2007) Expression of thirty-six drug transporter genes in human intestine, liver, kidney, and organotypic cell lines. Drug Metab Dispos 35:1333–1340.CrossRefPubMedGoogle Scholar
  22. Ho RH and Kim RB (2005) Transporters and drug therapy: implications for drug disposition and disease. Clin Pharmacol Ther 78:260–277.CrossRefPubMedGoogle Scholar
  23. Hu S, Franke RM, Filipski KK, Hu C, Orwick SJ, de Bruijn EA, Burger H, Baker SD and Sparreboom A (2008) Interaction of imatinib with human organic ion carriers. Clin Cancer Res 14:3141–3148.CrossRefPubMedGoogle Scholar
  24. Huls M, Brown CD, Windass AS, Sayer R, van den Heuvel JJ, Heemskerk S, Russel FG and Masereeuw R (2008) The breast cancer resistance protein transporter ABCG2 is expressed in the human kidney proximal tubule apical membrane. Kidney Int 73:220–225.CrossRefPubMedGoogle Scholar
  25. Huls M, Russel FG and Masereeuw R (2009) The role of ATP binding cassette transporters in tissue defense and organ regeneration. J Pharmacol Exp Ther 328:3–9.CrossRefPubMedGoogle Scholar
  26. Ito K, Suzuki H, Horie T and Sugiyama Y (2005) Apical/basolateral surface expression of drug transporters and its role in vectorial drug transport. Pharm Res 22:1559–1577.CrossRefPubMedGoogle Scholar
  27. Kajiwara M, Terada T, Ogasawara K, Iwano J, Katsura T, Fukatsu A, Doi T and Inui K (2009) Identification of multidrug and toxin extrusion (MATE1 and MATE2-K) variants with complete loss of transport activity. J Hum Genet 54:40–46.CrossRefPubMedGoogle Scholar
  28. Kamal MA, Keep RF and Smith DE (2008) Role and relevance of PEPT2 in drug disposition, dynamics, and toxicity. Drug Metab Pharmacokinet 23:236–242.CrossRefPubMedGoogle Scholar
  29. Kameyama Y, Yamashita K, Kobayashi K, Hosokawa M and Chiba K (2005) Functional characterization of SLCO1B1 (OATP-C) variants, SLCO1B1*5, SLCO1B1*15 and SLCO1B1*15+C1007G, by using transient expression systems of HeLa and HEK293 cells. Pharmacogenet Genomics 15:513–522.CrossRefPubMedGoogle Scholar
  30. Kivisto KT, Niemi M and Fromm MF (2004) Functional interaction of intestinal CYP3A4 and P-glycoprotein. Fundam Clin Pharmacol 18:621–626.CrossRefPubMedGoogle Scholar
  31. Koepsell H, Lips K and Volk C (2007) Polyspecific organic cation transporters: structure, function, physiological roles, and biopharmaceutical implications. Pharm Res 24:1227–1251.CrossRefPubMedGoogle Scholar
  32. Kusuhara H and Sugiyama Y (2009) In vitro-in vivo extrapolation of transporter-mediated clearance in the liver and kidney. Drug Metab Pharmacokinet 24:37–52.CrossRefPubMedGoogle Scholar
  33. Lang T, Hitzl M, Burk O, Mornhinweg E, Keil A, Kerb R, Klein K, Zanger UM, Eichelbaum M and Fromm MF (2004) Genetic polymorphisms in the multidrug resistance-associated protein 3 (ABCC3, MRP3) gene and relationship to its mRNA and protein expression in human liver. Pharmacogenetics 14:155–164.CrossRefPubMedGoogle Scholar
  34. Leuthold S, Hagenbuch B, Mohebbi N, Wagner CA, Meier PJ and Stieger B (2009) Mechanisms of pH-gradient driven transport mediated by organic anion polypeptide transporters. Am J Physiol Cell Physiol 296:C570–C582.CrossRefPubMedGoogle Scholar
  35. Li C, Krishnamurthy PC, Penmatsa H, Marrs KL, Wang XQ, Zaccolo M, Jalink K, Li M, Nelson DJ, Schuetz JD and Naren AP (2007) Spatiotemporal coupling of cAMP transporter to CFTR chloride channel function in the gut epithelia. Cell 131:940–951.CrossRefPubMedGoogle Scholar
