Synthesis of PET Radiopharmaceuticals

  • Gopal B. Saha


PET radiopharmaceuticals are uniquely different from SPECT radiopharmaceuticals in that the former have radionuclides that are positron emitters and the majority of them have short physical half-lives. The most common PET radionuclides are 11C, 15​O, 13​N, 18​F, and 82Rb, which are short-lived (see Table 7.2) and put limitations on the synthesis time for PET radiopharmaceuticals and their clinical use. The attractive advantage of PET radiopharmaceuticals, however, is that the ligands used in radiopharmaceuticals are common analogs of biological molecules and, therefore, often depict a true representation of biological processes after in vivo administration. For example, 18F-fluorodeoxyglucose (FDG) is an analog of glucose used for cellular metabolism and H2 15O for cerebral perfusion.


Radiochemical Purity Radiochemical Yield Grignard Reagent Quality Control Test Methylmagnesium Bromide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References and Suggested Reading

  1. Green MA, Mathias CJ, Welch MJ et al (1990). Copper-62-labeled pyruvaldehyde bis (N4-methylthiosemicarbazanato) copper (II): synthesis and evaluation as a positron emission tomography tracer for cerebral and myocardial perfusion. J Nucl Med 31:1989PubMedGoogle Scholar
  2. Hamacher K, Coenen HH, Stöcklin G (1986). Efficient stereospecific synthesis of NCA 2-[18F]-fluoro-2-deoxy-d-glucose using aminopolyether supported nucleophilic substitution. J Nucl Med 27:235PubMedGoogle Scholar
  3. Hara T, Yuasa M (1999). Automated synthesis of [11C] Choline, a positron-emitting tracer for tumor imaging. Appl Radiat Isot 50:531PubMedCrossRefGoogle Scholar
  4. Huisman MC, Higuchi T, Reder S et al (2008). Initial characterization of an 18F-labled myocardial perfusion tracer. J Nucl Med 49:630PubMedCrossRefGoogle Scholar
  5. Kabalka GW, Lambrecht RM, Fowler JS et al (1985). Synthesis of 15O-labelled butanol via organoborane chemistry. Appl Radiat Isot 36:853CrossRefGoogle Scholar
  6. Kamarainen EL, Kyllonen T, Nihtila O et al (2004). Preparation of fluorine-18 labeled fluoromisonidazole using two different synthesis methods. J Labeled Comp Radiopharm 47:37CrossRefGoogle Scholar
  7. Luxen A, Guillaume M, Melega WP et al (1992). Production of 6-[18F]fluoro-l-dopa and its metabolism in vivo – a critical review. Nucl Med Biol 19:149Google Scholar
  8. Machula HJ, Blocher A, Kuntzch M et al (2000). Simplified labeling approach for synthesizing 3 -deoxy-3 -[18F]fluoro-thymidine [18F]FLT. J Radioanal Nucl Chem 243:843CrossRefGoogle Scholar
  9. Maziere M, Hantraye P, Prenant C et al (1984). Synthesis of ethyl-8-fluoro-5,6-dihydro-5-[11C]-methyl-6-oxo-4H-imidazo[1,5][1,4] benzodiazepine-3-carboxylate (R0-151788-11C): a specific radioligand for the in vivo study of central benzodiazepine receptors by positron emission tomography. Int J Appl Radiat Isot 35:973PubMedCrossRefGoogle Scholar
  10. Mazière B, Coenen HH, Haldin C et al (1992). PET radioligands for dopamine receptors and re-uptake sites: chemistry and biochemistry. Nucl Med Biol 19:497Google Scholar
  11. Meyer GJ, Ostercholz A, Handeshagen H (1986). 15O-water constant infusion system for clinical routine application. J Label Comp Radiopharm 23:1209Google Scholar
  12. Oberdorfer F, Theobold A, Prenant C (1996). Simple production of [1-carbon-11] acetate. J Nucl Med 37:341PubMedGoogle Scholar
  13. Reischl G, Ehrlichmann W, Bieg C et al (2005). Preparation of the hypoxia imaging PET tracer [18F] FAZA: reaction parameters and automation. Appl Radiat Isot 62:897PubMedCrossRefGoogle Scholar
  14. Saha GB (2004). Fundamentals of nuclear pharmacy, 5th ed. Springer, New YorkGoogle Scholar
  15. Stöcklin G, Pike VW (eds) (1993). Radiopharmaceuticals for positron emission tomography, Kluwer Academic, DordrechtGoogle Scholar
  16. U.S. Pharmacopeia 32 & National Formulary 27 (2009). United States Pharmaceutical Convention, Rockville, MDGoogle Scholar
  17. Welch MJ, Kilbourn MR (1985). A remote system for the routine production of oxygen-15 radiopharmaceuticals. J Label Comp Radiopharm 22:1193CrossRefGoogle Scholar
  18. Wester HJ, Herz M, Weber W et al (1999). Synthesis and radiopharmacology of O-2-[18F] fluoroethyl-l-tyrosine for tumor imaging. J Nucl Med 40:205PubMedGoogle Scholar
  19. Wieland D, Bida G, Padgett H et al (1991). In-target production of [13N]ammonia via proton irradiation of dilute aqueous ethanol and acetic acid mixtures. Appl Radiat Isot 42:1095CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Gopal B. Saha
    • 1
  1. 1.Department of Nuclear MedicineThe Cleveland Clinic FoundationClevelandUSA

Personalised recommendations