Microbiological Spoilage of High-Sugar Products

Chapter
Part of the Food Microbiology and Food Safety book series (FMFS)

Abstract

The high-sugar products discussed in this chapter are referred to as chocolate, sugar confectionery (non-chocolate), liquid sugars, sugar syrups, and honey. Products grouped in the sugar confectionery category include hard candy, soft/gummy candy, caramel, toffee, licorice, marzipan, creams, jellies, and nougats. A common intrinsic parameter associated with high-sugar products is their low water activity (aw), which is known to inhibit the growth of most spoilage and pathogenic bacteria. However, spoilage can occur as a result of the growth of osmophilic yeasts and xerophilic molds (Von Richter, 1912; Anand & Brown, 1968; Brown, 1976). The aw range for high-sugar products is between 0.20 and 0.80 (Banwart, 1979; Richardson, 1987; Lenovich & Konkel, 1992; ICMSF, 1998; Jay, Loessner, & Golden, 2005). Spoilage of products, such as chocolate-covered cherries, results from the presence of yeasts in the liquid sugar brine or the cherry. Generally, the spoiled product will develop leakers. The chocolate covering the cherry would not likely be a source of yeast contamination.

References

  1. Allen, L. A., Cooper, A. H., Cairns, A., & Maxwell, M. C. C. (1946). Microbiology of beet sugar manufacture. Proceedings of the Society for Applied Bacteriology, 9, 1–5.CrossRefGoogle Scholar
  2. Anand, J. C. & Brown, A. D. (1968). Growth rate patterns of so-called osmophilic and non-osmophilic yeasts in solutions of polyethylene glycol. Journal of General Microbiology, 52, 205–212.CrossRefGoogle Scholar
  3. Aureli, P. & Accorti, M. (1981). Honey and infant botulism (in Italian). Rivista della SocietaItaliano di Scienza dell’Alimenta zoine, 10, 181–184.Google Scholar
  4. Aureli, P., Ferrini, A. M., & Negri, S. (1985). Clostridium botulinum spores in honey. Rivista della Societa Italiana di Scienze dell Alimentazione 12, 457–466.Google Scholar
  5. Banwart, G. J. (1979). Basic food microbiology. Westport, CT: AVI Publishing.Google Scholar
  6. Barrile, J. C., Ostovar, R., & Keeney, P. G. (1971). Microflora of cocoa beans before and after roasting at 150°C. Journal of Milk Food Technology, 34, 369–371.Google Scholar
  7. Belamri, M., Douiri, K, Fakhereddine, L., & Tantaoui-Elaraki, A. (1993). Preliminary study on saccharolytic activity of thermophilic bacteria from extraction beet juice. International Sugar Journal, 95, 7–22.Google Scholar
  8. Belamri, M., Mekkaoui, A. K., & Tantaoui-Elaraki, A. (1991). Saccharolytic bacteria in beet juices. International Sugar Journal, 93, 10–212.Google Scholar
  9. Bevan, D. & Bond, J. (1971). Microorganisms in field and mill – a preliminary survey. Proceedings Conference Queensland Society of Sugar Cane Technology, 38, 137–143.Google Scholar
  10. Britten, M. & Movin, A. (1995). Functional characterization of the exopolysaccharide from Enterobacter agglomerans grown on low-grade maple sap. Lebensmittel-Wissenschaft und-Technologie, 28, 264–271.CrossRefGoogle Scholar
  11. Brown, A. D. (1976). Microbial water stress. Bacteriology Review, 40, 803–846.Google Scholar
  12. Bungee, W. M., Cole, D. F., & Nielsen, G. (1975). Microflora and invert sugars in juice from healthy tissue of stored sugar beets. Applied Microbiology, 29, 780–781.Google Scholar
  13. Carruthers, A. & Oldfield, J. F. T. (1955). The activity of thermophilic bacteria in sugar beet diffusion systems. 8th Annual Technology Conference British Sugar Corporation, Nottingham, England, 47 pp.Google Scholar
