Computational Tools and Resources for Systems Biology Approaches in Cancer

  • Andriani Daskalaki
  • Christoph Wierling
  • Ralf Herwig
Part of the Applied Bioinformatics and Biostatistics in Cancer Research book series (ABB)


Systems biology focuses on the study of interacting components of biological systems rather than on the analysis of single genes or proteins and offers a new approach to understand complex disease mechanisms by the use of computational models. The analysis of such models has become crucial to understand biological processes and their dysfunctions with respect to human diseases. A systems biology approach would be a key step in improving diagnosis and therapy of complex diseases such as cancer. It offers new perspectives for drug development, for example, in detecting drug side effects and alternative response mechanisms through the analysis of large cellular networks in silico.

In this chapter we review important cellular processes for cancer onset, progression, and response to anticancer drugs, provide a summary of existing pathway databases and tools for the construction and analysis of computational models, and discuss existing kinetic models for cancer-related signaling pathways.


Nerve Growth Factor Pathway Database System Biology Markup Language Molecular Interaction Network BioModels Database 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the EU FP6 grant SysCo (LSHG-CT-2006–37231), the Mutanom project (01GS08105) supported by the German Federal Ministry of Education and Research (BMBF) and the Max Planck Society.


  1. Araujo RP, Liotta LA, Petricoin EF (2007) Proteins, drug targets and the mechanisms they control: the simple truth about complex networks. Nat Rev Drug Discov 6:871–880CrossRefPubMedGoogle Scholar
  2. Bild AH, Potti A, Nevins JR (2006) Linking oncogenic pathways with therapeutic opportunities. Nat Rev Cancer 6:735–741CrossRefPubMedGoogle Scholar
  3. Birtwistle MR, Hatakeyama M, Yumoto N, Ogunnaike BA, Hoek JB, Kholodenko BN (2007) Ligand-dependent responses of the ErbB signaling network: experimental and modeling analyses. Mol Syst Biol 3:144CrossRefPubMedGoogle Scholar
  4. Bouwmeester T, Bauch A, Ruffner H, Angrand PO, Bergamini G, Croughton K, Cruciat C, Eberhard V, Gagneur J, Ghidelli S et al (2004) A physical and functional map of the human TNF-a/NF-kB signal transduction pathway. Nat Cell Biol 6:97–105CrossRefPubMedGoogle Scholar
  5. Brown KS, Sethna JP (2003) Statistical mechanical approaches to models with many poorly known parameters. Phys Rev E Stat Nonlin Soft Matter Phys 68(2, Part 1):021904Google Scholar
  6. Burchert A, Wang Y, Cai D, von Bubnoff N, Paschka P, Muller-Brusselbach S, Ottmann OG, Duyster J, Hochhaus A, Neubauer A (2005) Compensatory PI3-kinase/Akt/mTor activation regulates imatinib resistance development. Leukemia 19:1774–1782CrossRefPubMedGoogle Scholar
  7. Chan S, Scheulen ME, Johnston S, Mross K, Cardoso F, Dittrich C, Eiermann W, Hess D, Morant R, Semiglazov V, Borner M, Salzberg M, Ostapenko V, Illiger HJ, Behringer D, Bardy-Bouxin N, Boni J, Kong S, Cincotta M, Moore L (2005) Phase II study of temsirolimus (CCI-779), a novel inhibitor of mTOR, in heavily pretreated patients with locally advanced or metastatic breast cancer. J Clin Oncol 23:5314–5322CrossRefPubMedGoogle Scholar
  8. Cho CR, Labow M, Reinhardt M, van Oostrum J, Peitsch MC (2006) The application of systems biology to drug discovery. Curr Opin Chem Biol 10(4):294–302CrossRefPubMedGoogle Scholar
  9. Cho K-H, Shin S-Y, Kolch W, Wolkenhauer O (2003) Experimental design in systems biology, based on parameter sensitivity analysis using a Monte Carlo method: a case study for the TNFalpha-mediated NF-kappa B signal transduction pathway. SIMULATION 79:726–739CrossRefGoogle Scholar
  10. Cline MS, Smoot M, Cerami E, Kuchinsky A, Landys N, Workman C, Christmas R, Avila-Campilo I, Creech M, Gross B et al (2007) Integration of biological networks and gene expression data using Cytoscape. Nat Protoc 2:2366–2382CrossRefPubMedGoogle Scholar
