Advertisement

Microbiological Spoilage of Fruits and Vegetables

  • Margaret Barth
  • Thomas R. Hankinson
  • Hong Zhuang
  • Frederick Breidt
Chapter
Part of the Food Microbiology and Food Safety book series (FMFS)

Abstract

Consumption of fruit and vegetable products has dramatically increased in the United States by more than 30% during the past few decades. It is also estimated that about 20% of all fruits and vegetables produced is lost each year due to spoilage. The focus of this chapter is to provide a general background on microbiological spoilage of fruit and vegetable products that are organized in three categories: fresh whole fruits and vegetables, fresh-cut fruits and vegetables, and fermented or acidified vegetable products. This chapter will address characteristics of spoilage microorganisms associated with each of these fruit and vegetable categories including spoilage mechanisms, spoilage defects, prevention and control of spoilage, and methods for detecting spoilage microorganisms.

Keywords

Lactic Acid Bacterium Modify Atmosphere Packaging Pectate Lyase Oxygen Transmission Rate Spoilage Microbe 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abbey, S. D., Heaton, E. K., Golden, D. A., & Beuchat, L. B. (1988). Microbiological and sensory quality changes in unwrapped and wrapped sliced watermelon. Journal of Food Protection, 51, 531–533.Google Scholar
  2. Acevedo, L., Mendoza, C., & Oyon, R. (2001). Total fecal coliforms, some enterobacterial Staphylococcus spp. and moulds in salads for hot dogs sold in Maracay. Venezuela Archivos Latinoamericanos de Nutrición. 51, 366–370.Google Scholar
  3. Adams, M. R., & Nicolaides, L. (1997). Review of the sensitivity of different foodborne pathogens to fermentation. Food Control 8, 227–239.CrossRefGoogle Scholar
  4. Agrios, G. A. (1997). Plant pathology (4th ed.). San Diego, CA: Academic Press.Google Scholar
  5. Ahvennainen, R. (1996). New approaches in improving the shelf life of minimally processed fruit and vegetables. Trends Food Science and Technology, 7, 179–187.CrossRefGoogle Scholar
  6. Allende, A., Aguayo, E., & Artes, F. (2004). Microbial and sensory quality of commercial fresh processed red lettuce throughout the production chain and shelf life. International Journal of Food Microbiology, 91, 109–117.CrossRefGoogle Scholar
  7. Allende, A., Jacxsens, L., Devlieghere, F., Debevere, J., & Artes, F. (2002). Effect of superatmospheric oxygen packaging on sensorial quality, spoilage, and Listeria monocytogenes and Aeromonas caviae growth in fresh processed mixed salads. Journal of Food Protection, 65, 1565–1573.Google Scholar
  8. Andrews, J. H., & Harris, R. F. (2000). The ecology and biogeography of microorganisms on plant surfaces. Annual Review Phytopathology, 38, 145–180.CrossRefGoogle Scholar
  9. Artes, F., & Martinez, J. (1996). Influence of packaging treatments on the keeping quality of Salinas lettuce. Lebensmittel-Wissenschaft Technology, 29, 664–668.CrossRefGoogle Scholar
  10. Babic, I., Hilbert, G., Nguyen-the, C., & Guiraud, J. (1992). The yeast flora of stored ready-to-use carrots and their role in spoilage. International Journal of Food Science and Technology, 27, 473–484.CrossRefGoogle Scholar
  11. Barras, F., van Gijsegem, F., & Chatterjee, A. K. (1994). Extracellular enzymes and pathogenesis of soft-rot erwinia. Annual Review Phytopathology 32, 201–234.CrossRefGoogle Scholar
  12. Barriga, M. I., Richie, D. F., Willemot, C., & Simard, R. E. (1991). Microbial changes in shredded iceberg lettuce stored under controlled atmospheres. Journal of Food Science, 56, 1586–1588, 1599.CrossRefGoogle Scholar
  13. Barry-Ryan, C., & O’Beirne, D. (2000). Effects of peeling methods on the quality of ready-to-use carrot slices. Journal of Food Science Technology, 35, 243–254.CrossRefGoogle Scholar
  14. Bartz, J. A. (2006). Internalization and Infiltration. In G. M. Sapers, J. R. Gorney, & A. E. Yousef (Eds.). Microbiology of fresh fruits and vegetables (pp. 75–94). New York: Taylor and Francis Group.Google Scholar
  15. BCGA. (1998). The safe application of oxygen enriched atmospheres when packaging food. British compressed gases association (p. 39) Hampshire, UK.Google Scholar
  16. Bell, T. A., & Etchells J. L. (1952). Sugar and acid tolerance of spoilage yeasts from sweet-cucumber pickles. Food Technology 6, 468–472.Google Scholar
  17. Bell, T. A., & Etchells, J. L. (1956). Pectin hydrolysis by certain salt-tolerant yeasts. Applied Microbiology, 4, 196–201.Google Scholar
  18. Bell, T. A., Etchells, J. L., & Costilow, R. N. (1958). Softening enzyme activity of cucumber flowers from northern production areas. Food Research, 23, 198–204.CrossRefGoogle Scholar
  19. Bolin, H. R., & Huxsoll, C. C. (1991). Control of minimally processed carrot (Daucus carota) surface discoloration caused by abrasion peeling. Journal of Food Science, 56, 416–418.CrossRefGoogle Scholar
  20. Bolin, H. R., Stafford, A. E., King Jr. A. D., & Huxsoll, C. C. (1977). Factors affecting the storage stability of shredded lettuce. Journal of Food Science, 42, 1319–1321.CrossRefGoogle Scholar
  21. Boyette, M. D., Ritchie, D. F., Carballo, S. J., Blankenship, S. M., & Sanders, D. C. (1993). Chlorination and postharvest disease control. Horticultural Technology, 3, 395–400.Google Scholar
