Skip to main content

Evidence-Based Positron Emission Tomography

  • Chapter
  • First Online:
Clinical PET and PET/CT

Abstract

The clinical applications and investigations of positron emission tomography (PET) using F-18 fluoro-2-deoxyglucose (18F-FDG) have been dramatically increasing over the past 10 years. The main cause of this boom is the development of the PET/computed tomography (CT) scanner, which can provide both the metabolic and anatomic information of a cancer. PET/CT has been shown to have a better diagnostic accuracy in tumors than either CT or conventional PET. The individual practitioner makes a clinical decision according to his or her experience. Different chance of exposure to evolving medical technologies makes different behavior for the practitioners to order new modalities. Underutilizing new technology does not offer enough clinical information leading to inappropriate decision making, and overutilization of technology increases medical cost. PET based on research gives the appropriate amount of information to practitioners and helps them to make the best medical decisions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goerres GW, Schmid DT, Gratz KW, et al. Impact of whole body positron emission tomography on initial staging and therapy in patients with squamous cell carcinoma of the oral cavity. Oral Oncol. 2003;39:547–51.

    Article  PubMed  CAS  Google Scholar 

  2. Zanation AM, Sutton DK, Couch ME, et al. Use, accuracy, and implications for patient management of F-18 FDG PET/CT for head and neck tumors. Laryngoscope. 2005;115:1186–90.

    Article  PubMed  Google Scholar 

  3. Burri RJ, Rangaswamy B, Kostakoglu L, et al. Correlation of positron emission tomography standard uptake value and pathologic specimen size in cancer of the head and neck. Int J Radiat Oncol Biol Phys. 2008;17:682–8.

    Article  Google Scholar 

  4. Laubenbacher C, Saumweber D, Wagner-Manslau C, et al. Comparison of fluorine-18-fluorodeoxyglucose PET, MRI and endoscopy for staging head and neck squamous-cell carcinomas. J Nucl Med. 1995;36:1747–57.

    PubMed  CAS  Google Scholar 

  5. Myers LL, Wax MK, Nabi H, et al. Positron emission tomography in the evaluation of the N0 neck. Laryngoscope. 1998;108:232–6.

    Article  PubMed  CAS  Google Scholar 

  6. Adams S, Baum R, Stuckensen T, et al. Prospective comparison of F-18 FDG PET with conventional imaging modalities (CT, MRI, US) in lymph node staging of head and neck. Eur J Nucl Med. 1998;25:1255–60.

    Article  PubMed  CAS  Google Scholar 

  7. Hannah A, Scott AM, Tochon-Danguy H, et al. Evaluation of F-18 FDG PET and CT with histopathologic correlation in the initial staging of head and neck cancer. Ann Surg. 2002;236:208–17.

    Article  PubMed  Google Scholar 

  8. Schwartz DL, Ford E, Rajendran J, et al. FDG-PET/CT imaging for preradiotherapy staging of head-and-neck squamous cell carcinoma. Head Neck. 2005;61:129–36.

    Google Scholar 

  9. Yen T-C, Chang JT, Ng S-H, et al. Staging of untreated squamous cell carcinoma of buccal mucosa with 18F-FDG PET: comparison with head and neck CT/MRI and histopathology. J Nucl Med. 2005;46:775–81.

    PubMed  Google Scholar 

  10. Ng S-H, Yen T-C, Liao C-T, et al. F-18 FDG PET and CT/MRI in oral cavity squamous cell carcinoma: a prospective study of 124 patients with histologic correlation. J Nucl Med. 2005;46:1136–43.

    PubMed  Google Scholar 

  11. Chang JT, Chan SC, Yen TC, et al. Nasopharyngeal carcinoma staging by F-18 FDG PET. Head Neck. 2005;62:501–7.

    CAS  Google Scholar 

  12. Goshen E, Davidson T, Yahalom R, et al. PET/CT in the evaluation of patients with squamous cell cancer of the head and neck. Int J Oral Maxillofac Surg. 2006;35:332–6.

    Article  PubMed  CAS  Google Scholar 

  13. Brouwer J, Senft A, de Bree R, et al. Screening for distant metastases in patients with head and neck cancer: is there a role for (18F)FDG-PET? Oral Oncol. 2006;42:275–80.

    Article  PubMed  Google Scholar 

  14. Fleming AJ, Smith SJ, Paul CM, et al. Impact of [18F]-2-fluorodeoxyglucose-positron emission tomography/computed tomography on previously untreated head and neck cancer patients. Laryngoscope. 2007;117:1173–9.

    Article  PubMed  Google Scholar 

  15. Kim MR, Roh JL, Kim JS, et al. Utility of 18F-fluorodeoxyglucose positron emission tomography in the preoperative staging of squamous cell carcinoma of the oropharynx. Eur J Surg Oncol. 2007;33:633–8.

    Article  PubMed  CAS  Google Scholar 

  16. Roh JL, Yeo NK, Kim JS, et al. Utility of 2-[18F] fluoro-2-deoxy-d-glucose positron emission tomography and positron emission tomography/computed tomography imaging in the preoperative staging of head and neck squamous cell carcinoma. Oral Oncol. 2007;43:887–93.

    Article  PubMed  Google Scholar 

  17. Jeong H-S, Baek C-H, Son Y-I, et al. Use of integrated 18F-FDG PET/CT to improve the accuracy of initial cervical nodal evaluation in patients with head and neck squamous cell carcinoma. Head Neck. 2007;29:203–10.

    Article  PubMed  Google Scholar 

  18. Wensing BM, Vogel WV, Marres HA, et al. FDG-PET in the clinically negative neck in oral squamous cell carcinoma. Laryngoscope. 2006;116:809–13.

    Article  PubMed  Google Scholar 

  19. Schoder H, Carlson DL, Kraus DH, et al. 18F-FDG PET/CT for detecting nodal metastases in patients with oral cancer staged N0 by clinical examination and CT/MRI. J Nucl Med. 2006;47:755–62.

    PubMed  Google Scholar 

  20. Choi JY, Lee KS, Kwon OJ, et al. Improved detection of second primary cancer using integrated [18F] fluorodeoxyglucose positron emission tomography and computed tomography for initial tumor staging. J Clin Oncol. 2005;23:7654–9.

    Article  PubMed  Google Scholar 

  21. Lapela M, Grenman R, Kurki T, et al. Head and neck cancer: detection of recurrence with PET and 2-[F-18]fluoro-2-deoxy-d-glucose. Radiology. 1995;197:205–11.

    PubMed  CAS  Google Scholar 

  22. Anzai Y, Carroll WR, Quint DJ, et al. Recurrence of head and neck cancer after surgery or irradiation: prospective comparison of 2-deoxy-2-[F-18]fluoro-d-glucose PET and MR imaging diagnoses. Radiology. 1996;200:135–41.

    PubMed  CAS  Google Scholar 

  23. Kao CH, ChangLai SP, Chieng PU, et al. Detection of recurrent or persistent nasopharyngeal carcinomas after radiotherapy with 18F-fluoro-2-deoxyglucose positron emission tomography and comparison with computed tomography. J Clin Oncol. 1998;16:3550–65.

    PubMed  CAS  Google Scholar 

  24. Farber LA, Benard F, Machtay M, et al. Detection of recurrent head and neck squamous cell carcinomas after radiation therapy with 2-18F-fluoro-2-deoxy-d-glucose positron emission tomography. Laryngoscope. 1999;109:970–5.

    Article  PubMed  CAS  Google Scholar 

  25. Stokkel MPM, Tehaard CHJ, Hordijk GJ, et al. The detection of local recurrent head and neck cancer with F-18 FDG PET dual-head PET. Eur J Nucl Med. 1999;26:767–73.

    Article  PubMed  CAS  Google Scholar 

  26. Kao C, Tsai S, Wang J, et al. Comparing FDG PET with a combination Tc-99 m tetrofosmin SPECT and CT to detect recurrent or persistent nasopharyngeal carcinomas after radiotherapy. Cancer. 2000;92:434–9.

