Skip to main content

Introduction to the Microbiological Spoilage of Foods and Beverages

  • Chapter
  • First Online:
Compendium of the Microbiological Spoilage of Foods and Beverages

Part of the book series: Food Microbiology and Food Safety ((FMFS))

Abstract

Though direct evidence of ancient food-handling practices is difficult to obtain and examine, it seems safe to assume that over the span of several million years, prehistoric humans struggled to maintain an adequate food supply. Their daily food needed to be hunted or harvested and consumed before it spoiled and became unfit to eat. Freshly killed animals, for example, could not have been kept for very long periods of time. Moreover, many early humans were nomadic, continually searching for food. We can imagine that, with an unreliable food supply, their lives must have often been literally “feast or famine.” Yet, our ancestors gradually learned by accident, or by trial and error, simple techniques that could extend the storage time of their food (Block, 1991). Their brain capacity was similar to that of modern humans; therefore, some of them were likely early scientists and technologists. They would have learned that primitive cereal grains, nuts and berries, etc. could be stored in covered vessels to keep them dry and safer from mold spoilage. Animal products could be kept in cool places or dried and smoked over a fire, as the controlled use of fire by humans is thought to have begun about 400,000 years ago. Quite likely, naturally desiccated or fermented foods were also noticed and produced routinely to provide a more stable supply of edible food. Along with the development of agricultural practices for crop and animal production, the “simple” food-handling practices developed during the relatively countless millennia of prehistory paved the way for human civilizations.

The erratum of this chapter is available at http://dx.doi.org/10.1007/978-1-4419-0826-1_13

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Block, S. S. (1991). Historical review. In S. S. Block (Ed.), Disinfection, sterilization, and preservation (4th ed., pp. 3–17). Philadelphia: Lea & Febiger.

    Google Scholar 

  • Bouyer, M. (1970). Process for packaging and sterilization of bread. U. S. Patent No. 3,542,568.

    Google Scholar 

  • Buchanan, R. L. (1993). Predictive food microbiology. Trends Food Science and Technology, 4, 6–11.

    Article  Google Scholar 

  • Christian, J. H. B. (2000). Drying and reduction of water activity. In B. M. Lund, T. C. Baird-Parker, & G. W. Gould (Eds.), The microbiological safety and quality of food (pp. 146–174). Gaithersburg, MD: Aspen Publishers.

    Google Scholar 

  • Chung, K. C., & Goepfert, J. M. (1970). Growth of Salmonella at low pH. Journal of Food and Science, 35, 326–328.

    Article  CAS  Google Scholar 

  • Code of Federal Regulations. (2008a). Title 21, part 113. Thermally processed low-acid foods packaged in hermetically sealed containers. Washington, DC: Government Printing Office. http://www.access.gpo.gov/nara/cfr/waisidx_08/21cfr113_08.html, accessed Dec. 8, 2008.

    Google Scholar 

  • Code of Federal Regulations. (2008b). Title 21, part 114. Acidified foods. Washington, DC: Government Printing Office. http://www.access.gpo.gov/nara/cfr/waisidx_08/21cfr114_08.html, accessed Dec. 8, 2008.

  • Cotter, P. D., Hill C., & Ross R. P. (2005). Bacteriocins: developing innate immunity for food. Nature Reviews, 3, 777–788.

    CAS  Google Scholar 

  • Csonka, L. N. (1989). Physiological and genetic responses of bacteria to osmotic stress. Microbiological Reviews, 53, 121–147.

    CAS  Google Scholar 

  • Criado, M. V., Pinto, V. E. F., Badessari A., & Cabral D. (2005). Conditions that regulate the growth of moulds inoculated into bottled mineral water. International Journal of Food Microbiology, 99, 343–349.

    Article  Google Scholar 

  • Deak, T., & Beuchat L. R. (1996). Handbook of food spoilage yeasts. Boca Raton, FL: CRC Press.

    Google Scholar 

  • de Lacy Costello, B. P. J., Ewen, R. J., Gunson, H., Ratcliffe, N. M., Sivanand, P. S., & Spencer-Phillips, P. T. N. (2003). A prototype sensor system for the early detection of microbially linked spoilage in stored wheat grain. Measurement Science and Technology, 14, 397–409.

    Article  Google Scholar 

  • Edwards, R. A., Dainty, R. H., & Hibbard, C. M. (1985). Putrescine and cadaverine formation in vacuum packed beef. Journal of Applied Bacteriology, 58, 13–19.