  22. Brackett, R. E. (1994). Microbiological spoilage and pathogens in minimally processed refrigerated fruits and vegetables. In R. C. Wiley (Ed.), Minimally processed refrigerated fruits and vegetables (pp. 269–312). New York: Chapman & Hall.CrossRefGoogle Scholar
  23. Breidt, F., Hayes, J. S., & McFeeters, R. F. (2004). The independent effects of acetic acid and pH on the survival of Escherichia coli O157:H7 in simulated acidified pickle products. Journal of Food Protection, 67, 12–18.Google Scholar
  24. Breidt, Jr. F., Hayes, J. S., Osborne, J. A., & McFeeters, R. F. (2005). Determination of 5-log pathogen reduction times for heat-processed, acidified foods. Journal of Food Protection, 68, 305–310.Google Scholar
  25. Brocklehurst, T. F., & Lund, B. M. (1981). Properties of pseudomonads causing spoilage of vegetables stored at low temperature. Journal of Applied Bacteriology, 50, 259–266.CrossRefGoogle Scholar
  26. Brocklehurst, T. F., Zaman-Wong, C. M., & Lund, B. M. (1987). A note on the microbiology of retail packs of prepared salad vegetables. Journal of Applied Bacteriology, 63, 409–415CrossRefGoogle Scholar
  27. Brudzinski, L., & Harrison, M. A. (1998). Influence of incubation conditions on survival and acid tolerance response of Escherichia coli O157:H7 and non-O157:H7 isolates exposed to acetic acid. Journal of Food Protection, 61, 542–546.Google Scholar
  28. Brul, S., & Coote, P. (1999). Preservative agents in foods. Mode of action and microbial resistance mechanisms. International Journal of Food Microbiology, 50, 1–17.CrossRefGoogle Scholar
  29. Buick, R. K., & Damoglou, P. A. (1987). The effect of vacuum-packaging on the microbial spoilage and shelf-life of “ready-to-use”, sliced carrots. Journal of Science Food Agriculture, 38, 167–175.CrossRefGoogle Scholar
  30. Bulgarelli, M. A., & Brackett, R. E. (1991). The importance of fungi in vegetables. In D. K. Arora, K. G., Mukerji, & E. H., Marth (Eds.), Handbook of applied mycology, Vol. 3: Foods and feeds (pp. 179–199). New York: Marcel Dekker.Google Scholar
  31. Cantwell, M. I., & Suslow, T. V. (2002). Postharvest handling systems : Fresh-cut fruits and vegetables. In A. A. Kader (Ed.), Postharvest technology of horticultural ccrops (pp. 445–463). Davis CA: University of California.Google Scholar
  32. Carlin, F., & Nguyen-the, C. (1989). Bacteriologie des produits de quatrieme gamme, Reviews Genetics Froid, 79, 83–91.Google Scholar
  33. Carlin, F., Nguyen-the, C., Cudennec, P., & Reich, M. (1989). Microbiological spoilage of fresh, « ready-to-use » grated carrots. Sciences des Aliments, 9, 371–386.Google Scholar
  34. Carlin, F., Nguyen-the, C., Cudennec, P., & Reich, M. (1990). Effects of controlled atmospheres on microbial spoilage, electrolyte leakage and sugar content of fresh “ready-to-use” grated carrots. International Journal of Food Science Technology, 25, 110–119.CrossRefGoogle Scholar
  35. Carlin, F., Nguyen-the, C., Abreu Da Silva, A., & Cochet, C. (1996). Effects of carbon dioxide on the fate of Listeria monocytogenes, on aerobic bacteria and on the development of spoilage in minimally processed fresh endive. International Journal of Food Microbiology, 32, 159–172.CrossRefGoogle Scholar
  36. Code of Federal Regulations (CFR). (1979). Acidified products. Title 21. Part 114. Washington, DC.: Government Printing Office http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/cfrsearch.cfm viewed December 20, 2007.
  37. Collmer, A., & Keen, N. T. (1986). The role of pectic enzymes in plant pathogenisis. Annual Review of Phytopathology, 24, 383–409.CrossRefGoogle Scholar
  38. Conway, W. S. (1984). Preharvest factors affecting postharvest losses from disease. In H. E. Moline (ed.) Postharvest pathology of fruits and vegetables: Postharvest losses in perishable crops. (pp. 11–16). University of California Agricultural Experiment Station, Bull. No. 1914 (Pub. NE-87).Google Scholar
  39. Conway, W. S. (1989). Altering nutritional factors after harvest to enhance resistance to postharvest disease. Phytopathology, 79, 1384–1387.Google Scholar
  40. Conway, W. S., Janisiewicz, W. J., Klein, J. D., & Sams, C. E. (1999). Strategy for combining heat treatment, calcium infiltration, and biological control to reduce postharvest decay of “gala” apples. Horticultural Science, 34, 700–704.Google Scholar
  41. Costilow, R. N., Bedford, C. L., Mingus, D., & Black, D. (1977). Purging of natural salt-stock pickle fermentations to reduce bloater damage. Journal of Food Science, 42, 234–240.CrossRefGoogle Scholar
  42. Day, B. (1996). High oxygen modified atmosphere packaging for fresh prepared produce. Postharvest News Infection, 7, 31–34.Google Scholar
  43. Day, B. (2000). Novel MAP for freshly prepared fruit and vegetable products. Postharvest News Infection, 11, 27–31.Google Scholar
  44. Debevere, J. (1996). Criteria en praktische methoden voir de bepaling van de houdbaarheidsdatum In de etikettering. Etikettering, houdbaarheid en bewaring (voedingsmiddelen en recht 2) (pp. 37–64). Belgium : Die Keure, Brugge.Google Scholar
  45. Delaquis, P. J., Stewart, S., Toivonen, P. M. A., & Moyls, A. L. (1999). Effect of warm, chlorinated water on the microbial flora of shredded lettuce. Food Research International, 32, 7–14.CrossRefGoogle Scholar