  14. Carruthers, A., Gallagher, P. J., & Oldfield, J. F. T. (1958). Nitrite reduction by thermophilic bacteria in sugar beet diffusion systems. Report of British Sugar Corporation, Nottingham, England.Google Scholar
  15. Codex Alimentarius. (1994). Sugars, cocoa products and chocolate and miscellaneous products (Vol. II, 2nd ed.), Joint FAO/WHO Food Standards Programme, Codex Alimentarius Commission, Rome.Google Scholar
  16. Cole, D. F. & Bugbee, W. M. (1976). Changes in resident bacteria, pH, sucrose, and invert sugar levels in sugar beet roots during storage. Applied Environment Microbiology, 31, 754–757.Google Scholar
  17. Collins-Thompson, D. L., Weiss, K. F., Riedel, G. W., & Cushing, C. B. (1981). Survey of microbiological guidelines for chocolate and chocolate products in Canada. Journal Institute Canadian Science and Technology Aliments, 14, 203–207.CrossRefGoogle Scholar
  18. Cordier, J. L. (2000). Sugars, honey, cocoa, chocolate and confectionery products. In B.M. Lund, T.C. Baird-Parker, & G.W. Gould (Eds.), Microbiological safety and quality of food (pp. 941–959). Gaithersburg, MD: Aspen Publishers.Google Scholar
  19. Crane, E. (1979). Honey. A comprehensive survey. London: Heinemann.Google Scholar
  20. Craven, P. C., Mackel, D. C., Baine, W. B., Barker, W .H., Gangarosa, E. J., Goldfield, M., et al. (1975) International outbreak of Salmonella eastbourne infection traced to contaminated chocolate. Lancet, 305, 788–792.CrossRefGoogle Scholar
  21. Deak, T. & Beuchat, L. R. (1996). Handbook of food spoilage yeasts. Baca Raton, FL: CRC Press.Google Scholar
  22. Dragoni, J., Balzaretti, C., & Ravaretto, R. (1989). Seasonality of the microflora in environments of confectionery production. Industrie Alimentari, 28, 481–486.Google Scholar
  23. Du, S., Cheng, C., Lai, H., & Chen, L. (1991). Combined methods of dialysis, cooked meat medium enrichment and laboratory animal toxicity for screening Clostridium botulinum spores in honey and infant food. Chinese Journal of Microbiology and Immunology, 24, 240–247.Google Scholar
  24. Dumont, J., Saucier, L., Allard, G. B., & Aurouze, B. (1993). Microbiological, physicochemical and sensory quality of maple syrup aseptically packaged in paper-based laminate. International Journal of Food Science and Technology, 28, 83–93.CrossRefGoogle Scholar
  25. Egan, B. T. (1971). Post-harvest deterioration of sugar cane. Sugar Experimental Station Board. Brisbane, Australia.Google Scholar
  26. Fett, H. M. (1973). Water activity determination in foods in the range of 0.80 to 0.99. Journal of Food Science, 38, 1097–1098.CrossRefGoogle Scholar
  27. Fiedler, B. 1994. Effect of disinfectants on osmophilic yeast during sugar manufacture and processing. Zuckerind, 119, 130–133.Google Scholar
  28. Flemming, R. & Stojanowic, V. (1980). Untersuchungen von Bienenhonig auf Clostridium botulinum Sporen. Arch Lebensmittelhyg, 31, 179–180.Google Scholar
  29. Food and Agriculture Organization of the United Nations (FAO). (1998). Production yearbook. 51. Rome.Google Scholar
  30. Furuta, T. & Okimoto, Y. (1978). Further investigations on honey yeasts. Bulletinof the Faculty of Agriculture Tamagawa University, 18, 32–38.Google Scholar
  31. Gastrin, B., Kampe, A., Nystrom, K., Oden-Johanson, B., Wessel, G., & Zetterberg. (1972). An epidemic of Salmonella durham caused by contaminated cocoa. Lakartidningen, 69, 5335–5338 (Original in Swedish).Google Scholar
  32. Gibson, B. (1973). The effect of high sugar concentrations on the heat resistance of vegetative microorganisms. Journal of Applied Bacteriology, 36, 365–376.CrossRefGoogle Scholar
  33. Gill, O. N., Socket, P. N., Bartlett, C. L. R., Vaile, M. S. B., Rowe, B., Gilbert, R. J., et al. (1983). Outbreak of Salmonella napoli infection caused by contaminated chocolate bars. Lancet, 1, 574–577.CrossRefGoogle Scholar