    Article  Google Scholar 

  27. Terhaard CH, Bongers V, van Rijk PP, et al. F-18 FDG PET scanning in detection of local recurrence after radiotherapy for laryngeal/pharyngeal cancer. Head Neck. 2001;23:933–41.

    Article  PubMed  CAS  Google Scholar 

  28. Wong RJ, Schoder LH, Patel SG, et al. Diagnostic and prognostic value of F-18 FDG PET for recurrent head and neck squamous cell carcinoma. J Clin Oncol. 2002;20:4199–208.

    Article  PubMed  CAS  Google Scholar 

  29. Yen R, Hung R, Pan M, et al. F-18 FDG PET in detecting residual/recurrent nasopharyngeal carcinomas and comparison with MRI. Cancer. 2003;98:283–7.

    Article  PubMed  Google Scholar 

  30. Kunkel M, Forster GJ, Reichert T, et al. Detection of recurrent oral squamous cell carcinoma by F-18 FDG PET. Cancer. 2003;98:2257–65.

    Article  PubMed  Google Scholar 

  31. Kobota K, Yokoyama J, Yamaguchi K, et al. FDG-PET delayed imaging for the detection of head and neck cancer recurrence after radio-chemotherapy: comparison with MRI/CT. Eur J Nucl Med. 2004;31:590–5.

    Article  Google Scholar 

  32. Ng S-H, Yen T-C, Liao C-T, et al. Clinical usefulness of F-18 FDG PET in nasopharyngeal carcinoma patients with questionable MRI findings for recurrence. J Nucl Med. 2004;45:1669–76.

    PubMed  Google Scholar 

  33. Ryan WR, Fee WE, Le Q, et al. PET for surveillance of head and neck cancer. Laryngoscope. 2005;115:645–50.

    Article  PubMed  Google Scholar 

  34. Chan SC, Ng SH, Chang JT, et al. Advantages and pitfalls of 18F-fluoro-2-deoxy-d-glucose positron emission tomography in detecting locally residual or recurrent nasopharyngeal carcinoma: comparison with magnetic resonance imaging. Eur J Nucl Med Mol Imaging. 2006;33:1032–40.

    Article  PubMed  CAS  Google Scholar 

  35. Halpern BS, Yeom K, Fueger BJ, et al. Evaluation of suspected local recurrence in head and neck cancer: a comparison between PET and PET/CT for biopsy proven lesions. Eur J Radiol. 2007;62:199–204.

    Article  PubMed  Google Scholar 

  36. Lee JC, Kim JS, Lee JH, et al. F-18 FDG-PET as a routine surveillance tool for the detection of recurrent head and neck squamous cell carcinoma. Oral Oncol. 2007;43:686–92.

    Article  PubMed  CAS  Google Scholar 

  37. Lowe VJ, Dunphy FR, varvares M, et al. Evaluation of chemotherapy response in patients with advanced head and neck cancer using FDG PET. Head Neck. 1997;19:666–74.

    Article  PubMed  CAS  Google Scholar 

  38. McCollum AD, Burrell SC, Haddad RL, et al. PET with F-18 FDG to predict pathologic response after induction chemotherapy and definitive chemoradiotherapy in head and neck cancer. Head Neck. 2004;26:890–6.

    Article  PubMed  Google Scholar 

  39. Nam SY, Lee SW, Im KC, et al. Early evaluation of the response to radiotherapy of patients with squamous cell carcinoma of the head and neck using F-18 FDG PET. Oral Oncol. 2005;41:390–5.

    Article  PubMed  CAS  Google Scholar 

  40. Yao M, Smith RB, Graham MM, et al. The role of FDG PET in management of neck metastasis from head-and-neck cancer after definitive radiation treatment. Int J Radiat Oncol Biol Phys. 2005;1563:991–9.

    Article  Google Scholar 

  41. Andrade RS, Heron DE, Degirmenci B, et al. Posttreatment assessment of response using FDG-PET/CT for patients treated with definitive radiation therapy for head and neck cancers. Int J Radiat Oncol Biol Phys. 2006;165:1315–22.

    Article  Google Scholar 

  42. Brkovich VS, Miller FR, Karnad AB, et al. The role of positron emission tomography scans in the management of the N-positive neck in head and neck squamous cell carcinoma after chemoradiotherapy. Laryngoscope. 2006;116:855–8.

    Article  PubMed  Google Scholar 

  43. Kim SY, Lee SW, Nam SY, et al. The feasibility of 18F-FDG PET scans 1 month after completing radiotherapy of squamous cell carcinoma of the head and neck. J Nucl Med. 2007;48:373–8.

    PubMed  CAS  Google Scholar 

  44. Ong SC, Schoder H, Lee NY, et al. Clinical utility of 18F-FDG PET/CT in assessing the neck after concurrent chemoradiotherapy for locoregional advanced head and neck cancer. J Nucl Med. 2008;49:532–40.

    Article  PubMed  Google Scholar 

  45. Gourin CG, Williams HT, Seabolt WN, et al. Utility of positron emission tomography-computed tomography in identification of residual nodal disease after chemoradiation for advanced head and neck cancer. Laryngoscope. 2006;116:705–10.

    Article  PubMed  Google Scholar 

  46. Nayak JV, Walvekar RR, Andrade RS, et al. Deferring planned neck dissection following chemoradiation for stage IV head and neck cancer: the utility of PET-CT. Laryngoscope. 2007;117:2129–34.

    Article  PubMed  Google Scholar 

  47. Yao M, Luo P, Hoffman HT, et al. Pathology and FDG PET correlation of residual lymph nodes in head and neck cancer after radiation treatment. Am J Clin Oncol. 2007;30:264–70.

    Article  PubMed  Google Scholar 

  48. Kitagawa Y, Sadato N, Azuma H, et al. FDG PET to evaluate combined intra-arterial chemotherapy and radiotherapy of head and neck neoplasms. J Nucl Med. 1999;40:1132–7.

    PubMed  CAS  Google Scholar 

  49. Brun E, Kjellen E, Tennvall J, et al. FDG PET studies during treatment: prediction of therapy outcome in head and neck squamous cell carcinoma. Head Neck. 2002;24:127–35.

    Article  PubMed  Google Scholar 

  50. Allal AS, Dulguerov P, Allaoua M, et al. Standardized uptake value of FDG in predicting outcome in head and neck carcinomas treated by radiotherapy with or without chemotherapy. J Clin Oncol. 2002;20:1398–404.

    Article  PubMed  CAS  Google Scholar 

  51. Kunkel M, Forster GJ, Reichert T, et al. Radiation response non-invasively imaged by F-18 FDG-PET predicts local tumor control and survival in advanced oral squamous cell carcinoma. Oral Oncol. 2003;29:170–7.

    Article  Google Scholar 

  52. Sanghera B, Wong WL, Lodge MA, et al. Potential novel application of dual time point SUV measurements as a predictor of survival in head and neck cancer. Nucl Med Commun. 2005;26:861–7.

    Article  PubMed  Google Scholar 

  53. Shie P, Cardarelli R, Sprawls K, Fulda KG, Taur A. Systematic review: prevalence of malignant incidental thyroid nodules identified on fluorine-18 fluorodeoxyglucose positron emission tomography. Nucl Med Commun. 2009;30:742–8.

    Article  PubMed  Google Scholar 

  54. Agress Jr H, Cooper BZ. Detection of clinically unexpected malignant and premalignant tumors with whole-body FDG-PET: histopathologic comparison. Radiology. 2004;230:417–22.

    Article  PubMed  Google Scholar 

  55. Bogsrud TV, Karantanis D, Nathan MA, et al. The value of quantifying 18F-FDG uptake in thyroid nodules found incidentally on whole-body PET-CT. Nucl Med Commun. 2007;28:373–81.

    Article  PubMed  Google Scholar 

  56. Chen YK, Ding HJ, Chen KT, et al. Prevalence and risk of cancer of focal thyroid incidentaloma identified by 18F-fluorodeoxyglucose positron emission tomography for cancer screening in healthy subjects. Anticancer Res. 2005;25:1421–6.