  46. Delmouzos, J. G., Stadtman, F. H., & Vaughn, R. H. (1953). Malodorous fermentation – acidic constitutents of zapatera of olives. Journal of Agricultural and Food Chemistry, 1, 333–334.CrossRefGoogle Scholar
  47. DeVuyst, L. and Vandamme, E. J. (1994). Antimicrobial potential of lactic acid bacteria. bacteriocins of lactic acid bacteria (pp. 91–142). In L. DeVuyst, and E. J. Vandamme (ed.), Bacteriocins of lactic acid bacteria. Blackie Academic and Professional, London, England.CrossRefGoogle Scholar
  48. Dhingra, O. D., & Sinclair, J. B. (1985). Basic plant pathology methods. Boca Raton, FL: CRC Press, Inc.Google Scholar
  49. Diez-Gonzalez, F., & Russell, J. B. 1997a. The ability of Escherichia coli O157:H7 to decrease its intracellular pH and resist the toxicity of acetic acid. Microbiology, 143, 1175–1180.CrossRefGoogle Scholar
  50. Diez-Gonzalez, F., & Russell, J. B. (1997b). Effects of carbonylcyanide-m-chlorophenylhydrazone (CCCP) and acetate on Escherichia coli O157:H7 and K-12: uncoupling versus anion accumulation. FEMS Microbiology Letter, 151, 71–76.CrossRefGoogle Scholar
  51. Dijk, R., Beumer, R., De Boer, E., Bosboom, M., Brinkman, E., Debevere, J., et al. (1999) Microbiologie van Voedingsmiddelen: Methoden, Principes en Criteria. The Netherlands: Keesing Noordervliet, Houten.Google Scholar
  52. Doesburg, J. J. (1965). Pectic substances in fresh and preserved fruits and vegetables. In Institute for research on storage and processing of horticultural produce (p. 44). Netherlands: University of Wageningen.Google Scholar
  53. Downes, F. P., & Ito, K. (2001). Compendium for the microbiological examination of foods (4th ed.). Washington, DC: American Public Health Association.CrossRefGoogle Scholar
  54. Eckert, J. W., & Ogawa, J. M. (1988). The chemical control of postharvest diseases: deciduous fruits, berries, vegetables and root/tuber crops. Annual Review Phytopathology, 26, 433–469.CrossRefGoogle Scholar
  55. Economic Research Service (ERS) U. S. Department of Agriculture. (2007). Food availability data system. http://www.ers.usda.gov/data/foodconsumption/FoodAvailSpreadsheets.htm viewed November 19, 2007.
  56. Erturk, E., & Picha, D. H. (2006). Microbiological quality of fresh-cut sweet potatoes. International Journal of Food Science and Technology, 41, 366–374.CrossRefGoogle Scholar
  57. Etchells, J. L. (1950). Salt-tolerant yeasts from commercial cucumber brines. Texas Reports on Biology and Medicine, 8, 103–104.Google Scholar
  58. Etchells, J. L., Bell, T. A. Monroe, R. J., Masley, P. M., & Demain, A. L. (1958). Populations and softening enzyme activity of filamentous fungi on flowers, ovaries, and fruit of pickling cucumbers . Applied Microbiology, 6, 427–440.Google Scholar
  59. Etchells, J. L., Borg, A. F., & Bell, T. A. (1961). Influence of sorbic acid on populations and species of yeasts occurring in cucumber fermentations. Applied Microbiology, 9, 139–144.Google Scholar
  60. Etchells, J. L., Borg, A. F., & Bell, T. A. (1968). Bloater formation by gas-forming lactic acid bacteria in cucumber fermentations. Applied Microbiology, 16, 1029–1035.Google Scholar
  61. Etchells, J. L., & Jones, I. D. (1942). Pasteurization of pickle products. Fruit Products, 21, 330–332.Google Scholar
  62. Farber, J. N., Harris, L. J., Parish, M. E., Beuchat, L. R., Suslow, T. V., Gorney, J. R., et al. (2003). Microbiological safety of controlled and modified atmosphere packaging of fresh and fresh-cut produce. In Comprehensive reviews in food science and food safety (Vol. 2., pp. 142–160.Google Scholar
  63. Fernandez, A. G., Garcia, P. G., & Balbuena, M. B. (1995). Olive fermentations. In H. J. Rehm & G. Reed (Eds.), Enzymes, biomass, food and feed (pp. 593–627). New York: NY, VCH.CrossRefGoogle Scholar
  64. Fleet, G. (1992). Spoilage yeasts. Critical Reviews in Biotechnology, 12, 1–44.CrossRefGoogle Scholar
  65. Fleming, H. P., Daeschel, M. A., McFeeters, R. F., & Pierson, M. D. (1989). Butyric acid spoilage of fermented cucumbers. Journal of Food Science, 54, 636–639.CrossRefGoogle Scholar
  66. Fleming, H. P., Etchells, J. L., Thompson, R. L., & Bell, T. A. (1975). Purging of CO2 from cucumber brines to reduce bloater damage. Journal of Food Science, 40. 1304–1310.CrossRefGoogle Scholar
  67. Fleming, H. P., Kyung, K. H., & Breidt, F. (1995). Vegetable fermentations. In H. J. Rehm & G. Reed (Eds.), Biotechnology (pp. 631–661). New York: VCH.Google Scholar
  68. Fleming, H. P., McFeeters, R. F., & Thompson, R. L. (1987). Effects of sodium chloride concentration on firmness retention of cucumbers fermented and stored with calcium chloride. Journal of Food Science. 52, 653–657.CrossRefGoogle Scholar
  69. Fleming, H. P., Thompson, R. L., Etchells, J. L., Kelling, R. E., & Bell T. A. (1973). Carbon dioxide production in the fermentation of brined cucumbers. Journal of Food Science, 38, 504–506.CrossRefGoogle Scholar
  70. Food and Drug Administation (FDA). (1998). Guide to minimize microbial food safety hazards for fresh fruits and vegetables. http:///www.cfsan.fda.gov/~dms/prodguid.html viewed February 4, 2008.
  71. FDA (2000). FDA advises consumers about produce safety. http://www.cfsan.fda.gov/~lrd/tpproduce.html viewed November 19, 2007.
  72. FDA (2007). Guide to minimize microbial food safety hazards of fresh-cut fruits and vegetables. http://www.cfsan.fda.gv/~dms/prodgui3.html viewed February 4, 2008.