  36. Li L, Lee TK, Meier PJ and Ballatori N (1998) Identification of glutathione as a driving force and leukotriene C4 as a substrate for oatp1, the hepatic sinusoidal organic solute transporter. J Biol Chem 273:16184–16191.CrossRefPubMedGoogle Scholar
  37. Link E, Parish S, Armitage J, Bowman L, Heath S, Matsuda F, Gut I, Lathrop M and Collins R (2008) SLCO1B1 variants and statin-induced myopathy – a genomewide study. N Engl J Med 359:789–799.CrossRefPubMedGoogle Scholar
  38. Locher KP (2009) Review. Structure and mechanism of ATP-binding cassette transporters. Philos Trans R Soc Lond B Biol Sci 364:239–245.CrossRefPubMedGoogle Scholar
  39. Maeda K and Sugiyama Y (2008) Impact of genetic polymorphisms of transporters on the pharmacokinetic, pharmacodynamic and toxicological properties of anionic drugs. Drug Metab Pharmacokinet 23:223–235.CrossRefPubMedGoogle Scholar
  40. Mahagita C, Grassl SM, Piyachaturawat P and Ballatori N (2007) Human organic anion transporter 1B1 and 1B3 function as bidirectional carriers and do not mediate GSH-bile acid cotransport. Am J Physiol Gastrointest Liver Physiol 293:G271–G278.CrossRefPubMedGoogle Scholar
  41. Masereeuw R and Russel FG (2001) Mechanisms and clinical implications of renal drug excretion. Drug Metab Rev 33:299–351.CrossRefPubMedGoogle Scholar
  42. Matsushima S, Maeda K, Inoue K, Ohta KY, Yuasa H, Kondo T, Nakayama H, Horita S, Kusuhara H and Sugiyama Y (2009) The inhibition of human multidrug and toxin extrusion 1 is involved in the drug–drug interaction caused by cimetidine. Drug Metab Dispos 37:555–559.CrossRefPubMedGoogle Scholar
  43. Meier Y, Eloranta JJ, Darimont J, Ismair MG, Hiller C, Fried M, Kullak-Ublick GA and Vavricka SR (2007) Regional distribution of solute carrier mRNA expression along the human intestinal tract. Drug Metab Dispos 35:590–594.CrossRefPubMedGoogle Scholar
  44. Mizuno N and Sugiyama Y (2002) Drug transporters: their role and importance in the selection and development of new drugs. Drug Metab Pharmacokinet 17:93–108.CrossRefPubMedGoogle Scholar
  45. Moriyama Y, Hiasa M, Matsumoto T and Omote H (2008) Multidrug and toxic compound extrusion (MATE)-type proteins as anchor transporters for the excretion of metabolic waste products and xenobiotics. Xenobiotica 38:1107–1118.CrossRefPubMedGoogle Scholar
  46. Murakami T and Takano M (2008) Intestinal efflux transporters and drug absorption. Expert Opin Drug Metab Toxicol 4:923–939.CrossRefPubMedGoogle Scholar
  47. Nakamura T, Yamamori M and Sakaeda T (2008) Pharmacogenetics of intestinal absorption. Curr Drug Deliv 5:153–169.CrossRefPubMedGoogle Scholar
  48. Nies AT and Keppler D (2007) The apical conjugate efflux pump ABCC2 (MRP2). Pflugers Arch 453:643–659.CrossRefPubMedGoogle Scholar
  49. Nies AT, Schwab M and Keppler D (2008) Interplay of conjugating enzymes with OATP uptake transporters and ABCC/MRP efflux pumps in the elimination of drugs. Expert Opin Drug Metab Toxicol 4:545–568.CrossRefPubMedGoogle Scholar
  50. Noe J, Portmann R, Brun ME and Funk C (2007) Substrate-dependent drug–drug interactions between gemfibrozil, fluvastatin and other organic anion-transporting peptide (OATP) substrates on OATP1B1, OATP2B1, and OATP1B3. Drug Metab Dispos 35:1308–1314.CrossRefPubMedGoogle Scholar
  51. Oostendorp RL, Beijnen JH and Schellens JH (2009) The biological and clinical role of drug transporters at the intestinal barrier. Cancer Treat Rev 35:137–147.CrossRefPubMedGoogle Scholar