  11. Cummings J et al (2005) Validation of pharmacodynamic assays to evaluate the clinical efficacy of an antisense compound (AEG 35156) targeted to the X-linked inhibitor of apoptosis protein XIAP. Br J Cancer 92:532–538PubMedGoogle Scholar
  12. de Bernard B (2008) The breadth and depth of biomedical molecular networks: the Reactome perspective. In: Daskalaki A (ed) Handbook of research on systems biology applications in medicine, 1st edn. Medical Information Science Reference, Hershey, PAGoogle Scholar
  13. Faivre S, Kroemer G, Raymond E (2006) Current development of mTOR inhibitors as anticancer agents. Nat Rev Drug Discov 5:671–688CrossRefPubMedGoogle Scholar
  14. Funahashi A, Tanimura N, Morohashi M, Kitano H (2003) CellDesigner: a process diagram editor for gene-regulatory and biochemical networks. Biosilico 1:159–162CrossRefGoogle Scholar
  15. Futreal PA, Coin L, Marshall M, Down T, Hubbard T, Wooster R, Rahman N, Stratton MR (2004) A census of human cancer genes. Nat Rev Cancer 4:177–183CrossRefPubMedGoogle Scholar
  16. Geva-Zatorsky N et al (2006) Oscillations and variability in the p53 system. Mol Syst Biol 2:2006.0033. doi: 10.1038/msb4100068Google Scholar
  17. Gills JJ, Holbeck S, Hollingshead M, Hewitt SM, Kozikowski AP, Dennis PA (2006) Spectrum of activity and molecular correlates of response to phosphatidylinositol ether lipid analogues, novel lipid-based inhibitors of Akt. Mol Cancer Ther 5:713–722CrossRefPubMedGoogle Scholar
  18. Ginkel M, Kremling A, Nutsch T, Rehner R, Gilles ED (2003) Modular modeling of cellular systems with ProMoT/Diva. Bioinformatics 19:1169–1176CrossRefPubMedGoogle Scholar
  19. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70CrossRefPubMedGoogle Scholar
  20. Hay N, Sonenberg N (2004) Upstream and downstream of mTOR. Genes Dev 18:1926–1945CrossRefPubMedGoogle Scholar
  21. Hennessy BT, Smith DL, Ram PT, Lu Y, Mills GB (2005) Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat Rev Drug Discov 4:988–1004CrossRefPubMedGoogle Scholar
  22. Hidalgo M, Rowinsky EK (2000) The rapamycin-sensitive signal transduction pathway as a target for cancer therapy. Oncogene 19:6680–6686CrossRefPubMedGoogle Scholar
  23. Holcomb B et al (2008) Pancreatic cancer cell genetics and signaling response to treatment correlate with efficacy of gemcitabine-based molecular targeting strategies. J Gastrointest Surg 12:288–296CrossRefPubMedGoogle Scholar
  24. Hoops S, Sahle S, Gauges R, Lee C, Pahle J, Simus N, Singhal M, Xu L, Mendes P, Kummer U (2006) COPASI – a COmplex PAthway Simulator. Bioinformatics 22:3067–3074CrossRefPubMedGoogle Scholar
  25. Hucka M, Finney A, Sauro HM, Bolouri H, Doyle J, Kitano H (2002) The ERATO Systems Biology Workbench: enabling interaction and exchange between software tools for Computational Biology. Pac Symp Biocomput 450–461Google Scholar
  26. JDesigner: a biochemical network layout tool. Accessed 4 Dec 2009
  27. Jiang N, Cox RD, Hancock JM (2007) A kinetic core model of the glucose-stimulated insulin secretion network of pancreatic beta cells. Mamm Genome 18:508–520CrossRefPubMedGoogle Scholar
  28. Jones RB, Gordus A, Krall JA, MacBeath G (2006) A quantitative protein interaction network for the ErbB receptors using protein microarrays. Nature 439:168–174CrossRefPubMedGoogle Scholar
  29. Joshi-Tope G, Gillespie M, Vastrik I, D’Eustachio P, Schmidt E, de Bono B, Jassal B, Gopinath GR, Wu GR, Matthews L, Lewis S, Birney E, Stein L (2005) Reactome: a knowledgebase of biological pathways. Nucleic Acids Res 33:D428–D432CrossRefPubMedGoogle Scholar
  30. Kamburov A, Wierling C, Lehrach H, Herwig R (2009) ConsensusPathDB—a database for integrating human functional interaction networks. Nucleic Acids Res 37:D623–D628CrossRefPubMedGoogle Scholar