  73. Francis, G. A., & O’Beirne, D. (1997). Effects of gas atmosphere, antimicrobial dip and temperature on the fate of Listeria innocua and Listeria monocytogenes on minimally processed lettuce. International Journal of Food Science and Technology, 32, 141–151.CrossRefGoogle Scholar
  74. Francis, G. A., Thomas, C., & O’Beirne, D. (1999). The microbiological safety of minimally processed vegetables. International Journal of Food Science and Technology, 34, 1–22.CrossRefGoogle Scholar
  75. Fred, E. B. and Peterson, W. H. (1922). The production of pink sauerkraut by yeasts. Journal of Bacteriology, 7, 257–269.Google Scholar
  76. Fung, Y. C. F. (2006). Rapid detection of microbial contaminants. In G. M. Sapers, J. R. Gorney, & A. E. Yousef (Eds.), Microbiology of Fresh Fruits and Vegetables (pp. 565–594). New York: Taylor and Francis Group.Google Scholar
  77. Garg, N., Churey, J. J., & Splittstoesser, D. F. (1990). Effect of processing conditions on the microflora of fresh-cut vegetables. Journal of Food Protection, 53, 701–703.Google Scholar
  78. Geeson, N., Churey, J. J., & Splittstoesser, D. F. (1990). The fungal and bacterial flora of stored white cabbage, Journal of Applied Bacteriology, 46, 189–193.CrossRefGoogle Scholar
  79. Gerhardt, P., Murray, R. G. E., Costilow, R. N., Nester, E. W., Wood, W. A., Krieg, N. R., et al. (1981). Manual of methods for general bacteriology. Washington, DC: American Society for Microbiology.Google Scholar
  80. Gill, C. O., & Tan, K. H. (1979). Effect of carbon dioxide on growth of Pseudomonas fluorescens. Applied and Environmental Microbiology, 38, 237–240.Google Scholar
  81. Gimenez, M., Olarte, C., Sanz, S., Lomas, C., Echavarri, J. F., & Ayala, F. (2003). Relation between spoilage and microbiological quality in minimally processed artichoke packaged with different films. Food Microbiology, 20, 231–242.CrossRefGoogle Scholar
  82. Goepfert, J. M. (1980). Vegetables, fruits, nuts and their products. In J. H. Silliker, R. P. Elliott, A. C. Baird-Parker, F. L. Bryan, J. H. B. Christian, D. S. Clark, J. C. Olson, Jr., & T. A. Roberts (Eds.), Microbial ecology of foods (pp. 606–642). New York: Academic Press.Google Scholar
  83. Hagenmaier, R. D., & Baker, R. A. (1998). A survey of the microbial population and ethanol content of bagged salad. Journal of Food Protection, 61, 357–359.Google Scholar
  84. Hakim, A., Austin, M. E., Batal, D., Gullo, S., & Khatoon, M. (2004). Quality of fresh-cut tomatoes. Journal of Food Quality, 27, 195–206.CrossRefGoogle Scholar
  85. Han, J. H. (2003). Antimicrobial food packaging. In R. Ahvenainen (Ed.), Novel food packaging techniques (pp. 50–70).Cambridge, UK: Woodhead Publishing Ltd.CrossRefGoogle Scholar
  86. Hao, Y. Y., Brackett, R. H., Beuchat, L. R., & Doyle, M. P. (1998). Microbiological quality and the inability of proteolytic Clostridium botulinum to produce toxin in film-packaged fresh-cut cabbage and lettuce. Journal of Food Protection, 61, 1148–1153.Google Scholar
  87. Harris, L. J., Farber, J. N., Beuchat, L. R., Parish, M. E., Suslow, T. V. Garrett, E. H., et al. (2003). Outbreaks associated with fresh produce: incidence, growth, and survival of pathogens, in fresh and fresh-cut produce. Comprehensive Reviews in Food Science and Food Safety 2(Suppl), 78–141.CrossRefGoogle Scholar
  88. Heard, G. (2000). Microbial safety of ready-to-eat salads and minimally processed vegetables and fruits. Food Science and Technology Today, 14, 15–21.Google Scholar
  89. Holzapfel, W. H., Geisen, R., & Schillinger, U. (1995). Biological preservation of foods with reference to protective cultures, bacteriocins, and food-grade enzymes. International Journal of Food Microbiology, 24, 343–362.CrossRefGoogle Scholar
  90. Hsin-Yi, C., & Chou, C.-C. (2001). Acid adaptation and temperature effect on the survival of E. coli O157:H7 in acidic fruit juice and lactic fermented milk product. International Journal of Food Microbiology, 70, 189–195.CrossRefGoogle Scholar
  91. International Fresh-cut Product Association (IFPA). (2001). Fresh-cut produce: Get the facts! http://www.fresh-cuts.org viewed December 20, 2007.