    PubMed  Google Scholar 

  57. Choi JY, Lee KS, Kim HJ, et al. Focal thyroid lesions incidentally identified by integrated 18F-FDG-PET/CT: clinical significance and improved characterization. J Nucl Med. 2006;47:609–15.

    PubMed  Google Scholar 

  58. Chu QD, Connor MS, Lilien DL, Johnson LW, Turnage RH, Li BD. Positron emission tomography (PET) positive thyroid incidentaloma: the risk of malignancy observed in a tertiary referral center. Am Surg. 2006;72:272–5.

    PubMed  Google Scholar 

  59. Cohen MS, Arslan N, Dehdashti F, et al. Risk of malignancy in thyroid incidentalomas identified by fluorodeoxyglucose-positron emission tomography. Surgery. 2001;130:941–6.

    Article  PubMed  CAS  Google Scholar 

  60. Even-Sapir E, Lerman H, Gutman M, et al. The presentation of malignant tumours and pre-malignant lesions incidentally found on PET-CT. Eur J Nucl Med Mol Imaging. 2006;33:541–52.

    Article  PubMed  Google Scholar 

  61. Ishimori T, Patel PV, Wahl RL. Detection of unexpected additional primary malignancies with PET/CT. J Nucl Med. 2005;46:752–7.

    PubMed  Google Scholar 

  62. Kang KW, Kim SK, Kang HS, Lee ES, Sim JS, Lee IG, et al. Prevalence and risk of cancer of focal thyroid incidentaloma identified by 18F-fluorodeoxyglucose positron emission tomography for metastasis evaluation and cancer screening in healthy subjects. J Clin Endocrinol Metab. 2003;88:4100–4.

    Article  PubMed  CAS  Google Scholar 

  63. Kim TY, Kim WB, Ryu JS, Gong G, Hong SJ, Shong YK. 18F-fluorodeoxyglucose uptake in thyroid from positron emission tomogram (PET) for evaluation in cancer patients: high prevalence of malignancy in thyroid PET incidentaloma. Laryngoscope. 2005;115:1074–8.

    Article  PubMed  Google Scholar 

  64. King DL, Stack Jr BC, Spring PM, Walker R, Bodenner DL. Incidence of thyroid carcinoma in fluorodeoxyglucose positron emission tomography positive thyroid incidentalomas. Otolaryngol Head Neck Surg. 2007;137:400–4.

    Article  PubMed  Google Scholar 

  65. Kurata S, Ishibashi M, Hiromatsu Y, et al. Diffuse and diffuse-plus-focal uptake in the thyroid gland identified by using FDG-PET: prevalence of thyroid cancer and Hashimoto’s thyroiditis. Ann Nucl Med. 2007;21:325–30.

    Article  PubMed  Google Scholar 

  66. Lardinois D, Weder W, Roudas M, et al. Etiology of solitary extrapulmonary positron emission tomography and computed tomography findings in patients with lung cancer. J Clin Oncol. 2005;23:6846–53.

    Article  PubMed  Google Scholar 

  67. Little SG, Rice TW, Bybel B, et al. Is FDG-PET indicated for superficial esophageal cancer? Eur J Cardiothorac Surg. 2007;31:791–6.

    Article  PubMed  Google Scholar 

  68. Nam SY, Roh JL, Kim JS, Mason DP, Murthy SC, Falk GW, et al. Focal uptake of (18)F-fluorodeoxyglucose by thyroid in patients with nonthyroidal head and neck cancers. Clin Endocrinol (Oxf). 2007;67:135–9.

    Article  Google Scholar 

  69. Nishiyama Y, Yamamoto Y, Yokoe K, et al. FDG-PET as a procedure for detecting simultaneous tumours in head and neck cancer patients. Nucl Med Commun. 2005;26:239–44.

    Article  PubMed  Google Scholar 

  70. Van Westreenen HL, Westerterp M, Jager PL, et al. Synchronous primary neoplasms detected on 18F-FDGPET in staging of patients with esophageal cancer. J Nucl Med. 2005;46:1321–5.

    PubMed  Google Scholar 

  71. Yi JG, Marom EM, Munden RF, et al. Focal uptake of fluorodeoxyglucose by the thyroid in patients undergoing initial disease staging with combined PET/CT for non-small cell lung cancer. Radiology. 2005;236:271–5.

    Article  PubMed  Google Scholar 

  72. Kresnik E, Gallowitsch HJ, Mikosch P, et al. Fluorine-18-fluorodeoxyglucose positron emission tomography in the preoperative assessment of thyroid nodules in an endemic goiter area. Surgery. 2003;133:294–9.

    Article  PubMed  Google Scholar 

  73. Jeong H-S, Baek C-H, Son Y-I, et al. Integrated 18F-FDG PET/CT for the initial evaluation of cervical node level of patients with papillary thyroid carcinoma: comparison with ultrasound and contrast-enhanced CT. Clin Endocrinol. 2006;65:402–7.

    Article  Google Scholar 

  74. Grunwald F, Kalicke T, Feine U, et al. Fluorine-18 fluorodeoxyglucose positron emission tomography in thyroid cancer: results of a multicentre study. Eur J Nucl Med. 1999;26:1547–52.

    Article  PubMed  CAS  Google Scholar 

  75. Dong M-J, Liu Z-F, Zhao K, et al. Value of 18F-FDG-PET/PET-CT in differentiated thyroid carcinoma with radioiodine-negative whole-body scan: a meta-analysis. Nucl Med Commun. 2009;30:639–50.

    Article  PubMed  Google Scholar 

  76. Nahas Z, Goldenberg D, Fakhry C, et al. The role of positron emission tomography/computed tomography in the management of recurrent papillary thyroid carcinoma. Laryngoscope. 2005;115:237–43.

    Article  PubMed  Google Scholar 

  77. Palmedo H, Bucerius J, Joe A, et al. Integrated PET/CT in differentiated thyroid cancer: diagnostic accuracy and impact on patient management. J Nucl Med. 2006;47:616–24.

    PubMed  Google Scholar 

  78. de Groot JW, Links TP, Jager PL, Kahraman T, Plukker JT. Impact of 18F-fluoro-2-deoxy-d-glucose positron emission tomography (FDG-PET) in patients with biochemical evidence of recurrent or residual medullary thyroid cancer. Ann Surg Oncol. 2004;11:786–94.

    Article  PubMed  Google Scholar 

  79. Diehl M, Risse JH, Brandt-Mainz K, et al. Fluorine-18 fluorodeoxyglucose positron emission tomography in medullary thyroid cancer: results of a multicentre study. Eur J Nucl Med. 2001;28:1671–6.

    Article  PubMed  CAS  Google Scholar 

  80. Szakall Jr S, Esik O, Bajzik G, et al. 18F-FDG PET detection of lymph node metastases in medullary thyroid carcinoma. J Nucl Med. 2002;43:66–71.

    PubMed  Google Scholar 

  81. Rubello D, Rampin L, Nanni C, et al. The role of 18F-FDG PET/CT in detecting metastatic deposits of recurrent medullary thyroid carcinoma: a prospective study. Eur J Surg Oncol. 2008;34:581–6.

    Article  PubMed  CAS  Google Scholar 

  82. Gould MK, Maclean CC, Kuschner WG, Rydzak CE, Owens DK. Accuracy of positron emission tomography for diagnosis of pulmonary nodules and mass lesions: a meta-analysis. JAMA. 2001;285:914–24.

    Article  PubMed  CAS  Google Scholar 

  83. Yi CA, Lee KS, Kim B-T, et al. Tissue characterization of solitary pulmonary nodule: comparative study between helical dynamic CT and integrated PET/CT. J Nucl Med. 2006;47:443–50.

    PubMed  Google Scholar 

  84. Gambhir SS, Shepherd JE, Shah BD, et al. Analytical decision model for the cost-effective management of solitary pulmonary nodules. J Clin Oncol. 1998;16:2113–25.