  52. Rius M, Nies AT, Hummel-Eisenbeiss J, Jedlitschky G and Keppler D (2003) Cotransport of reduced glutathione with bile salts by MRP4 (ABCC4) localized to the basolateral hepatocyte membrane. Hepatology 38:374–384.CrossRefPubMedGoogle Scholar
  53. Rizwan AN and Burckhardt G (2007) Organic anion transporters of the SLC22 family: biopharmaceutical, physiological, and pathological roles. Pharm Res 24:450–470.CrossRefPubMedGoogle Scholar
  54. Robey RW, To KK, Polgar O, Dohse M, Fetsch P, Dean M and Bates SE (2009) ABCG2: a perspective. Adv Drug Deliv Rev 61:3–13.CrossRefPubMedGoogle Scholar
  55. Rubio-Aliaga I and Daniel H (2008) Peptide transporters and their roles in physiological processes and drug disposition. Xenobiotica 38:1022–1042.CrossRefPubMedGoogle Scholar
  56. Russel FG, Koenderink JB and Masereeuw R (2008) Multidrug resistance protein 4 (MRP4/ABCC4): a versatile efflux transporter for drugs and signalling molecules. Trends Pharmacol Sci 29:200–207.CrossRefPubMedGoogle Scholar
  57. Russel FG, Masereeuw R and van Aubel RA (2002) Molecular aspects of renal anionic drug transport. Annu Rev Physiol 64:563–594.CrossRefPubMedGoogle Scholar
  58. Sarkadi B, Homolya L, Szakacs G and Varadi A (2006) Human multidrug resistance ABCB and ABCG transporters: participation in a chemoimmunity defense system. Physiol Rev 86:1179–1236.CrossRefPubMedGoogle Scholar
  59. Sekine T, Miyazaki H and Endou H (2006) Molecular physiology of renal organic anion transporters. Am J Physiol Renal Physiol 290:F251–F261.CrossRefPubMedGoogle Scholar
  60. Sheps JA and Ling V (2007) Preface: the concept and consequences of multidrug resistance. Pflugers Arch 453:545–553.CrossRefPubMedGoogle Scholar
  61. Shikata E, Yamamoto R, Takane H, Shigemasa C, Ikeda T, Otsubo K and Ieiri I (2007) Human organic cation transporter (OCT1 and OCT2) gene polymorphisms and therapeutic effects of metformin. J Hum Genet 52:117–122.CrossRefPubMedGoogle Scholar
  62. Shitara Y, Sato H and Sugiyama Y (2005) Evaluation of drug–drug interaction in the hepatobiliary and renal transport of drugs. Annu Rev Pharmacol Toxicol 45:689–723.CrossRefPubMedGoogle Scholar
  63. Shu Y, Sheardown SA, Brown C, Owen RP, Zhang S, Castro RA, Ianculescu AG, Yue L, Lo JC, Burchard EG, Brett CM and Giacomini KM (2007) Effect of genetic variation in the organic cation transporter 1 (OCT1) on metformin action. J Clin Invest 117:1422–1431.CrossRefPubMedGoogle Scholar
  64. Smeets PH, van Aubel RA, Wouterse AC, van den Heuvel JJ and Russel FG (2004) Contribution of multidrug resistance protein 2 (MRP2/ABCC2) to the renal excretion of p-aminohippurate (PAH) and identification of MRP4 (ABCC4) as a novel PAH transporter. J Am Soc Nephrol 15:2828–2835.CrossRefPubMedGoogle Scholar
  65. Srimaroeng C, Perry JL and Pritchard JB (2008) Physiology, structure, and regulation of the cloned organic anion transporters. Xenobiotica 38:889–935.CrossRefPubMedGoogle Scholar
  66. Stieger B, Meier Y and Meier PJ (2007) The bile salt export pump. Pflugers Arch 453:611–620.CrossRefPubMedGoogle Scholar
  67. Suhre WM, Ekins S, Chang C, Swaan PW and Wright SH (2005) Molecular determinants of substrate/inhibitor binding to the human and rabbit renal organic cation transporters hOCT2 and rbOCT2. Mol Pharmacol 67:1067–1077.CrossRefPubMedGoogle Scholar