  92. Ito, K. A., Seeger, M. L., Bhorer, C. W., Denny, C. B., & Bruch, M. K. (1968). Thermal and germicidal resistance of Clostridium botulinum types A, B and E spores. In Proceedings of the first U.S. – Japan conference on toxic microorganisms. M. Herzberg, ed., p. 410, Washington, DC: U. J. N. R. Joint panels on toxic microorganisms and the U.S. Department of Interior.Google Scholar
  93. Jackson, G. J. (1998). Bacteriological analytical manual (8th ed., Revision A). Gaithersburg, Maryland: AOAC International.Google Scholar
  94. Jacxsens, L., Devlieghere, F., Ragaert, P., Van der Steen, C., & Debevere, J. (2001). Effect of high oxygen modified atmosphere packaging on microbial growth and sensorial qualities of fresh-cut produce. International Journal of Food Microbiology, 71, 197–210.CrossRefGoogle Scholar
  95. Jacxsens, L., Devlieghere, F., Ragaert, P., Vanneste, E., & Debevere, J. (2003). Relation between microbiological quality, metabolite production and sensory quality of equilibrium modified atmosphere packaged fresh-cut produce. International Journal of Food Science and Technology, 31, 359–366.Google Scholar
  96. Janisiewicz, W. J., & Korsten, L. (2002). Biological control of postharvest diseases of fruits. Annual Review of Phytopathology, 40, 411–441.CrossRefGoogle Scholar
  97. Jockel, Von J., & Otto, W. (1990). Technologische und hygienische aspecte bei der herstellung und distribution von vorgeschnittenen salaten. Archiv fur Lebensmittelhygiene, 41, 129–152.Google Scholar
  98. Kader, A. A. (1992). Postharvest biology and technology: an overview. In A. Kader (tech. ed.) Postharvest Technology of Horticultural Crops. (pp. 15–20). University of California Division of Agriculture and Natural Resources, Pub. 3311.Google Scholar
  99. Kader, A. A., & Ben-Yehoshua, S. (2000). Effects of superatmospheric oxygen levels on postharvest physiology and quality of fresh fruits and vegetables. Postharvest Biology and Technology, 20, 1–13.CrossRefGoogle Scholar
  100. Kakiomenow, K., Tassou, C., & Nychas, G. (1996). Microbiological physiochemical and organoleptic changes of shredded carrots stored under modified storage. International Journal of Food Science Technology, 31, 359–366.CrossRefGoogle Scholar
  101. Kantor, L. S., Lipton, K., Manchester, A., & Oliveira, V. (1997). Estimating and addressing America’s food losses. Food Review, Jan-Apr: 2–12.Google Scholar
  102. Kaufman, P. R., Handy, C. R., McLaughlin, E. W., Park, K., & Green, G. M. (2000). Understanding the dynamics of produce markets: consumption and consolidation grow. USDA-ERS Information Bulletin No. 758.Google Scholar
  103. King, A. D., Jr., Michener, H. D., Bayne, H. G., & Mihara, K. L. (1976). Microbial studies on shelf life of cabbage and coleslaw. Applied and Environmental Microbiology, 31, 404–407.Google Scholar
  104. King, A. D., Jr., Magnuson, Torok, T., & Goodman, N. (1991) Microbial Flora and Storage Quality of Partially Processed Lettuce. Journal of Food Science, 56(2), 459–461.Google Scholar
  105. Koek, P. C., De Witte, Y., & De Maaker, J. (1983) The microbial ecology of prepared raw vegetables. In T. A. Roberts & ,F. A. Skinner (Eds.), Food microbiology: Advances and prospects (pp. 221–240). London: Academic Press.Google Scholar
  106. Legnani, P. P., & Leoni, E. (2004) Effect of processing and storage conditions on the microbiological quality of minimally processed vegetables. International Journal of Food Science and Technology, 39, 1061–1068.CrossRefGoogle Scholar
  107. Lelliott, R. A., & Stead, D. E. (1987). Methods and diagnosis of bacterial diseases of plants. Palo Alto, CA: Blackwell Scientific Publishing.Google Scholar
  108. Lequeu, J., Fauconnier, M-L, Chammai, A., Bronner, R., & Blee, E. (2003). Formation of plant cuticle: evidence for the occurrence of the peroxygenase pathway. Plant Journal, 36, 155–164.CrossRefGoogle Scholar
  109. Liao C-H. (2005). Bacterial soft rot. In G. M. Sapers, J. R. Gorney, & A. E. Yousef (Eds.), Microbiology of fruits and vegetables (pp. 117–134). Boca Raton, Fl: CRC Press.CrossRefGoogle Scholar
  110. Liao, C-H., & Fett, W. F. (2001). Analysis of native microflora and selection of strains antagonistic to human pathogens on fresh produce. Journal of Food Protection, 64, 1110–1115.Google Scholar
  111. Liao, C-H., & Wells, J. M. (1987) Diversity of pectolytic, fluorescent pseudomonads causing soft rots of fresh vegetables at produce markets. Phytopathology, 77, 673–677.CrossRefGoogle Scholar
  112. Liao, C-H., Hung, H. Y., & Chatterjee, A. K. (1988). An extracellular pectate lyase is the pathogenicity factor of the soft-rotting bacterium Pseudomonas viridiflava. Molecular Plant-Microbe Interactions, 1, 199–206.CrossRefGoogle Scholar
  113. Liao, C-H., McCallus, D. E., & Wells J. M. (1993). Calcium-dependent pectate lyase production in the soft-rotting bacterium Pseudomonas fluorescens, Phytopathology, 83, 813–818.CrossRefGoogle Scholar
  114. Liao, C-H., McCallus, D. E., Wells, J. M., Tzean, S. S., & Kang, G. Y. (1996). The repB gene required for production of extracellular enzymes and fluorescent siderophores in Pseudomonas viridiflava is an analog of the gacA gene of Pseudomonas syringae. Canadian Journal of Microbiology, 42, 177–182.CrossRefGoogle Scholar
  115. Liao, C-H., Sullivan, J., Gardy, J., & Wong, L. J. C. (1997). Biochemical characterization of pectate lyases produced by fluorescent pseudomonads associated with spoilage of fresh fruits and vegetables. Journal of Applied Microbiology, 83, 10–16.CrossRefGoogle Scholar
  116. Lindow, S. E., & Brandl, M. T. (2003). Minireview: Microbiology of the phyllosphere. Applied and Environmental Microbiology, 69, 1875–1883.CrossRefGoogle Scholar
  117. Lopez-Galvez, G., Peiser, G., & Nie, X. (1997). Quality changes in packaged salad products during storage. Zeitschrift Fur Lebensmittel-Untersuchung Und-Forschung, 205, 64–72.CrossRefGoogle Scholar
  118. Lund, B. M. (1982). The effect of bacteria on post-harvest quality of vegetables and fruits, with particular reference to spoilage. Ch. 9 In M. E. Rhodes-Roberts and F. A. Skinner (Eds.), Bacteria and plants (pp. 133–153). Society for Applied Bacteriology. Symposium Series No. 10. Sydney: Academic Press.Google Scholar
  119. Lund, B. M. (1983). Bacterial spoilage. In C. Dennis (Ed.), Post-harvest pathology of fruits and vegetables (pp. 218–257). London: Academic Press.Google Scholar
  120. Lund, B. M. (1993). The microbiological safety of prepared salad vegetables. Food Technology International Europe, 1993, 196–200.Google Scholar
  121. Lund, B. M., Baird-Parker, T. C., & Gould, G. W. (2000). The microbiological safety and quality of food. Gaithersburg, Maryland: Aspen Publishers, Inc.Google Scholar
  122. Lund, B. M., Brocklehurst, T. F., & Wyatt, G. M.. (1981). Characterization of strains of Clostridium puniceum sp. nov., a pink-pigmented, pectolytic bacterium. Journal of Genetic Microbiology, 122, 17–26.Google Scholar
  123. Magnusson, J. A., King, A. D., Jr., & Torok, T. (1990). Microflora of partially processed lettuce. Applied Environmental Microbiology, 56, 3851–3854.Google Scholar
  124. Mahovic, M., Sargent, S. A., & Bartz, J. A. (2005). Identifying and controlling postharvest tomato diseases in florida. University of Florida Institute, of Food and Agricultural Sciences (UF/IFAS), Doc. HS 866. (http://edis.ifas.ufl.edu/HS131).