    PubMed  CAS  Google Scholar 

  85. Gould MK, Lillington GA. Strategy and cost in investigating solitary pulmonary nodules. Thorax. 1998;53(Suppl 2):S32–7.

    Article  PubMed  Google Scholar 

  86. Gould MK, Sanders GD, Barnett PG, et al. Cost-effectiveness of alternative management strategies for patients with solitary pulmonary nodules. Ann Intern Med. 2003;138:724–35.

    PubMed  Google Scholar 

  87. Kubota K, Yamada S, Fukuda H, et al. Cost effectiveness analysis of FDG-PET in the differential diagnosis and staging of lung cancer in Japan. Kaku Igaku. 1997;34:329–36.

    PubMed  CAS  Google Scholar 

  88. Tsushima Y, Aoki J, Endo K. Whether and under what conditions FDG-PET might be cost-effective in evaluating solitary pulmonary nodules depicted on lung cancer screening in Japan. Nippon Igaku Hoshasen Gakkai Zasshi. 2003;63:390–8.

    PubMed  Google Scholar 

  89. Tsushima Y, Endo K. Analysis models to assess cost effectiveness of the four strategies for the work-up of solitary pulmonary nodules. Med Sci Monit. 2004;10:MT65–72.

    PubMed  Google Scholar 

  90. Dietlein M, Moka D, Weber K, Theissen P, Schicha H. Cost-effectiveness of PET in the management algorithms of lung tumors: comparison of health economic data. Nucl Med. 2001;40:122–8.

    CAS  Google Scholar 

  91. Gugiatti A, Grimaldi A, Rossetti C, et al. Economic analyses on the use of positron emission tomography for the work-up of solitary pulmonary nodules and for staging patients with non-small-cell-lung-cancer in Italy. Q J Nucl Med. 2004;48:49–61.

    CAS  Google Scholar 

  92. Miles KA. An approach to demonstrating cost-effectiveness of diagnostic imaging modalities in Australia illustrated by positron emission tomography. Australas Radiol. 2001;45:9–18.

    Article  PubMed  Google Scholar 

  93. Kalvin B, Fekeshazy A, Lengyel Z, Szakall Jr S, Agoston P, Lengyel E, et al. Cost-effective PET investigations in oncology. Magy Onkol. 2002;46:203–23.

    PubMed  Google Scholar 

  94. Dwamena BA, Sonnad SS, Angobaldo JO, Wahl RL. Metastases from non-small cell lung cancer: mediastinal staging in the 1990s–meta-analytic comparison of PET and CT. Radiology. 1999;213:530–6.

    PubMed  CAS  Google Scholar 

  95. Gould MK, Kuschner WG, Rydzak CE, et al. Test performance of positron emission tomography and computed tomography for mediastinal staging in patients with non-small-cell lung cancer: a meta-analysis. Ann Intern Med. 2003;139:879–92.

    PubMed  Google Scholar 

  96. Birim O, Kappetein AP, Stijnen T, Bogers AJ. Meta-analysis of positron emission tomographic and computed tomographic imaging in detecting mediastinal lymph node metastases in nonsmall cell lung cancer. Ann Thorac Surg. 2005;79:375–82.

    Article  PubMed  Google Scholar 

  97. Pieterman RM, van Putten JW, Meuzelaar JJ, et al. Preoperative staging of non-small-cell lung cancer with positron-emission tomography. N Engl J Med. 2000;343:254–61.

    Article  PubMed  CAS  Google Scholar 

  98. Reed CE, Harpole DH, Posther KE, et al. Results of the American College of Surgeons Oncology Group Z0050 trial: the utility of positron emission tomography in staging potentially operable non-small cell lung cancer. J Thorac Cardiovasc Surg. 2003;126:1943–51.

    Article  PubMed  Google Scholar 

  99. van Tinteren H, Hoekstra OS, Smit EF, et al. Effectiveness of positron emission tomography in the preoperative assessment of patients with suspected non-small-cell lung cancer: the PLUS multicentre randomised trial. Lancet. 2002;359:1388–93.

    Article  PubMed  Google Scholar 

  100. Viney RC, Boyer MJ, King MT, et al. Randomized controlled trial of the role of positron emission tomography in the management of stage I and II non-small-cell lung cancer. J Clin Oncol. 2004;22:2357–62.

    Article  PubMed  Google Scholar 

  101. Lardinois D, Weder W, Hany TF, et al. Staging of non-small-cell lung cancer with integrated positron-emission tomography and computed tomography. N Engl J Med. 2003;348:2500–7.

    Article  PubMed  Google Scholar 

  102. Cerfolio RJ, Ojha B, Bryant AS, Raghuveer V, Mountz JM, Bartolucci AA. The accuracy of integrated PET-CT compared with dedicated PET alone for the staging of patients with nonsmall cell lung cancer. Ann Thorac Surg. 2004;78:1017–23.

    Article  PubMed  Google Scholar 

  103. Shim SS, Lee KS, Kim BT, et al. Non–small cell lung cancer: prospective comparison of integrated FDG PET/CT and CT alone for preoperative staging. Radiology. 2005;236:1011–9.

    Article  PubMed  Google Scholar 

  104. Vansteenkiste JF, Stroobants SG, Dupont PJ, et al. Prognostic importance of the standardized uptake value on 18F-fluoro-2-deoxy-glucose–positron emission tomography scan in non–small-cell lung cancer: an analysis of 125 cases. J Clin Oncol. 1999;17:3201–6.

    PubMed  CAS  Google Scholar 

  105. Cerfolio RJ, Bryant AS, Ohja B, Bartolucci AA. The maximum standardized uptake values on positron emission tomography of a non-small cell lung cancer predict stage, recurrence, and survival. J Thorac Cardiovasc Surg. 2005;130:151–9.

    Article  PubMed  Google Scholar 

  106. Sasaki R, Komaki R, Macapinlac H, et al. [18F]fluorodeoxyglucose uptake by positron emission tomography predicts outcome of non-small-cell lung cancer. J Clin Oncol. 2005;23:1136–43.

    Article  PubMed  CAS  Google Scholar 

  107. Berghmans T, Dusart M, Paesmans M, et al. Primary tumor standardized uptake value (SUVmax) measured on fluorodeoxyglucose positron emission tomography (FDG-PET) is of prognostic value for survival in non-small cell lung cancer (NSCLC): a systematic review and meta-analysis (MA) by the European Lung Cancer Working Party for the IASLC Lung Cancer Staging Project. J Thorac Oncol. 2008;3:6–12.

    Article  PubMed  Google Scholar 

  108. Hicks RJ, Kalff V, MacManus MP, et al. (18)F-FDG PET provides high-impact and powerful prognostic stratification in staging newly diagnosed non-small cell lung cancer. J Nucl Med. 2001;42:1596–604.

    PubMed  CAS  Google Scholar 

  109. Mac Manus MP, Hicks RJ, Ball DL, et al. F-18 fluorodeoxyglucose positron emission tomography staging in radical radiotherapy candidates with nonsmall cell lung carcinoma: powerful correlation with survival and high impact on treatment. Cancer. 2001;92:886–95.

    Article  PubMed  CAS  Google Scholar 

  110. Gambhir SS, Hoh CK, Phelps ME, Madar I, Maddahi J. Decision tree sensitivity analysis for cost-effectiveness of FDG-PET in the staging and management of non-small-cell lung carcinoma. J Nucl Med. 1996;37:1428–36.

    PubMed  CAS  Google Scholar 

  111. Scott WJ, Shepherd J, Gambhir SS. Cost-effectiveness of FDG-PET for staging non-small cell lung cancer: a decision analysis. Ann Thorac Surg. 1998;66:1876–83.

    Article  PubMed  CAS  Google Scholar 

  112. Alzahouri K, Lejeune C, Woronoff-Lemsi MC, Arveux P, Guillemin F. Cost-effectiveness analysis of strategies introducing FDG-PET into the mediastinal staging of non-small-cell lung cancer from the French healthcare system perspective. Clin Radiol. 2005;60:479–92.