    Article  CAS  Google Scholar 

  • Economic Research Service/USDA. (Updated Feb. 1, 2005). Food guide pyramid servings. http://www.ers.usda.gov/data/foodconsumption/FoodGuideIndex.htm

  • Farkas, J. (2007). Physical methods of food preservation. In M. P. Doyle & L. R. Beuchat (Eds.), Food microbiology fundamentals and frontiers (3th ed., pp. 685–712). Washington, DC: ASM Press.

    Chapter  Google Scholar 

  • Fisher, E. A., & Halton, P. (1928). A study of “rope” in bread. Cereal Chemistry, 5, 192–208.

    CAS  Google Scholar 

  • Food and Drug Administration. (2005). Grade “A” pasteurized milk ordinance. Publication No. 229, U.S Dept. of Health & Human Services. http://www.cfsan.fda.gov/~ear/pmo05toc.html, accessed Dec. 8, 2008.

  • Frazier, W. C. (1958). Food microbiology. New York: McGraw-Hill Book Company, Inc.

    Google Scholar 

  • Foegeding, P. M., & Busta, F. F. (1991). Chemical food preservatives. In S. S. Block (Ed.), Disinfection, sterilization and preservation (4th ed., pp. 802–832). Philadelphia: Lea & Febiger.

    Google Scholar 

  • Gram, L., & Dalgaard, P. (2002). Fish spoilage bacteria – problems and solutions. Current Opinion in Biotechnology, 13, 262–266.

    Article  CAS  Google Scholar 

  • Gram, L., Ravn, L., Rasch, M., Bruhn, J. B., Christensen A. B., & Givskov, M. (2002). Food spoilage – interactions between food spoilage bacteria. International Journal of Food Microbiology, 78, 79–97.

    Article  Google Scholar 

  • Guynot, M. E., Marin, S., Sanchis, V., & Ramos, A. J. (2005). An attempt to optimize potassium sorbate use to preserve low pH (4.5–5.5) intermediate moisture bakery products by modeling Eurotium spp., Aspergillus spp. and Penicillium corylophilum growth. International Journal of Food Microbiology, 101, 169–177.

    Article  CAS  Google Scholar 

  • Guynot, M. E., Ramos, A. J., Sanchis, V., & Marín, S. (2005). Study of benzoate, propionate, and sorbate salts as mould spoilage inhibitors on intermediate moisture bakery products of low pH (4.5–5.5). International Journal of Food Microbiology, 101, 161–168.

    Article  CAS  Google Scholar 

  • Herbert, R. A., & Sutherland, J. P. (2000). Chill storage. In B. M. Lund, T. C. Baird-Parker, & G. W. Gould (Eds.), The microbiological safety and quality of food (pp. 101–121). Gaithersburg, MD: Aspen Publishers.

    Google Scholar 

  • Jay, J. M. (2000). Modern food microbiology (6th ed.). Gaithersburg, MD: Aspen Publishers.

    Book  Google Scholar 

  • Joslyn, L. J. (1991). Sterilization by heat. In S. S. Block (Ed.), Disinfection, sterilization and preservation (4th ed., pp. 495–526). Philadelphia: Lea & Febiger.

    Google Scholar 

  • Käferstein, F. K. (1990). Food irradiation and its role in improving the safety and security of food. Food Control, 1, 211–214.

    Article  Google Scholar 

  • Keshri, G., Voysey, P., & N. Magan. (2002). Early detection of spoilage moulds in bread using volatile production patterns and quantitative enzyme assays. Journal of Applied Microbiology, 92, 165–172.

    Article  CAS  Google Scholar 

  • Krieg, N. R., & Holt J. G., (Eds.). (1984). Bergey’s Manual of Systematic Bacteriology (Vol. 1). Baltimore, MD: Williams & Wilkins.

    Google Scholar 

  • Labuza, T. P., & Schmidl, M. K. (1985). Accelerated shelf-life testing of foods. Food Technology, 39, 57–62, 64.

    Google Scholar 

  • Lawrence, R. L. (1970). Personal Communication. Best Foods Research Center. Union, New Jersey.

    Google Scholar 

  • Leistner, L., & Gould, G. W. (2002). Hurdle technologies – combination treatments for food stability, safety, and quality. New York: Kluwer Academic/Plenum Publishers.

    Google Scholar 

  • Levy, R. V., & Leahy, T. J. (1991). Sterilization filtration. In S. S. Block (Ed.), Disinfection, sterilization, and preservation (4th ed., pp. 527–552). Philadelphia: Lea & Febiger.