  68. Szakacs G, Varadi A, Ozvegy-Laczka C and Sarkadi B (2008) The role of ABC transporters in drug absorption, distribution, metabolism, excretion and toxicity (ADME-Tox). Drug Discov Today 13:379–393.CrossRefPubMedGoogle Scholar
  69. Tanihara Y, Masuda S, Sato T, Katsura T, Ogawa O and Inui K (2007) Substrate specificity of MATE1 and MATE2-K, human multidrug and toxin extrusions/H(+)-organic cation antiporters. Biochem Pharmacol 74:359–371.CrossRefPubMedGoogle Scholar
  70. Terada T and Inui K (2008) Physiological and pharmacokinetic roles of H+/organic cation antiporters (MATE/SLC47A). Biochem Pharmacol 75:1689–1696.CrossRefPubMedGoogle Scholar
  71. Tsuji A (2002) Transporter-mediated drug interactions. Drug Metab Pharmacokinet 17:253–274.CrossRefPubMedGoogle Scholar
  72. Urakami Y, Akazawa M, Saito H, Okuda M and Inui K (2002) cDNA cloning, functional characterization, and tissue distribution of an alternatively spliced variant of organic cation transporter hOCT2 predominantly expressed in the human kidney. J Am Soc Nephrol 13:1703–1710.CrossRefPubMedGoogle Scholar
  73. Urban TJ, Brown C, Castro RA, Shah N, Mercer R, Huang Y, Brett CM, Burchard EG and Giacomini KM (2008) Effects of genetic variation in the novel organic cation transporter, OCTN1, on the renal clearance of gabapentin. Clin Pharmacol Ther 83:416–421.CrossRefPubMedGoogle Scholar
  74. van Aubel RA, Smeets PH, Peters JG, Bindels RJ and Russel FG (2002) The MRP4/ABCC4 gene encodes a novel apical organic anion transporter in human kidney proximal tubules: putative efflux pump for urinary cAMP and cGMP. J Am Soc Nephrol 13:595–603.PubMedGoogle Scholar
  75. van de Water FM, Masereeuw R and Russel FG (2005) Function and regulation of multidrug resistance proteins (MRPs) in the renal elimination of organic anions. Drug Metab Rev 37:443–471.CrossRefPubMedGoogle Scholar
  76. van Herwaarden AE and Schinkel AH (2006) The function of breast cancer resistance protein in epithelial barriers, stem cells and milk secretion of drugs and xenotoxins. Trends Pharmacol Sci 27:10–16.CrossRefPubMedGoogle Scholar
  77. Wang ZJ, Yin OQ, Tomlinson B and Chow MS (2008) OCT2 polymorphisms and in-vivo renal functional consequence: studies with metformin and cimetidine. Pharmacogenet Genomics 18:637–645.CrossRefPubMedGoogle Scholar
  78. Zair ZM, Eloranta JJ, Stieger B and Kullak-Ublick GA (2008) Pharmacogenetics of OATP (SLC21/SLCO), OAT and OCT (SLC22) and PEPT (SLC15) transporters in the intestine, liver and kidney. Pharmacogenomics 9:597–624.CrossRefPubMedGoogle Scholar
  79. Zhou SF (2008) Structure, function and regulation of P-glycoprotein and its clinical relevance in drug disposition. Xenobiotica 38:802–832.CrossRefPubMedGoogle Scholar
  80. Zhou K, Donnelly LA, Kimber CH, Donnan PT, Doney AS, Leese G, Hattersley AT, McCarthy MI, Morris AD, Palmer CN and Pearson ER (2009) Reduced function SLC22A1 polymorphisms encoding organic cation transporter 1 (OCT1) and glycaemic response to metformin: a Go-DARTS study. Diabetes: Mar 31. [Epub ahead of print].Google Scholar
  81. Zhou SF, Wang LL, Di YM, Xue CC, Duan W, Li CG and Li Y (2008) Substrates and inhibitors of human multidrug resistance associated proteins and the implications in drug development. Curr Med Chem 15:1981–2039.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department Pharmacology and ToxicologyRadboud University Nijmegen Medical Centre, Nijmegen Centre for Molecular Life sciencesNijmegenNetherlands

Personalised recommendations