  125. Mandrell, R. E., Gorski, L, & Brandl, M. T. (2006). Attachment of microorganisms to fresh produce. In G. M. Sapers, J. R. Gorney, & A. E. Yousef (Eds.), Microbiology of fresh fruits and vegetables (pp. 33–73). New York: Taylor and Francis Group.Google Scholar
  126. Manvell, P. M., & Ackland, M. R. (1986). Rapid detection of microbial growth in vegetable salads at chill and abuse temperatures. Food Microbiology, 3, 59–65.CrossRefGoogle Scholar
  127. Marchetti, R., Casadei, M. A., & Guerzoni, M. E. (1992). Microbial population dynamics in ready-to-use vegetable salads. Italian Journal of Food Science, 2, 97–108.Google Scholar
  128. Martinez-Ferrer, M., & Harper, C. (2005). Reduction in microbial growth and improvement of storage quality in fresh-cut pineapple after methyl jasmonate treatment. Journal of Food Quality, 28, 3–12.CrossRefGoogle Scholar
  129. Martinez-Ferrer, M., Harper, C., Perez-Muroz, F., & Chaparro, M. (2002). Modified atmosphere packaging of minimally processed mango and pineapple fruits. Journal of Food Science, 67, 3365–3371.CrossRefGoogle Scholar
  130. Mazollier, J., Bardet, M. C., & Bonnafoux, F. (1990). La Laitue de Ive gamme. Infos-CTIFL, 59, 23–26.Google Scholar
  131. McFeeters, R. F., & Fleming, H. P.. (1989). Inhibition of cucumber tissue softening in acid brines by multivalent cations – Inadequacy of the pectin egg box model to explain textural effects. Journal of Agricultural and Food Chemistry, 37,:1053–1059.CrossRefGoogle Scholar
  132. McFeeters, R. F., & Fleming, H. P. (1990). Effect of calcium-ions on the thermodynamics of cucumber tissue softening. Journal of Food Science, 55, 446–449.CrossRefGoogle Scholar
  133. McFeeters, R. F., Fleming, H. P., & Daeschel, M. A.. (1984). Malic acid degradation and brined cucumber bloating. Journal of Food Science, 49,:999–1002.CrossRefGoogle Scholar
  134. McKellar, R. C., & Knight, K. P. (1999). Growth and survival of varioius strains of enterohemorrhagic Escherichia coli in hydrochloric and acetic Acid. Journal of Food Protection, 62, 1462–1469.Google Scholar
  135. Miedes, E., & Lorences, E. P. (2004). Apple (malus domestica) and tomato (lycopersicum) fruits cell-wall hemicelluloses and xyloglucan degradation during penicillium expansum infection. Journal of Agricultural and Food Chemistry, 52, 7957–7963.CrossRefGoogle Scholar
  136. Molin, G. (2000). Modified atmospheres. In B. M. Lund, T. C. Baird-Parker, & G. W. Gould (Eds.), The microbiological safety and quality of food (pp. 214–234). Gaithersburg, MA: Aspen Publishers.Google Scholar
  137. Munsch, P., Geoffroy, V. A., Alatossava, T., & Meyer, J-M. (2000). Application of siderotyping for characterization of pseudomonas tolaasii and pseudomonas reactans isolates associated with brown blotch disease of cultivated mushrooms. Applied Environmental Microbiology, 66, 4834–4841.CrossRefGoogle Scholar
  138. Nguyen-the, C., & Carlin, F. (1994). The microbiology of minimally processed fresh fruits and vegetables. Critical Reviews in Food Science and Nutrition, 34, 371–401.CrossRefGoogle Scholar
  139. Nguyen-the, C., & Carlin, F. (2000). Fresh and processed vegetables. In B. M. Lund, T. C. Baird-Parker, & G. W. Gould (Eds.), The microbiological safety and quality of food (Vol. 1., pp. 620–684). Gaithersburg, Maryland: Aspen Publishers, Inc.Google Scholar
  140. Nguyen-the, C., & Prunier, J. P. (1989) Involvement of pseudomonads in the deterioration of “ready-to-use” salads. International Journal of Food Science and Technology, 24, 47–58.CrossRefGoogle Scholar
  141. O’Connor-Shaw, R. E., Roberts, R., Ford, A. L., & Nottingham, S. M. (1994). Shelf life of minimally processed honeydew melon, kiwifruit, papaya, pineapple and cantaloupe. Journal of Food Science, 59, 1202–1206, 1215.CrossRefGoogle Scholar
  142. O’Connor-Shaw, R. E., Roberts, R., Ford, A. L., & Nottingham, S. M. (1996). Changes in sensory quality of sterile cantaloupe dices stored in controlled atmospheres. Journal of Food Science, 61, 847–851.CrossRefGoogle Scholar
  143. O’Hare, T. J. (1994). Respiratory characteristics of cut pineapple tissue. Post Harvest Group, DPI Report, Queensland, Australia.Google Scholar
  144. Ohlsson, T., & Bengtsson, N. (2002). Minimally processing technologies in the food industry. New York Washington, DC: CRC Press, Boca Raton Boston.CrossRefGoogle Scholar
  145. Passos, F. V., Ollis, D. F., Fleming, H. P., Hassan, H. M., & Felder, R. M. (1993). Modeling the cucumber fermentation: growth of Lactobacillus plantarum. Journal of Industrial Microbiology, 12, 341–345.CrossRefGoogle Scholar
  146. Payne, J. H., Schoedel, C., Keen, N. T., & Collmer, A. (1987). Multiplication and virulence in plant tissues of Escherichia coli clones producing pectate lyase isozymes PLb and PLe at high levels and of an Erwinia chrysanthemi mutant deficient in Ple. Applied Environmental Microbiology, 53, 2315–2320.Google Scholar