    Google Scholar 

  • Lin, M., Al-Holy, M., Chang, S., Huang, Y., Cavinato, A. G., Kang, D., et al. (2005). Rapid discrimination of Alicyclobacillus strains in apple juice by Fourier transform infrared spectroscopy. International Journal of Food Microbiology, 105, 369–376.

    Article  CAS  Google Scholar 

  • López-Malo, A., Alzamora, S. M., & Palou, E. (2005). Aspergillus flavus growth in the presence of chemical preservatives and naturally occurring antimicrobial compounds. International Journal of Food Microbiology, 99, 119–128.

    Article  Google Scholar 

  • Lund, B. M. (2000). Freezing. In B. M. Lund, T. C. Baird-Parker, & G. W. Gould (Eds.), The microbiological safety and quality of food (pp. 122–145). Gaithersburg, MD: Aspen Publishers.

    Google Scholar 

  • Lund, B. M., & Eklund, T. (2000). Control of pH and use of organic acids. In B. M. Lund, T. C. Baird-Parker, & G. W. Gould (Eds.), The microbiological safety and quality of food (pp. 175–199). Gaithersburg, MD: Aspen Publishers.

    Google Scholar 

  • Marth, E. H., Capp, C. M., Hasenzahl, L., Jackson, H. W., & Hussong, R. V. (1966). Degradation of potassium sorbate by Penicillium species. Journal of Dairy Science, 49, 1197–1205.

    Article  CAS  Google Scholar 

  • Martorell, P, Fernández-Espinar, M. T., & Querol, A. (2005). Molecular monitoring of spoilage yeasts during the production of candied fruit nougats to determine food contamination sources. International Journal of Food Microbiology, 101, 293–302.

    Article  CAS  Google Scholar 

  • Mortimore, S., & Wallace, C. (1998). HACCP – A practical approach (2nd ed.). Gaithersburg, MD: Aspen Publishers, Inc.

    Google Scholar 

  • Mossel, D. A. A., & Ingram, M. (1955). The physiology of the microbial spoilage of foods. Journal of Applied Bacteriology, 18, 233–268.

    Article  Google Scholar 

  • Nissen, H., Alvseike, O., Bredholt, S., Holck, A., & Nesbakken, T. (2000). Comparison between the growth of Yersinia enterocolitica, Listeria monocytogenes, Escherichia coli O157:H7 and Salmonella spp. in ground beef packed by three commercially used packaging techniques. International Journal of Food Microbiology, 59, 211–220.

    Article  CAS  Google Scholar 

  • Ólafsdóttir, G., & Fleurence, J. (1998). Evaluation of fish freshness using volatile compounds – classification of volatile compounds in fish. In G. Ólafsdóttir (Ed.), Methods to determine the freshness of fish in research and industry (pp. 55–69). Paris: International Institute of Refrigeration.

    Google Scholar 

  • Parisi, A. N., & Young, W. E. (1991). Sterilization with ethylene oxide and other gases. In S. S. Block (Ed.), Disinfection, sterilization, and preservation (4th ed., pp. 580–595). Philadelphia: Lea & Febiger.

    Google Scholar 

  • Pitt, J. I. (1974). Resistance of some food spoilage yeasts to preservatives. Food Technology in Australia, 26, 238–241.

    Google Scholar 

  • Pitt, J. I., & Hocking, A. D. (1997). Fungi and food spoilage (2nd ed.). Cambridge, England: Blackie Academic & Professional.

    Book  Google Scholar 

  • Raczek, N. N. (2005). Food and beverage preservation. In W. Paulus (ed.), Directory of microbicides for the protection of materials – a handbook (pp. 287–304). Dordrecht, Netherlands: Springer.

    Google Scholar 

  • Rasch, M., Andersen, J. B., Nielsen, K. F., Flodgaard, L. R., Christensen, H., Givskov, M., et al. (2005). Involvement of bacterial quorum-sensing signals in spoilage of bean sprouts. Applied and Environmental Microbiology, 71, 3321–3330.

    Article  CAS  Google Scholar 

  • Richardson, D. G., & Hans, R. G. (1978). Process for preparing food in the package. U.S. Patent No. 4,120,984.

    Google Scholar 

  • Ross, A. I. V., Griffiths, M. W., Mittal, G. S., & Deeth, H. C. (2003). Combining nonthermal technologies to control foodborne microorganisms. International Journal of Food Microbiology, 89, 125–138.

    Article  Google Scholar 

  • Ross, T., & McMeekin, T. A. (1994). Predictive microbiology. International Journal of Food Microbiology, 23, 241–264.