  31. Kanehisa M, Goto S, Hattori M, Aoki-Kinoshita KF, Itoh M, Kawashima S, Katayama T, Araki M, Hirakawa M (2006) From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res 34:D354–D357CrossRefPubMedGoogle Scholar
  32. Karp PD, Ouzounis CA, Moore-Kochlacs C, Goldovsky L, Kaipa P, Ahren D, Tsoka S, Darzentas N, Kunin V, Lopez-Bigas N (2005) Expansion of the BioCyc collection of pathway/genome databases to 160 genomes. Nucleic Acids Res 33:6083–6089CrossRefPubMedGoogle Scholar
  33. Kerrien S, Alam-Faruque Y, Aranda B, Bancarz I, Bridge A, Derow C, Dimmer E, Feuermann M, Friedrichsen A, Huntley R et al (2007) IntAct – open source resource for molecular interaction data. Nucleic Acids Res 35:D561–D565CrossRefPubMedGoogle Scholar
  34. Kim D, Rath O, Kolch W, Cho KH (2007) A hidden oncogenic positive feedback loop caused by crosstalk between Wnt and ERK pathways. Oncogene 26:4571–4579CrossRefPubMedGoogle Scholar
  35. Kinzler KW, Vogelstein B (1996) Breast cancer. What’s mice got to do with it? Nature 382:672Google Scholar
  36. Kitano H, Funahashi A, Matsuoka Y, Kanae OD (2005) Using process diagrams for the graphical representation of biological networks. Nat Biotechnol 23:961–966CrossRefPubMedGoogle Scholar
  37. Klamt S, Saez-Rodriguez J et al (2006) A methodology for the structural and functional analysis of signaling and regulatory networks. BMC Bioinformatics 7:56CrossRefPubMedGoogle Scholar
  38. Klipp E, Herwig R, Kowald A, Wierling C, Lehrach H (2005) Systems biology in practice: concepts, implementation and application. Wiley-VCH, WeinheimGoogle Scholar
  39. Krull M, Pistor S, Voss N, Kel A, Reuter I, Kronenberg D, Michael H, Schwarzer K, Potapov A, Choi C, Kel-Margoulis O, Wingender E (2006) TRANSPATH: an information resource for storing and visualizing signaling pathways and their pathological aberrations. Nucleic Acids Res 34:D546–D551CrossRefPubMedGoogle Scholar
  40. Legewie S, Blüthgen N, Herzel H (2006) Mathematical modeling identifies inhibitors of apoptosis as mediators of positive feedback and bistability. PLoS Comput Biol 2(9):e120CrossRefPubMedGoogle Scholar
  41. Le Novère N, Bornstein B, Broicher A, Courtot M, Donizelli M, Dharuri H, Li L, Sauro H, Schilstra M, Shapiro B, Snoep JL, Hucka M (2006) BioModels database: a free, centralized database of curated, published, quantitative kinetic models of biochemical and cellular systems. Nucleic Acids Res 34:D689–D691CrossRefPubMedGoogle Scholar
  42. Levine DA, Bogomolniy F, Yee CJ, Lash A, Barakat RR, Borgen PI, Boyd J (2005) Frequent mutation of the PIK3CA gene in ovarian and breast cancers. Clin Cancer Res 11:2875–2878CrossRefPubMedGoogle Scholar
  43. Loew LM, Schaff JC (2001) The virtual cell: a software environment for computational cell biology. Trends Biotechnol 19:401–406CrossRefPubMedGoogle Scholar
  44. Luo M, Reyna S, Wang L, Yi Z, Carroll C, Dong LQ, Langlais P, Weintraub ST, Mandarino LJ (2005) Identification of insulin receptor substrate 1 serine/threonine phosphorylation sites using mass spectrometry analysis: regulatory role of serine 1223. Endocrinology 146:4410–4416CrossRefPubMedGoogle Scholar
  45. Maiwald T, Timmer J (2008) Dynamical modeling and multi-experiment fitting with PottersWheel. Bioinformatics 24(18):2037–2043CrossRefPubMedGoogle Scholar
  46. Maraziotis IA, Dimitrakopoulou K, Bezerianos A (2007) Growing functional modules from a seed protein via integration of protein interaction and gene expression data. BMC Bioinformatics 8:408CrossRefPubMedGoogle Scholar
  47. McCubrey JA, Steelman LS, Abrams SL, Bertrand FE, Ludwig DE, Basecke J, Libra M, Stivala F, Milella M, Tafuri A, Lunghi P, Bonati A, Martelli AM (2008) Targeting survival cascades induced by activation of Ras/Raf/MEK/ERK, PI3K/PTEN/Akt/mTOR and Jak/STAT pathways for effective leukemia therapy. Leukemia 22:708–722CrossRefPubMedGoogle Scholar
  48. Mendes P (1993) GEPASI: a software package for modelling the dynamics, steady states and control of biochemical and other systems. Comput Appl Biosci 9:563–571PubMedGoogle Scholar