  34. Giorgi, J. C. & Gontier, R. (1980). Preservation of pure sugar syrups by UV irradiation. International Sugar Journal, 82, 86–88.Google Scholar
  35. Guilfoyle, D. E. & Yager, J. F. (1983). Survey of infant foods for Clostridium botulinum spores. Journal Association of Official Analytical Chemists, 66, 1302–1304.Google Scholar
  36. Hartgen, V. H. (1980) Untersuchungen von Honigproben auf Botulinustoxin. Archiv für Lebensmittelhygiene, 31, 177–178.Google Scholar
  37. Hauschild, A. H. W., Hilsheimer, R., Weiss, K. F., & Burke, R. B. (1988). Clostridium botulinum in honey, syrups and dry infant cereals. Journal of Food Protection, 51, 892–894.Google Scholar
  38. Hayward, F. W. (1946). The storage of maple syrup. New York State Agricultural Experiment Station Bulletin 719. Geneva, NY, USA.Google Scholar
  39. Hazzard, A. R. & Murrell, W. G. (1989). Clostridium botulinum. In K. A. Buckle (Ed.), Foodborne microorganisms of public health significance (pp. 177–208). Australia: Austrian Institute of Food Science and Technology.Google Scholar
  40. Hockin, J. C., D’Aoust, J. J., Bowering, D., Jessop, J. H., Khama, B., Kior, H., et al. (1989). An international outbreak of Salmonella nima from imported chocolate. Journal of Food Protection, 52, 51–59.Google Scholar
  41. Hopko, I. (1979) Food hygienic aspects of the confectionery industry. Edesipar, 30, 8 (Original in Hungarian).Google Scholar
  42. Horwitz, W. (1975). Thermophilic bacterial spores in sugars: Official first action. Official methods of analysis of the association of official analytical chemist (pp. 920–921). Washington, DC: AOAC.Google Scholar
  43. Huhtanen, C. N., Knox, D., & Shimanuki, H. (1981). Incidence and origin of Clostridium botulinum spores in honey. Journal of Food Protection, 44, 812–814.Google Scholar
  44. International Commission on Microbiological Specifications for Foods (ICMSF). (1980). Food commodities, sugar, cocoa, chocolate, and confectioneries. In Microorganisms in foods. Microbial ecology of foods (Vol. 2, pp. 778–821). New York: Academic Press.Google Scholar
  45. International Commission on Microbiological Specifications for Foods (ICMSF). (1998). Sugar, Syrup, and Honey. In Microorganisms in foods. 6. Microbial ecology of food commodities (pp. 418–439). London: Blackie Academic & Professional.Google Scholar
  46. Jay, J. M., Loessner, M. J., & Golden, D .A. (2005). Modern food microbiology (7th ed., pp. 443–456). New York: Springer Science.Google Scholar
  47. Kapperud, G., Gustarsen, S., Hellesnes, I., Hansen, A. H., Lassen, J., Hirn, J., et al. (1990). Outbreak of Salmonella typhimurium infection traced to contaminated chocolate and caused by a strain lacking the 60-Megadalton virulence plasmid. Journal of Clinical Microbiology, 28, 2597–2601.Google Scholar
  48. Kautter, D. A., Lilly, T., Solomon, H. M., & Lynt, R. K. (1982). Clostridium botulinum spores in infant foods: A survey, Journal of Food Protection, 45, 1028–1029.Google Scholar
  49. Kelly, N. (1967). Sugar. In J. L. Heid & M. A. Joslyn (Eds.), Fundamentals of food processing operations (pp. 30–61). Westport, CT: AVI Publishing.Google Scholar
  50. Kissinger, J. C. (1974). Collaborative study of a modified resazurin test for estimating bacterial count in maple sap. Journal of the Association of Official Analytical Chemists, 57, 544–547.Google Scholar
  51. Klaushofer, H., Hollaus, F., & Pollach, G. (1971). Microbiology of beet sugar manufacture. Process Biochemistry, 6, 39–41.Google Scholar