    Article  PubMed  CAS  Google Scholar 

  113. Dietlein M, Scheidhauer K, Lauterbach KW, Schicha H. Quality criteria for cost-benefit analysis in oncologic nuclear medicine and state of its realization. Z Arztl Fortbild Qualitatssich. 1999;93:49–55.

    PubMed  CAS  Google Scholar 

  114. Dietlein M, Weber K, Gandjour A, Moka D, Theissen P, Lauterbach KW, et al. Cost-effectiveness of FDG-PET for the management of potentially operable non-small cell lung cancer: priority for a PET-based strategy after nodal-negative CT results. Eur J Nucl Med. 2000;27:1598–609.

    Article  PubMed  CAS  Google Scholar 

  115. Weber WA, Dietlein M, Hellwig D, Kirsch CM, Schicha H, Schwaiger M. PET with (18)F-fluorodeoxyglucose for staging of non-small cell lung cancer. Nucl Med. 2003;42:135–44.

    CAS  Google Scholar 

  116. van Tinteren H, Hoekstra OS, Smit EF, Verboom P, Boers M, PLUS Study Group. Toward less futile surgery in non-small cell lung cancer? A randomized clinical trial to evaluate the cost-effectiveness of positron emission tomography. Control Clin Trials. 2001;22:89–98.

    Article  PubMed  Google Scholar 

  117. Verboom P, van Tinteren H, Hoekstra OS, Smit EF, van den Bergh JH, Schreurs AJ, et al. Cost-effectiveness of FDG-PET in staging non-small cell lung cancer: the PLUS study. Eur J Nucl Med Mol Imaging. 2003;30:1444–9.

    Article  PubMed  Google Scholar 

  118. Verboom P, Herder GJ, Hoekstra OS, Smit EF, van den Bergh JH, van Velthoven PC, et al. Staging of non-small-cell lung cancer and application of FDG-PET. A cost modeling approach. Int J Technol Assess Health Care. 2002;18:576–85.

    PubMed  Google Scholar 

  119. Sloka JS, Hollett PD, Mathews M. Cost-effectiveness of positron emission tomography for non-small cell lung carcinoma in Canada. Med Sci Monit. 2004;10:MT73–80.

    PubMed  Google Scholar 

  120. Nguyen VH, Peloquin S, Lacasse Y. Cost-effectiveness of positron emission tomography for the management of potentially operable non-small cell lung cancer in Quebec. Can Respir J. 2005;12:19–25.

    PubMed  Google Scholar 

  121. Kosuda S, Ichihara K, Watanabe M, Kobayashi H, Kusano S. Decision tree sensitivity analysis for cost-effectiveness of chest FDG-PET in patients with a pulmonary tumor (non-small cell carcinoma). Kaku Igaku. 1998;35:395–404.

    PubMed  CAS  Google Scholar 

  122. Kosuda S, Ichihara K, Watanabe M, Kobayashi H, Kusano S. Decision-tree sensitivity analysis for cost-effectiveness of chest 2-fluoro-2-d-[(18)F]fluorodeoxyglucose positron emission tomography in patients with pulmonary nodules (non-small cell lung carcinoma) in Japan. Chest. 2000;117:346–53.

    Article  PubMed  CAS  Google Scholar 

  123. Kosuda S, Ichihara K, Watanabe M, Kobayashi H, Kusano S. Decision-tree sensitivity analysis for cost-effectiveness of whole-body FDG PET in the management of patients with non-small-cell lung carcinoma in Japan. Ann Nucl Med. 2002;16:263–71.

    Article  PubMed  Google Scholar 

  124. Abe K, Kosuda S, Kusano S. Medical economics of whole-body FDG PET in patients suspected of having non-small cell lung carcinoma–reassessment based on the revised Japanese national insurance reimbursement system. Ann Nucl Med. 2003;17:649–55.

    Article  PubMed  Google Scholar 

  125. Schumacher T, Brink I, Mix M, et al. FDG-PET imaging for the staging and follow-up of small cell lung cancer. Eur J Nucl Med. 2001;28:483–8.

    Article  PubMed  CAS  Google Scholar 

  126. Shen YY, Shiau YC, Wang JJ, Ho ST, Kao CH. Whole-body 18F-2-deoxyglucose positron emission tomography in primary staging small cell lung cancer. Anticancer Res. 2002;22:1257–64.

    PubMed  Google Scholar 

  127. Blum R, MacManus MP, Rischin D, Michael M, Ball D, Hicks RJ. Impact of positron emission tomography on the management of patients with small-cell lung cancer: preliminary experience. Am J Clin Oncol. 2004;27:164–71.

    Article  PubMed  Google Scholar 

  128. Bradley JD, Dehdashti F, Mintun MA, Govindan R, Trinkaus K, Siegel BA. Positron emission tomography in limited-stage small cell lung cancer: a prospective study. J Clin Oncol. 2004;22:3248–54.

    Article  PubMed  Google Scholar 

  129. Niho S, Fujii H, Murakami K, et al. Detection of unsuspected distant metastases and/or regional nodes by FDG-PET in LD-SCLC scan in apparent limited-disease small-cell lung cancer. Lung Cancer. 2007;57:328–33.

    Article  PubMed  Google Scholar 

  130. Fischer BM, Mortensen J, Langer SW, et al. A prospective study of PET/CT in initial staging of small-cell lung cancer: comparison with CT, bone scintigraphy and bone marrow analysis. Ann Oncol. 2007;18:338–45.

    Article  PubMed  CAS  Google Scholar 

  131. Kut V, Spies W, Spies S, Gooding W, Argiris A. Staging and monitoring of small cell lung cancer using [18F]fluoro-2-deoxy-d-glucose-positron emission tomography (FDG-PET). Am J Clin Oncol. 2007;30:45–50.

    Article  PubMed  Google Scholar 

  132. Bury T, Corhay JL, Duysinx B, et al. Value of FDG-PET in detecting residual or recurrent nonsmall cell lung cancer. Eur Respir J. 1999;14:1376–80.

    Article  PubMed  CAS  Google Scholar 

  133. Patz Jr EF, Lowe VJ, Hoffman JM, Paine SS, Harris LK, Goodman PC. Persistent or recurrent bronchogenic carcinoma: detection with PET and 2-[F-18]-2-deoxy-d-glucose. Radiology. 1994;191:379–82.

    PubMed  Google Scholar 

  134. Hicks RJ, Kalff V, MacManus MP, et al. The utility of (18)F-FDG PET for suspected recurrent non-small cell lung cancer after potentially curative therapy: impact on management and prognostic stratification. J Nucl Med. 2001;42:1605–13.

    PubMed  CAS  Google Scholar 

  135. Keidar Z, Haim N, Guralnik L, et al. PET/CT using 18F-FDG in suspected lung cancer recurrence: ­diagnostic value and impact on patient management. J Nucl Med. 2004;45:1640–6.

    PubMed  Google Scholar 

  136. Vansteenkiste J, Fischer BM, Dooms C, Mortensen J. Positron emission tomography in prognostic and therapeutic assessment of lung cancer: systematic review. Lancet Oncol. 2004;5:531–40.

    Article  PubMed  Google Scholar 

  137. Hellwig D, Graeter TP, Ukena D, Georg T, Kirsch CM, Schafers HJ. Value of F-18-fluorodeoxyglucose positron emission tomography after induction therapy of locally advanced bronchogenic carcinoma. J Thorac Cardiovasc Surg. 2004;128:892–9.

    PubMed  Google Scholar 

  138. Cerfolio RJ, Bryant AS, Winokur TS, Ohja B, Bartolucci AA. Repeat FDG-PET after neoadjuvant therapy is a predictor of pathologic response in patients with non-small cell lung cancer. Ann Thorac Surg. 2004;78:1903–9.

    Article  PubMed  Google Scholar 

  139. Choi NC, Fischman AJ, Niemierko A, et al. Dose–response relationship between probability of pathologic tumor control and glucose metabolic rate measured with FDG PET after preoperative chemoradiotherapy in locally advanced non-small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2002;54:1024–35.