    Article  CAS  Google Scholar 

  • Schechmeister, I. L. (1991). Sterilization by ultraviolet radiation. In S. S. Block (Ed.), Disinfection, sterilization, and preservation (4th ed., pp. 553–555). Philadelphia: Lea & Febiger.

    Google Scholar 

  • Schmidt, K., & Bouma, J. (1992). Estimating shelf-life of cottage cheese using hazard analysis. Journal of Dairy Science, 75, 2922–2927.

    Article  Google Scholar 

  • Scott, W. J. (1957). Water relations of food spoilage microorganisms. Advances in Food Research, 7, 83–127.

    Article  CAS  Google Scholar 

  • Silverman, G. J. (1991). Sterilization and preservation by ionizing irradiation. In S. S. Block (Ed.), Disinfection, sterilization, and preservation (4th ed., pp. 566–579). Philadelphia: Lea & Febiger.

    Google Scholar 

  • Smith, J. P., Ooraikul, B., Koersen, W. J., Jackson, E. D., & Lawrence, R. A. (1986). Novel approach to oxygen control in modified atmosphere packaging of bakery products. Food Microbiology, 3, 315–320.

    Article  Google Scholar 

  • Smith, J., Fratamico, L. P. M., & Novak, J. S. (2004). Quorum sensing: a primer for food microbiologists. Journal of Food Protection, 67, 1053–1070.

    CAS  Google Scholar 

  • Sneath, P. H. A., Mair, N. S., & Sharpe, M. W. (Eds.) (1986). Systematic Bacteriology (Vol. 2). Baltimore, MD: Williams & Wilkins.

    Google Scholar 

  • Sperber, W. H. (1982). Requirements of Clostridium botulinum for growth and toxin production. Food Technology, 36, 89–94.

    Google Scholar 

  • Sperber, W. H. (1983). Influence of water activity on foodborne bacteria – a review. Journal of Food Protection, 46, 142–150.

    CAS  Google Scholar 

  • Sperber, W. H. (1999). The role of validation in HACCP plans. Dairy, Food & Environment Sanitation, 19, 912, 920.

    Google Scholar 

  • Taoukis, P. S., & Labuza, T. P. (1989). Applicability of time–temperature indicators as shelf life monitors of food products. Journal of Food Science, 54, 783–788.

    Article  Google Scholar 

  • Thiemig, F., Buhr, H., & Wolf, G. (1998). Characterization of the shelf life and spoilage of fresh foods. Fleischwirtschaft, 78, 152–154.

    Google Scholar 

  • Todd, E. C. D. (1987). Impact of spoilage and foodborne diseases on national and international economies. International Journal of Food Microbiology, 4, 83–100.

    Article  Google Scholar 

  • Troller, J. A. (1993). Sanitation in food processing (2nd ed.). New York: Academic Press.

    Google Scholar 

  • von Bockelmann, B. (1991). Aseptic packaging. In S.S. Block (Ed.), Disinfection, sterilization, and preservation (4th ed., pp. 833–845). Philadelphia: Lea & Febiger.

    Google Scholar 

  • Völker, U., Mach, H., Schmid, R., & Hecker, M. (1992). Stress proteins and cross-protection by heat shock and salt stress in Bacillus subtilis. Journal of General Microbiology, 138, 2125–2135.

    Article  Google Scholar 

  • Vora, H. M., & Sidhu, J. S. (1987). Effect of varying concentrations of ethyl alcohol and carbon dioxide on the shelf life of bread. Chemie Mikrobiologie Technologie der Lebensmittel, 11, 56–59.

    CAS  Google Scholar 

  • Wouters, J. A., Rombouts, F. M., de Vos, W. M., Kuipers, O. P., & Abee, T. (1999). Cold shock proteins and low-temperature response of Streptococcus thermophilus CNRZ302. Applied and Environmental Microbiology, 65, 4436–4442.

    CAS  Google Scholar 

  • Zwietering, M. H., Koos, J. T., Hasenack, R. E., de Wit, J. C., & van ‘t Riet, K. (1991). Modeling of bacterial growth as a function of temperature. Applied and Environmental Microbiology, 57, 1094–1101.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William H. Sperber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Sperber, W.H. (2009). Introduction to the Microbiological Spoilage of Foods and Beverages. In: Sperber, W., Doyle, M. (eds) Compendium of the Microbiological Spoilage of Foods and Beverages. Food Microbiology and Food Safety. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0826-1_1

Download citation

Publish with us

Policies and ethics