  147. Pederson, C. S., & Albury, M. N. (1969). The Sauerkraut Fermentation. New York State Agriculture Experiment Station (Geneva, NY) Technology Bulletin 824.Google Scholar
  148. Pederson, C. S., & Kelly, C. D. (1938). Development of pink color in sauerkraut. Food Research, 3, 583–588.CrossRefGoogle Scholar
  149. Perombelon, M. C. M., Cullings-Hander, J., & Kelman, A. (1978). Population dynamics of Erwinia carotovora and pectolytic Clostridium spp. in relation to decay of potatoes, Phytopathology, 69, 167–173.CrossRefGoogle Scholar
  150. Pitt, J. I., & Hocking, A. D. (1985). The ecology of fungal food spoilage. In J. I. Pitt & A. D. Hocking (Eds.), Fungi and food spoilage (pp. 5–8). New York: Academic Press.Google Scholar
  151. Plastourgos, S., & Vaughn, R. H. (1957). Species of Propionibacterium associated with zapatera spoilage of olives. Applied Microbiology, 5, 267–271.Google Scholar
  152. Plengvidhya, V. 2003. Ph.D. thesis. NC State University. Microbial ecology of sauerkraut fermentation and genome analysis of lactic acid bacterium Leuconostoc mesenteroides ATCC 8293.Google Scholar
  153. Powrie, W. D., Wu, C. H., & Skura, B. J. (1988). Preservation of cut and segmented fresh fruit pieces. European Patent Application, 88104958.9, November 9.Google Scholar
  154. Poubol, J., & Izumi, H. (2005). Shelf life and microbial quality of fresh-cut mango cubes stored in high CO2 atmospheres. Journal of Food Science, 70, M69–M74.CrossRefGoogle Scholar
  155. Presser, K, Ross, A. T., & Ratkowsky, D. A. (1998). Modeling the growth limits (growth/no growth Interface) of Escherichia coli as a function of temperature, pH, lactic acid concentration, and water activity. Applied Environmental Microbiology, 64, 1773–1779.Google Scholar
  156. Py, B., Barras, F., Harris, S., Robson, N., & Salmond, G. P. C. (1998). Extracellular enzymes and their role in Erwinia virulence, Methods Microbiology, 27, 157–168.CrossRefGoogle Scholar
  157. Robbs, P. G., Bartz, J. A., McFie G., & Hodge N. C. (1996a). Causes of decay of fresh-cut celery. Journal of Food Science, 61, 444–448.CrossRefGoogle Scholar
  158. Robbs, P. G., Bartz, J. A., Mcfie G., & Hodge N. C. (1996b). Potential inoculum sources for decay of fresh-cut celery. Journal of Food Science, 61, 449–453.CrossRefGoogle Scholar
  159. Saltveit, M. E., & McFeeters, R. F. (1980). Polygalacturonase activity and ethylene synthesis during cucumber fruit development and maturation. Plant Physiology, 66, 1019–1023.CrossRefGoogle Scholar
  160. Sapers, G. M., Gorney, J. R., & Yousef, A. E. (2005) Microbiology of fruits and vegetables. Boca Raton, Fl: CRC Press.Google Scholar
  161. Sapers, G. M., Miller, R. L., Jantschke, M., & Mattrazzo, A. M. (2001). Factors limiting the efficacy of hydrogen peroxide washes for decontamination of apples containing Escherichia coli. Journal of Food Science, 65, 529–532.CrossRefGoogle Scholar
  162. Sapers, G. M., Miller, R. L., Pilizota, V., & Mattrazzo, A. M. (2001). Antimicrobial treatments for minimally processed cantaloupe melon. Journal of Food Science, 66, 345–349.CrossRefGoogle Scholar
  163. Schaad, N. W. (1988). Laboratory guide for identification of plant pathogenic bacteria (2nd ed.). St. Paul, Minnesota: APS Press.Google Scholar
  164. Sharpe, A. N., Hearn, E. M., & Kovacs-Nolan, J. (2000). Comparison of membrane filtration rates and hydrophobic grid membrane filter coliform and Escherichia coli counts in food suspensions using paddle-type and pulsifier sample preparation procedures. Journal of Food Protection, 63, 126–130.Google Scholar
  165. Shelef, L. A. (1994). Antimicrobial effects of lactates: A review. Journal of Food Protection, 57, 445–450.Google Scholar
  166. Sholberg, P. L., & Conway, W. S. (2004). Postharvest Pathology. In The commercial storage of fruits, vegetables, and florist and nursery stocks, USDA-ARS Agriculture Handbook Number 66. Draft – revised April 2004.Google Scholar
  167. Snowdon, A. L. (1990). Nature and causes of post-harvest deterioration. In A color atlas of post-harvest diseases and disorders of fruits and vegetables, volume 1: General introduction and fruits (pp. 11–53). London, England: Wolfe Scientific Publications.Google Scholar
  168. Sommer, N. F., Fortlagae, R. J., & Edwards, D. C. (1992). Postharvest diseases of selected commodities. In A. Kader (tech. Ed.) Postharvest technology of horticultural crops (pp. 117–160). University of California Division of Agriculture and Natural Resources, Pub. 3311.Google Scholar
  169. Splittstoesser, D. F. (1987). Fruits and fruit products. In L. R. Beuchat (Ed.), Food and beverage mycology (pp. 101–128). New York: Avi/van Nostrand Reinhold.Google Scholar
  170. Sofos, J. N. (1993). Current microbiological considerations in food preservation. International Journal of Food Microbiology, 19, :87–108.CrossRefGoogle Scholar
  171. Stamer, J., Hrazdina, R. G., & Stoyla, B. O. (1973). Induction of red color formation in cabbage juice by Lactobacillus brevis and its relationship to pink sauerkraut. Applied Microbiology, 26, 161–166.Google Scholar