    Article  PubMed  Google Scholar 

  140. Cerfolio RJ, Ojha B, Mukherjee S, Pask AH, Bass CS, Katholi CR. Positron emission tomography scanning with 2-fluoro-2-deoxy–glucose as a predictor of response of neoadjuvant treatment for non-small cell carcinoma. J Thorac Cardiovasc Surg. 2003;125:938–44.

    Article  PubMed  Google Scholar 

  141. Weber WA, Petersen V, Schmidt B, et al. Positron emission tomography in non-small-cell lung cancer: prediction of response to chemotherapy by quantitative assessment of glucose use. J Clin Oncol. 2003;21:2651–7.

    Article  PubMed  CAS  Google Scholar 

  142. De Leyn P, Stroobants S, De Wever W, et al. Prospective comparative study of integrated positron emission tomography-computed tomography scan compared with remediastinoscopy in the assessment of residual mediastinal lymph node disease after induction chemotherapy for mediastinoscopy-proven stage IIIA-N2 non-small-cell lung cancer: a Leuven Lung Cancer Group Study. J Clin Oncol. 2006;24:3333–9.

    Article  PubMed  Google Scholar 

  143. Cerfolio RJ, Bryant AS, Ojha B. Restaging patients with N2 (stage IIIa) non-small cell lung cancer after neoadjuvant chemoradiotherapy: a prospective study. J Thorac Cardiovasc Surg. 2006;131:1229–35.

    Article  PubMed  Google Scholar 

  144. Mac Manus MP, Hicks RJ, Matthews JP, et al. Positron emission tomography is superior to computed tomography scanning for response-assessment after radical radiotherapy or chemoradiotherapy in patients with non-small-cell lung cancer. J Clin Oncol. 2003;21:1285–92.

    Article  PubMed  Google Scholar 

  145. Ansteenkiste JF, Stroobants SG, De Leyn PR, Dupont PJ, Verbeken EK. Potential use of FDG-PET scan after induction chemotherapy in surgically staged IIIa-N2 non-small-cell lung cancer: a prospective pilot study. Ann Oncol. 1998;9:1193–8.

    Article  Google Scholar 

  146. Zhao DS, Valdivia AY, Li Y, Blaufox MD. 18F-fluorodeoxyglucose positron emission tomography in small-cell lung cancer. Semin Nucl Med. 2002;32:272–5.

    Article  PubMed  Google Scholar 

  147. Pandit N, Gonen M, Krug L, Larson SM. Prognostic value of [18F]FDG-PET imaging in small cell lung cancer. Eur J Nucl Med Mol Imaging. 2003;30:78–84.

    Article  PubMed  Google Scholar 

  148. Block MI, Patterson GA, Sundaresan RS, et al. Improvement in staging of esophageal cancer with the addition of positron emission tomography. Ann Thorac Surg. 1997;64:770–6.

    Article  PubMed  CAS  Google Scholar 

  149. Flanagan FL, Dehdashti F, Siegel BA, et al. Staging of esophageal cancer with 18F-fluorodeoxyglucose positron emission tomography. AJR. 1997;168:417–24.

    PubMed  CAS  Google Scholar 

  150. Luketich JD, Schauer PR, Meltzer CC, et al. Role of positron emission tomography in staging esophageal cancer. Ann Thorac Surg. 1997;64:765–9.

    Article  PubMed  CAS  Google Scholar 

  151. Luketich JD, Friedman DM, Weigel TL, et al. Evaluation of distant metastases in esophageal cancer: 100 consecutive positron emission tomography scans. Ann Thorac Surg. 1999;68:1133–6.

    Article  PubMed  CAS  Google Scholar 

  152. Choi JY, Lee KH, Shim YM, et al. Improved detection of individual nodal involvement in squamous cell carcinoma of the esophagus by FDG PET. J Nucl Med. 2000;41:808–15.

    PubMed  CAS  Google Scholar 

  153. Flamen P, Lerut A, van Cutsem E, et al. Utility of positron emission tomography for the staging of patients with potentially operable esophageal carcinoma. J Clin Oncol. 2000;18:3202–10.

    PubMed  CAS  Google Scholar 

  154. Kato H, Kuwano H, Nakajima M, et al. Comparison between positron emission tomography and computed tomography in the use of the assessment of esophageal carcinoma. Cancer. 2002;94:921–8.

    Article  PubMed  Google Scholar 

  155. Yoon YC, Lee KS, Shim YM, Kim BT, Kim K, Kim TS. Metastasis to regional lymph nodes in patients with esophageal squamous cell carcinoma: CT versus FDG PET for presurgical detection prospective study. Radiology. 2003;227:764–70.

    Article  PubMed  Google Scholar 

  156. Heeren PA, Jager PL, Bongaerts F, van Dullemen H, Sluiter W, Plukker JT. Detection of distant metastases in esophageal cancer with (18)F-FDG PET. J Nucl Med. 2004;45:980–7.

    PubMed  Google Scholar 

  157. Kato H, Miyazaki T, Nakajima M, Takita J, Kimura H, Faried A, et al. The incremental effect of positron emission tomography on diagnostic accuracy in the initial staging of esophageal carcinoma. Cancer. 2005;103:148–56.

    Article  PubMed  Google Scholar 

  158. Meyers BF, Downey RJ, Decker PA, et al. The utility of positron emission tomography in staging of potentially operable carcinoma of the thoracic esophagus: results of the American College of Surgeons Oncology Group Z0060 trial. J Thorac Cardiovasc Surg. 2007;133:738–45.

    Article  PubMed  Google Scholar 

  159. van Westreenen HL, Heeren PA, van Dullemen HM, et al. Positron emission tomography with F-18-fluorodeoxyglucose in a combined staging strategy of esophageal cancer prevents unnecessary surgical explorations. J Gastrointest Surg. 2005;9:54–61.

    Article  PubMed  Google Scholar 

  160. Duong CP, Demitriou H, Weih LA, et al. Significant clinical impact and prognostic stratification provided by FDG-PET in the staging of oesophageal cancer. Eur J Nucl Med Mol Imaging. 2006;33:759–69.

    Article  PubMed  Google Scholar 

  161. Choi JY, Jang HJ, Shim YM, et al. 18F-FDG PET in patients with esophageal squamous cell carcinoma undergoing curative surgery: prognostic implications. J Nucl Med. 2004;45:1843–50.

    PubMed  Google Scholar 

  162. Cerfolio RJ, Bryant AS. Maximum standardized uptake values on positron emission tomography of esophageal cancer predicts stage, tumor biology, and survival. Ann Thorac Surg. 2006;82:391–4.

    Article  PubMed  Google Scholar 

  163. Flamen P, Lerut A, Van Cutsem E, et al. The utility of positron emission tomography for the diagnosis and staging of recurrent esophageal cancer. J Thorac Cardiovasc Surg. 2000;120:1085–92.

    Article  PubMed  CAS  Google Scholar 

  164. Kato H, Miyazaki T, Nakajima M, Fukuchi M, Manda R, Kuwano H. Value of positron emission tomography in the diagnosis of recurrent oesophageal carcinoma. Br J Surg. 2004;91:1004–109.

    Article  PubMed  CAS  Google Scholar 

  165. Westerterp M, van Westreenen HL, Reitsma JB, et al. Esophageal cancer: CT, endoscopic US, and FDG PET for assessment of response to neoadjuvant therapy-systematic review. Radiology. 2005;236:841–51.

    Article  PubMed  Google Scholar 

  166. Swisher SG, Maish M, Erasmus JJ, et al. Utility of PET, CT, and EUS to identify pathologic responders in esophageal cancer. Ann Thorac Surg. 2004;78:1152–60.

    Article  PubMed  Google Scholar 

  167. Cerfolio RJ, Bryant AS, Ohja B, Bartolucci AA, Eloubeidi MA. The accuracy of endoscopic ultrasonography with fine-needle aspiration, integrated positron emission tomography with computed tomography, and computed tomography in restaging patients with esophageal cancer after neoadjuvant chemoradiotherapy. J Thorac Cardiovasc Surg. 2006;129:1232–41.