  49. Mendes P (1997) Biochemistry by numbers: simulation of biochemical pathways with Gepasi 3. Trends Biochem Sci 22:361–363CrossRefPubMedGoogle Scholar
  50. Nagata Y, Lan KH, Zhou X, Tan M, Esteva FJ, Sahin AA, Klos KS, Li P, Monia BP, Nguyen, NT, Hortobagyi GN, Hung MC, Yu D (2004) PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients. Cancer Cell 6:117–127CrossRefPubMedGoogle Scholar
  51. Novikov E, Barillot E (2008) Regulatory network reconstruction using an integral additive model with flexible kernel functions. BMC Syst Biol 2:8CrossRefPubMedGoogle Scholar
  52. Rahn T, Ridderstrale M, Tornqvist H, Manganiello V, Fredrikson G, Belfrage P, Degerman E (1994) Essential role of phosphatidylinositol 3-kinase in insulin-induced activation and phosphorylation of the cGMP-inhibited cAMP phosphodiesterase in rat adipocytes. Studies using the selective inhibitor wortmannin. FEBS Lett 350:314–318Google Scholar
  53. Sasagawa S, Ozaki Y, Fujita K, Kuroda S (2005) Prediction and validation of the distinct dynamics of transient and sustained ERK activation. Nat Cell Biol 7(4):365–373CrossRefPubMedGoogle Scholar
  54. Schoeberl B, Eichler-Jonsson C, Gilles ED, Müller G. (2002) Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors. Nat Biotechnol 20(4):370–375CrossRefPubMedGoogle Scholar
  55. Schubbert S, Shannon K, Bollag G (2007) Hyperactive Ras in developmental disorders and cancer. Nat Rev Cancer 7:295–308CrossRefPubMedGoogle Scholar
  56. Schulze WX, Deng L, Mann M (2005) Phosphotyrosine interactome of the ErbB-receptor kinase family. Mol Syst Biol 1:42–54CrossRefGoogle Scholar
  57. Slepchenko BM, Schaff JC, Macara I, Loew LM (2003) Quantitative cell biology with the Virtual Cell. Trends Cell Biol 13:570–576CrossRefPubMedGoogle Scholar
  58. Strumberg D (2005) Preclinical and clinical development of the oral multikinase inhibitor sorafenib in cancer treatment. Drugs Today (Barc) 41:773–784CrossRefGoogle Scholar
  59. Tomita M, Hashimoto K, Takahashi K, Shimizu TS, Matsuzaki Y, Miyoshi F, Saito K, Tanida S, Yugi K, Venter JC, Hutchison CA III (1999) E-CELL: software environment for whole-cell simulation. Bioinformatics 15:72–84CrossRefPubMedGoogle Scholar
  60. Van Ummersen L, Binger K, Volkman J, Marnocha R, Tutsch K, Kolesar J, Arzoomanian R, Alberti D, Wilding G (2004) A phase I trial of perifosine (NSC 639966) on a loading dose/maintenance dose schedule in patients with advanced cancer. Clin Cancer Res 10:7450–7456CrossRefPubMedGoogle Scholar
  61. Vastrik I, D’Eustachio P, Schmidt E, Joshi-Tope G, Gopinath G, Croft D, de Bono B, Gillespie M, Jassal B, Lewis S, Matthews L, Wu G, Birney E, Stein L (2007) Reactome: a knowledge base of biologic pathways and processes. Genome Biol 8:R39CrossRefPubMedGoogle Scholar
  62. Vivanco I, Sawyers CL (2002) The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer 2:489–501CrossRefPubMedGoogle Scholar
  63. Weinberg RA (2007) The biology of cancer. Garland Science, New YorkGoogle Scholar
  64. Wierling C, Herwig R, Lehrach H (2007) Resources, standards and tools for systems biology. Brief Funct Genomic Proteomic 6:240–251CrossRefPubMedGoogle Scholar
  65. Wingender E, Crass T, Hogan JD, Kel AE, Kel-Margoulis OV, Potapov AP (2007) Integrative content-driven concepts for bioinformatics “beyond the cell.” J Biosci 32:169–180CrossRefPubMedGoogle Scholar
  66. Yamada S, Shiono S, Joo A, Yoshimura A (2003) Control mechanism of JAK/STAT signal transduction pathway. FEBS Lett 534(1–3):190–196CrossRefPubMedGoogle Scholar
  67. Zi Z, Klipp E (2007) Constraint-based modeling and kinetic analysis of the Smad dependent TGF-beta signaling pathway. PLoS ONE 2(9):e936CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Andriani Daskalaki
    • 1
  • Christoph Wierling
  • Ralf Herwig
  1. 1.Max Planck Institute for Molecular GeneticsBerlinGermany

Personalised recommendations