  52. Klaushofer, H. & Parkkinen, E. (1966). Concerning taxonomy of highly thermophilic aerobic sporeformers found in juices from sugar factories. Zeitschrift fuer die Zuckerindustrie, 16, 125–130.Google Scholar
  53. Kokubo, Y., Jinko, K., Kaneko, S., & Matsumoto, M. (1984). Prevalence of spore-forming bacteria in commercial honey. Annual Report of Tokyo Metropolitan Research Laboratory of Public Health, 35, 192–196.Google Scholar
  54. Le Bot, Y. & Gouy, P. A. (1995). Polyols from starch. In M. W. Kearsley & S. Z. Dziedzic (Eds.), Handbook of starch hydrolysis products and their derivatives (pp. 155–177). Glasgow: Blackie Academic & Professional.CrossRefGoogle Scholar
  55. Lenovich, L. M., & Konkel, P .J. (1992). Confectionery products. In C. Vanderzant & D.F. Splittstoesser (Eds.), Compendium of methods for the microbiological examination of foods (3rd ed., pp. 1007–1018). Washington, DC: American Public Health Association.Google Scholar
  56. Lilly, T., Rhodehamel, E. J., Kautter, D. A., & Solomon, H. M. (1991). Clostridium botulinumspores in corn syrup and other syrups. Journal of Food Protection, 54, 585–587.Google Scholar
  57. McMaster, L. & Ravnö, A. B. (1977). The occurrence of lactic acid and associated microorganisms in cane sugar processing. Proceedings of the International Society of Sugar Cane Technology, 16, 1–15.Google Scholar
  58. Midura, T. F. (1996). Update: Infant botulism. Clinical Microbiology Review, 9, 119–125.Google Scholar
  59. Midura, T. F., Snowden, S., Wood, R. M., & Arnon, S. S. (1979). Isolation of Clostridium botulinum from honey. Journal of Clinical Microbiology, 9, 282–283.Google Scholar
  60. Morselli, M. F. & Feldheim, W. (1988). Maple syrup-a review. Zeitschrift fuer Lebensmittel-Untersuchung und-Forschung, 186, 6–10.CrossRefGoogle Scholar
  61. Molan, P. (1992). The antibacterial activity of honey. 1. The nature of the antibacterial activity. Bee World, 73, 5–28.CrossRefGoogle Scholar
  62. Mossel, D. A. A. & Sand, F. E. M. J. (1968). Occurrence and prevention of microbial deterioration of confectionery products. Conservation, 17, 23–32.Google Scholar
  63. Naghski, J. & Willis, C. O. (1955) Maple syrup. IX. Microorganisms as a cause of premature stoppage of sap flow from maple tap holes. Applied Microbiology, 3, 149–151.Google Scholar
  64. Nakano, H., Okabe, T., Hashimoto, H., & Sakoguchi, G. (1989). Incidence of Clostridium botulinum in honey of various origins. Japanese Journal of Medical Science and Biology, 43, 183–195.CrossRefGoogle Scholar
  65. Nakano, H. & Sakaguchi, G. (1991). An unusually heavy contamination of honey products by Clostridium botulinum type F and Bacillus alvei. FEMS Microbiology Letters, 79, 171–178.CrossRefGoogle Scholar
  66. National Food Processors Association. (1972). Bacterial standards for sugar, revised. Washington, DC: NFPA.Google Scholar
  67. National Soft Drink Association. (1975). Quality specifications and test procedures for bottlers’ granulated and liquid sugar. Washington, DC: National Soft Drink Association.Google Scholar
  68. Nunez, W. J. & Colmer, A. R. (1968). Differentiation of Aerobacter–Klebsiella isolated from sugar cane. Applied Microbiology, 16, 1875–1878.Google Scholar
  69. Oldfield, J. F. T., Dutton, J. V., & Shore, M. (1974). Effects of thermophilic activity in diffusion on sugar beet processing. Part II. International Sugar, 76, 301–305.Google Scholar
  70. Oldfield, J. F. T., Dutton, J.V., & Teague, H. J. (1971). The significance of invert and gum formation in deteriorated beet. International Sugar, 73, 3–8, 35–40, 66–68.Google Scholar
  71. Ostovar, K. & Keeney, P. G. (1973). Isolation and characterization of microorganisms involved in the fermentation of Trinidad’s cocoa beans. Journal of Food Science, 38, 611–617.CrossRefGoogle Scholar