    Article  Google Scholar 

  168. Mochiki E, Kuwano H, Katoh H, Asao T, Oriuchi N, Endo K. Evaluation of 18F-2-deoxy-2-fluoro-d-glucose positron emission tomography for gastric cancer. World J Surg. 2004;28:247–53.

    Article  PubMed  Google Scholar 

  169. Chen J, Cheong JH, Yun MJ, et al. Improvement in preoperative staging of gastric adenocarcinoma with positron emission tomography. Cancer. 2005;103:2383–2290.

    Article  PubMed  Google Scholar 

  170. Yun M, Lim JS, Noh SH, et al. Lymph node staging of gastric cancer using (18)F-FDG PET: a comparison study with CT. J Nucl Med. 2005;46:1582–8.

    PubMed  Google Scholar 

  171. Mukai K, Ishida Y, Okajima K, Isozaki H, Morimoto T, Nishiyama S. Usefulness of preoperative FDG-PET for detection of gastric cancer. Gastric Cancer. 2006;9:192–6.

    Article  PubMed  Google Scholar 

  172. Kim SK, Kang KW, Lee JS, et al. Assessment of lymph node metastases using 18F-FDG PET in patients with advanced gastric cancer. Eur J Nucl Med Mol Imaging. 2006;33:148–55.

    Article  PubMed  Google Scholar 

  173. Yang QM, Kawamura T, Itoh H, et al. Is PET-CT suitable for predicting lymph node status for gastric cancer? Hepatogastroenterol. 2008;55:782–5.

    Google Scholar 

  174. Dassen AE, Lips DJ, Hoekstra CJ, Pruijt JFM, Bosscha J. FDG-PET has no definite role in preoperative imaging in gastric cancer. Eur J Surg Oncol. 2009;35:449–55.

    Article  PubMed  CAS  Google Scholar 

  175. Yoshioka T, Yamaguchi K, Kubota K, et al. Evaluation of 18F-FDG PET in patients with advanced, metastatic, or recurrent gastric cancer. J Nucl Med. 2003;44:690–9.

    PubMed  CAS  Google Scholar 

  176. Lim JS, Yun MJ, Kim MJ, Hyung WJ, Park MS, Choi JY, et al. CT and PET in stomach cancer: preoperative staging and monitoring of response to therapy. Radiographics. 2006;26:143–56.

    Article  PubMed  Google Scholar 

  177. De Potter T, Flamen P, Van Cutsem E, Penninckx F, Filez L, Bormans G, et al. Whole-body PET with FDG for the diagnosis of recurrent gastric cancer. Eur J Nucl Med Mol Imaging. 2002;29:525–9.

    Article  PubMed  CAS  Google Scholar 

  178. Park MJ, Lee WJ, Lim HK, Park KW, Choi JY, Kim BT. Detecting recurrence of gastric cancer: the value of FDG PET/CT. Abdom Imaging. 2009;34:441–7.

    Article  PubMed  Google Scholar 

  179. Nakamoto Y, Togashi K, Kaneta T, et al. Clinical value of whole-body FDG-PET for recurrent gastric cancer: a multicenter study. Jpn J Clin Oncol. 2009;39:297–302.

    Article  PubMed  Google Scholar 

  180. Sun L, Su X-H, Guan Y-S, et al. Clinical role of 18F-fluorodeoxyglucose positron emission tomography/computed tomography in post-operative follow up of gastric cancer: initial results. World J Gastroenterol. 2008;14:4627–32.

    Article  PubMed  Google Scholar 

  181. Jadvar H, Tatlidil R, Garcia AA, Conti PS. Evaluation of recurrent gastric malignancy with [F-18]-FDG positron emission tomography. Clin Radiol. 2003;58:215–21.

    Article  PubMed  CAS  Google Scholar 

  182. Ott K, Fink U, Becker K, et al. Prediction of response to preoperative chemotherapy in gastric carcinoma by metabolic imaging: results of a prospective trial. J Clin Oncol. 2003;21:4604–10.

    Article  PubMed  CAS  Google Scholar 

  183. Stahl A, Ott K, Schwaiger M, Weber WA. Comparison of different SUV-based methods for monitoring cytotoxic therapy with FDG PET. Eur J Nucl Med Mol Imaging. 2004;31:1471–8.

    Article  PubMed  CAS  Google Scholar 

  184. Di Fabio F, Pinto C, Rojas Llimpe FL, et al. The predictive value of 18F-FDG-PET early evaluation in patients with metastatic gastric adenocarcinoma treated with chemotherapy plus cetuximab. Gastric Cancer. 2007;10:221–7.

    Article  PubMed  CAS  Google Scholar 

  185. Wieder HA, Ott K, Lordick F, et al. Prediction of tumor response by FDG-PET: comparison of the accuracy of single and sequential studies in patients with adenocarcinomas of the esophagogastric junction. Eur J Nucl Med Mol Imaging. 2007;34:1925–32.

    Article  PubMed  Google Scholar 

  186. Ott K, Fink U, Becker K, et al. Prediction of response to preoperative chemotherapy in gastric carcinoma by metabolic imaging: results of a prospective trial. J Clin Oncol. 2003;21:4604–10.

    Google Scholar 

  187. Kantorova I, Lipska L, Belohlavek O, Visokai V, Trubac M, Schneiderova M. Routine (18)F-FDG PET preoperative staging of colorectal cancer: comparison with conventional staging and its impact on treatment decision making. J Nucl Med. 2003;44:1784–8.

    PubMed  Google Scholar 

  188. Furukawa H, Ikuma H, Seki A, et al. Positron emission tomography scanning is not superior to whole body multidetector helical computed tomography in the preoperative staging of colorectal cancer. Gut. 2006;55:1007–11.

    Article  PubMed  CAS  Google Scholar 

  189. Abdel-Nabi H, Doerr RJ, Lamonica DM, et al. Staging of primary colorectal carcinomas with fluorine-18 fluorodeoxyglucose whole-body PET: correlation with histopathologic and CT findings. Radiology. 1998;206:755–60.

    PubMed  CAS  Google Scholar 

  190. Mukai M, Sadahiro S, Yasuda S, et al. Preoperative evaluation by whole-body 18F-fluorodeoxyglucose positron emission tomography in patients with primary colorectal cancer. Oncol Rep. 2000;7:85–7.

    PubMed  CAS  Google Scholar 

  191. Bipat S, van Leeuwen MS, Comans EF, et al. Colorectal liver metastases: CT, MR imaging, and PET for diagnosis–meta-analysis. Radiology. 2005;237:123–31.

    Article  PubMed  Google Scholar 

  192. Lai DT, Fulham M, Stephen MS, et al. The role of whole-body positron emission tomography with [18F]fluorodeoxyglucose in identifying operable colorectal cancer metastases to the liver. Arch Surg. 1996;131:703–7.

    Article  PubMed  CAS  Google Scholar 

  193. Fong Y, Saldinger PF, Akhurst T, et al. Utility of 18F-FDG positron emission tomography scanning on selection of patients for resection of hepatic colorectal metastases. Am J Surg. 1999;178:282–7.

    Article  PubMed  CAS  Google Scholar 

  194. Truant S, Huglo D, Hebbar M, Ernst O, Steinling M, Pruvot FR. Prospective evaluation of the impact of [18F]fluoro-2-deoxy-d-glucose positron emission tomography of resectable colorectal liver metastases. Br J Surg. 2005;92:362–9.

    Article  PubMed  CAS  Google Scholar 

  195. Selzner M, Hany TF, Wildbrett P, McCormack L, Kadry Z, Clavien PA. Does the novel PET/CT imaging modality impact on the treatment of patients with metastatic colorectal cancer of the liver? Ann Surg. 2004;240:1027–34.

    Article  PubMed  Google Scholar 

  196. Huebner RH, Park KC, Shepherd JE, et al. A meta-analysis of the literature for wholebody FDG PET detection of recurrent colorectal cancer. J Nucl Med. 2000;41:1177–89.