  172. Sugar, D., Righetti, T. L., Sanchez, E. E., & Khemira(NOTE : Need initials). (1992). Management of nitrogen and calcium in pear tree for enhancement of fruit resistance to postharvest decay. Hort Technology 2, 382–387.Google Scholar
  173. Sugar, D., & Spotts, R. (1995). Preharvest strategies to reduce postharvest decay. In 1995 Washington tree fruit postharvest conference preceedings, washington state horticultural association. Wenatchee, WA.Google Scholar
  174. Torok, T., & King, A. D., Jr. (1991). Comparative study on the identification of food-borne yeasts. Applied Environmental Microbiology, 57, 1207–1212.Google Scholar
  175. Tournas, V. H. (2005a). Moulds and yeasts in fresh and minimally processed vegetables and sprouts. International Journal of Food Microbiology, 99, 71–77.CrossRefGoogle Scholar
  176. Tournas, V. H. (2005b). Spoilage of vegetable crops by bacteria and fungi and related health hazards. Critical Review of Microbiology 31, 33–44.CrossRefGoogle Scholar
  177. Ukuku, D. O., & Fett, W. (2002). Behavior of Listeria monocytogenes inoculated on cantaloupe surfaces and efficacy of washing treatments to reduce transfer from rind to fresh-cut pieces. Journal of Food Protection, 65, 924–930.Google Scholar
  178. Ukuku, D. O., & Sapers, G. M. (2001). Effect of sanitizer treatments on Salmonella stanley attached to the surface of cantaloupe and cell transfer to fresh-cut tissues during cutting practice. Journal of Food Protection, 64, 1286–1291.Google Scholar
  179. Ukuku, D. O., & Sapers, G. M. (2005). Microbiological safety issues of fresh melons. In G. M. Sapers, J. R. Gorney, & A. E. Yousef (Eds.), Microbiology of fruits and vegetables (pp. 231–251). Boca Raton, Fl: CRC Press.CrossRefGoogle Scholar
  180. Uljas, H. E., & Ingham, S. C. (1998). Survival of Escherichai coli O157:H7 in synthetic gastric fluid after cold and acid habituation in apple juice or trypticase soy broth acidified with hydrochloric acid or organic acids. Journal of Food Protection, 61, 939–947.Google Scholar
  181. Van Buren, J. P. (1986). Softening of cooked snap beans and other vegetables in relation to pectins and salts. In M. L. Fishman & J. J. Jen (Eds.), Chemistry and function of pectins. Washington, DC: American Chemical Society.Google Scholar
  182. Van Kan, J. A. L. (2006). Licensed to kill: the lifestyle of a necrotrophic plant pathogen. Trends in Plant Science. 11, 247––253.Google Scholar
  183. Warren, K. (2005). Category offers promise for processors, retails. Fresh cut magazine, June, http://www.freshcut.com/pages/arts
  184. Watada, E. A., Herner, R. C., Kader, A. A., Romani, R. J., & Staby, G. L. (1984). Terminology for the description of developmental stages of horticultural crops. Hortscience, 19, 220–21.Google Scholar
  185. Watkins, C. B., Kupferman, E., & Rosenberger, D. A. (2004). Apple. In The commercial storage of fruits, vegetables, and florist and nursery stocks, USDA-ARS Agriculture Handbook Number 66. Draft – revised April 2004.Google Scholar
  186. Wells, J. M. (1974). Growth of Erwinia atroseptica and Pseudomonas fluorescens in low O2 and high CO2 atmospheres. Phytopathology, 64, 1012–1015.CrossRefGoogle Scholar
  187. Wells, J. M., Sapers, G. M., Fett, W. F., Butterfield, J. E., Jones, J. B., Bouzar, H., & Miller, F. C. (1996). Postharvest discoloration of the cultivated mushroom Agaricus bisporus caused by Pseudomonas tolaasii, P. ‘reactans’, and P. ‘gingeri’. Postharvest Pathol. Mycotoxins. 86, 1098–1104.Google Scholar
  188. Wiley, R. C. (1994). Minimally processed refrigerated fruits and vegetables. New York: Chapman and Hall.CrossRefGoogle Scholar
  189. Wu, V. C. H., Jitareerat, P., & Fung, D. Y. C. (2003). Comparison of the Pulsifier and the Stomacher for recovering viable microorganisms in vegetables. Journal of Rapid Methods Automation in Microbiology, 11. 145–151.CrossRefGoogle Scholar
  190. Zhuang, H., Barth, M. M., & Hankinson, T. R. (2003). Microbial safety, quality, and sensory aspects of fresh-cut fruits and vegetables. In J. S. Novak, G. M. Sapers, & V. K. Juneja (Eds.), Microbial safety of minimally processed foods (pp. 255–278). Boca Raton, Fl: CRC Press.Google Scholar
  191. Zhuang, H., Barth, M. M., & Hildebrand, D. F. (2002). Fatty acid oxidation in plant tissues. In C. C. Akoh & D. B. Min (Eds.). Food lipids: Chemistry, nutrition, and biotechnology (2nd ed., pp. 413–364). New York, Basel, Hong Kong: Marcel Dekker, Inc.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Margaret Barth
    • 1
  • Thomas R. Hankinson
    • 2
  • Hong Zhuang
    • 3
  • Frederick Breidt
    • 4
  1. 1.Responsible SourceLake ForestUSA
  2. 2.Produce Safety Solutions, Inc.ToughkenamonUSA
  3. 3.Agricultural Research Service­USDARussell Research CenterAthensUSA
  4. 4.USDA Agricultural Research ServiceNorth Carolina State UniversityRaleighUSA

Personalised recommendations