  72. Owen, W.L. (1977) Microbiology of sugar manufacture and refining. In G. P. Meade & J. C. P. Chen (Eds.), Cane sugar handbook (10th ed, pp. 405–422). New York: Wiley.Google Scholar
  73. Pancoast, H. M. & Junk, W. R. (1980). Handbook of sugars (2nd ed.). Westport, CT: AVI Publishing Company Inc.Google Scholar
  74. Perquin, L. H. C. (1940). On the incidental occurrence of rod-shaped, dextran producing bacteria in a beet-sugar factory. Antonio van Leeuwenhoek and the Journal of Microbiology and Serology, 6, 227–229.CrossRefGoogle Scholar
  75. Petersen, N. B. (1975). Edible starches and starch derived syrups. Park Ridge, NJ: Noyes Data Corporation.Google Scholar
  76. Piana, M. L., Poda, G., Cesaron, D., Cuetti, L., Bucci, M. A., & Gotti, P. (1991). Research on microbial characteristics of honey samples of Udine province. Rivista della Societa Italiana di Scienze dell Alimentazione, 20, 293–310.Google Scholar
  77. Pitt, J. L. & Hocking, A. D. (1985). Fungi and food spoilage. New York: Academic Press.Google Scholar
  78. Pitt, J. L. & Hocking, A. D. (1997). Fungi and food spoilage (2nd ed.). London: Blackie Academic & Professional.CrossRefGoogle Scholar
  79. Richardson, T. (1987). ERH of confectionery food products. Manufacturing Conference, 67, 65–70.Google Scholar
  80. Root, A.I. (Ed.). (1983). The ABC and XYZ of bee culture. Medina, OH: The A.I. Root Co.Google Scholar
  81. Sakaguchi, G., Sakaguchi, S., Kamata, Y., Tabita, K., Asao. T., & Kozaki, S. (1987). Distinct characters of Clostridium botulinum type A strains and their toxin associated with infant botulism in Japan. International Journal of Food Microbiology, 11, 231–241.CrossRefGoogle Scholar
  82. Shehata, A. M. E. (1960). Yeasts isolated from sugar cane and its juice during the production of aguardente de cana. Applied Microbiology, 8, 73–75.Google Scholar
  83. Smith, R. (1981). Quality control in corn refining. In Corn Annual (pp. 24–28). Washington, DC: Corn Refiners Association.Google Scholar
  84. Smittle, R. B., Krysinski, E. P., & Richter, E. R. (1992). Sweeteners and starches. In C. Vanderzant & D. F. Splittstoesser (Eds.), Compendium of methods for the microbiological examination of foods (pp. 985–993). Washington, DC: American Public Health Association.Google Scholar
  85. Snowdon, J. A. & Cliver, D. O. (1996). Microorganisms in honey. International Journal of Food Microbiology, 31, 1–26.CrossRefGoogle Scholar
  86. Stark, J. B., Goodban, A. E., & Owens, H. S. (1953). Beet sugar liquors. Determination and concentration of lactic acid in processing liquors. Journal of Agricultural Food Chemistry, 1, 564–566.CrossRefGoogle Scholar
  87. Stier, R. F., Ito, K. A., & Stevenson, K. E. (1982). Methods for determining Clostridium botulinum spores in honey. Co-operative Agreement No. 58-3244-9-94 for U.S. Department of Agriculture, SEA-AR, NER, Eastern Regional Research Center, Philadelphia.Google Scholar
  88. Tamminga, S. K. (1979). The longevity of Salmonella in chocolate. Antonie van Leeuwenhoek and the Journal of Microbiology and Serology, 45, 153–157.CrossRefGoogle Scholar
  89. Tamminga, S. K., Beumer, R. R., Kampelmacher, E. H., & vanLeusden, F. M. (1976). Survival of Salmonella eastbourne and Salmonella typhimurium in chocolate. Journal of Hygiene, 76, 41–47.CrossRefGoogle Scholar
  90. Tilbury, R. H. (1970). Biodeterioration of harvested sugar cane in Jamaica. Ph.D. Thesis, University of Aston, Birmingham, England.Google Scholar
  91. Tilbury, R. H. (1975). Occurrence and effects of lactic acid bacteria in the sugar industry. In J.G. Carr, C.V. Cutting, & G.C. Whiting (Eds.), Lactic acid bacteria in beverages and food (pp. 177–191). New York: Academic Press.Google Scholar
  92. Tilbury, R. H. (1976). The microbial stability of intermediate moisture foods with respect to yeast. In R. Davies, G. G. Birch, & K. J. Parker (Eds.), Intermediate moisture foods (pp. 138–165). London: Applied Science Publishers.Google Scholar
  93. Tilbury, R. H., Orbell, C. J., Owen, J. W., & Hutchenson, M. (1976). Biodeterioration of sweetners in sugar refining. In Proceedings of the International Biodegradation Syrup (3rd ed., pp. 533–543). London: Applied Sciences.Google Scholar
  94. Tokuoka, K., Ishitani, T., Gotto, S., & Komagata, K. (1985). Identification of yeasts isolated from high-sugar foods. Journal of General and Applied Microbiology, 31, 11–427.CrossRefGoogle Scholar
  95. Troller, J. (1979). Food spoilage by microorganisms tolerating low-aw environments. Food Technology, 33, 72–75.Google Scholar
  96. Tysset, C., Brisou, J., Durand, C., & Malaussene, J. (1970). Contribution to the study of intestinal microbial infection of healthy honey bees (Apis mellifera): inventory of Gram-negative bacterial populations. Faculty of Pharmacology, University Nancy Bulletin, 116, 41–53.Google Scholar
  97. Tysset, C. & de Rautlin de la Roy, Y. (1974). Assays on the study of osmophilic yeasts organisms causing fermentations of honey collected in France. Faculty of Pharmacology, University Nancy Bulletin, 134, 1–26.Google Scholar
  98. Tysset, C. & Durand, C. (1976). Survival of enterobacteria in honey stored at 10°C. Bulletin Academic Veterinary France, 49, 417–422.Google Scholar
  99. Tysset, C., Durand, C., & Taliergio, Y. P. (1970). Contribution to the study of the microbial contamination and the hygiene of commercial honey. Record of Medicine and Veterinary, 146, 1471–1492.Google Scholar
  100. Tysset, C. & Rousseau, M. (1981). Problem of microbes and hygiene of commercial honey. Review of Medicine and Veterinary, 132, 591–600.Google Scholar
  101. Von Richter, A. A. (1912). Über einen osmophilen Organismas, den Hefepilz Saccharomyces mellis acidi. Mycological Bulletin, Mycologia, Mycologist, 1, 67–76.Google Scholar
  102. Walker, H. W. & Ayres, J. C. (1970). Yeasts and spoilage organisms. In A. H. Rose & J. S. Harrison (Eds.), The Yeasts (pp. 463–527). New York: Academic Press.Google Scholar
  103. Whalen, M. L. & Morselli, M. F. (1984). Fungi associated with pure maple syrup packed at the minimum recommended reheating temperature. Journal of Food Protection, 47, 688–689.Google Scholar
  104. Whistler, R. L. & Paschall, E. F. (1967). Starch: Chemistry and technology (Vol. II). New York: Academic Press.Google Scholar
  105. White, J. W., Jr., Subers, M. H., & Schepartz, A. I. (1962). The identification of inhibine the antibacterial factor in honey, as hydrogen peroxide and its origin in a honey glucose-oxidase system. Biochimica et Biophysica Acta , 73, 57–79.CrossRefGoogle Scholar
  106. Williams, J., Jr., Clavero, R., Silliker, J. H., & Flowers, R. S. (2006) Microbial control for confectionery plants. The Manufacturing Confectioner, April, 75–78.Google Scholar
  107. Windisch, S. & Newman, I. (1965a). Uberdie “Wasserflecken” des Marzipans und ihre Eststehung. Zeitschrift fur Lebansmittel-Untersuchung and-Forschung, 129, 9.CrossRefGoogle Scholar
  108. Windisch, S. & Newman, I. (1965b). Zur microbiological untersuchung von Marzipan. 3. Mitteilung: Erfahrungen aus der Betriebskontrolle bie der Marzipanherstellung. Susswaren, 9, 540.Google Scholar
  109. Zak, D. (1988). The development of chocolate flavor. Manufacturing Confectioner, 68, 69–74.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.The Hershey CompanyHersheyUSA

Personalised recommendations