    PubMed  CAS  Google Scholar 

  197. Wiering B, Krabbe PF, Jager GJ, Oyen WJ, Ruers TJ. The impact of fluor-18-deoxyglucose-positron emission tomography in the management of colorectal liver metastases. Cancer. 2005;104:2658–70.

    Article  PubMed  Google Scholar 

  198. Kim JH, Czernin J, Allen-Auerbach MS, et al. Comparison between 18F-FDG PET, in-line PET/CT, and software fusion for restaging of recurrent colorectal cancer. J Nucl Med. 2005;46:587–95.

    PubMed  Google Scholar 

  199. Votrubova J, Belohlavek O, Jaruskova M, et al. The role of FDG-PET/CT in the detection of recurrent colorectal cancer. Eur J Nucl Med Mol Imaging. 2006;33:779–84.

    Article  PubMed  Google Scholar 

  200. Staib L, Schirrmeister H, Reske SN, Beger HG. Is (18)F-fluorodeoxyglucose positron emission tomography in recurrent colorectal cancer a contribution to surgical decision making? Am J Surg. 2000;180:1–5.

    Article  PubMed  CAS  Google Scholar 

  201. Guillem JG, Puig-La Calle Jr J, et al. Prospective assessment of primary rectal cancer response to preoperative radiation and chemotherapy using 18-fluorodeoxyglucose positron emission tomography. Dis Colon Rectum. 2000;43:18–24.

    Article  PubMed  CAS  Google Scholar 

  202. Cascini GL, Avallone A, Delrio P, Guida C, Tatangelo F, Marone P, et al. 18F-FDG PET is an early predictor of pathologic tumor response to preoperative radiochemotherapy in locally advanced rectal cancer. J Nucl Med. 2006;47:1241–8.

    PubMed  CAS  Google Scholar 

  203. Capirci C, Rampin L, Erba PA, et al. Sequential FDG-PET/CT reliably predicts response of locally advanced rectal cancer to neo-adjuvant chemo-radiation therapy. Eur J Nucl Med Mol Imaging. 2007;34:1583–93.

    Article  PubMed  CAS  Google Scholar 

  204. Rose PG, Adler LP, Rodriguez M, et al. Positron emission tomography for evaluating para-aortic nodal metastasis in locally advanced cervical cancer before surgical staging: a surgicopathologic study. J Clin Oncol. 1999;17:41–5.

    PubMed  CAS  Google Scholar 

  205. Narayan K, Hicks RJ, Jobling T, et al. A comparison of MRI and PET scanning in surgically staged loco-regionally advanced cervical cancer: potential impact on treatment. Int J Gynecol Cancer. 2001;11:263–71.

    Article  PubMed  CAS  Google Scholar 

  206. Yen TC, Ng KK, Ma SY, et al. Value of dual-phase 2-fluoro-2-deoxy-d-glucose positron emission tomography in cervical cancer. J Clin Oncol. 2003;23:3651–8.

    Article  Google Scholar 

  207. Amit A, Beck D, Lowenstein L, et al. The role of hybrid PET/CT in the evaluation of patients with cervical cancer. Gynecol Oncol. 2006;100:65–9.

    Article  PubMed  Google Scholar 

  208. Choi HJ, Roh JW, Seo SS, et al. Comparison of the accuracy of magnetic resonance imaging and positron emission tomography/computed tomography in the presurgical detection of lymph node metastases in patients with uterine cervical carcinoma. Cancer. 2006;106:914–22.

    Article  PubMed  Google Scholar 

  209. Loft A, Berthelsen AK, Roed H, et al. The diagnostic value of PET/CT scanning in patients with cervical cancer: a prospective study. Gynecol Oncol. 2007;106:29–34.

    Article  PubMed  Google Scholar 

  210. Yeh LS, Hung YC, Shen YY, et al. Detecting para-aortic lymph node metastasis by positron emission tomography of 18F fluorodeoxyglucose in advanced cervical cancer with negative magnetic resonance imaging findings. Oncol Rep. 2002;9:1289–92.

    PubMed  Google Scholar 

  211. Lin WC, Hung YC, Yeh LS, Kao CH, Yen RF, Shen YY. Usefulness of (18)F-fluorodeoxyglucose positron emission tomography to detect para-aortic lymph nodal metastasis in advanced cervical cancer with negative computed tomography findings. Gynecol Oncol. 2003;89:73–6.

    Article  PubMed  Google Scholar 

  212. Yildirim Y, Sehirali S, Avci ME, et al. Integrated PET/CT for the evaluation of para-aortic nodal metastasis in locally advanced cervical cancer patients with negative conventional CT findings. Gynecol Oncol. 2008;108:154–9.

    Article  PubMed  CAS  Google Scholar 

  213. Sugawara Y, Eisbruch A, Kosuda S, et al. Evaluation of FDG PET in patients with cervical cancer. J Nucl Med. 1999;40:1125–31.

    PubMed  CAS  Google Scholar 

  214. Reinhardt MJ, Ehritt-Braun C, Vogelgesang D, et al. Metastatic lymph nodes in patients with cervical cancer: detection with MR imaging and FDG PET. Radiology. 2001;218:776–82.

    PubMed  CAS  Google Scholar 

  215. Williams AD, Cousins C, Soutter WP, et al. Detection of pelvic lymph node metastases in gynecologic malignancy: a comparison of CT, MR imaging, and positron emission tomography. AJR. 2001;177:343–8.

    PubMed  CAS  Google Scholar 

  216. Grigsby PW, Siegel BA, Dehdashti F. Lymph node staging by positron emission tomography in patients with carcinoma of the cervix. J Clin Oncol. 2001;1(19):3745–9.

    Google Scholar 

  217. Grigsby PW, Dehdashti F, Siegel BA. FDG-PET evaluation of carcinoma of the cervix. Clin Positron Imaging. 1999;2:105–9.

    Article  PubMed  Google Scholar 

  218. Miller TR, Pinkus E, Dehdashti F, et al. Improved prognostic value of 18F-FDG PET using a simple visual analysis of tumor characteristics in patients with cervical cancer. J Nucl Med. 2003;44:192–7.

    PubMed  Google Scholar 

  219. Kidd EA, Siegel BA, Dehdashti F, Grigsby PW. The standardized uptake value for F-18 fluorodeoxyglucose is a sensitive predictive biomarker for cervical cancer treatment response and survival. Cancer. 2007;110:1738–44.

    Article  PubMed  Google Scholar 

  220. Yen TC, See LC, Lai CH, Tsai CS, Chao A, Hsueh S, Hong JH, Chang TC, Ng KK. Standardized uptake value in para-aortic lymph nodes is a significant prognostic factor in patients with primary advanced squamous cervical cancer. Eur J Nucl Med Mol Imaging. 2008;35:493–501.

    Article  PubMed  Google Scholar 

  221. Weber TM, Sostman HD, Spritzer CE, et al. Cervical carcinoma: determination of recurrent tumor extent versus radiation changes with MR imaging. Radiology. 1995;194:135–9.

    PubMed  CAS  Google Scholar 

  222. Sun SS, Chen TC, Yen RF, Shen YY, Changlai SP, Kao A. Value of whole body 18F-fluoro-2-deoxyglucose positron emission tomography in the evaluation of recurrent cervical cancer. Anticancer Res. 2001;21:2957–61.

    PubMed  CAS  Google Scholar 

  223. Ryu SY, Kim MH, Choi SC, Choi CW, Lee KH. Detection of early recurrence with 18F-FDG PET in patients with cervical cancer. J Nucl Med. 2003;44:347–52.

    PubMed  Google Scholar 

  224. Havrilesky LJ, Wong TZ, Secord AA, Berchuck A, Clarke-Pearson DL, Jones EL. The role of PET scanning in the detection of recurrent cervical cancer. Gynecol Oncol. 2003;90:186–90.

    Article  PubMed  Google Scholar 

  225. Yen TC, See LC, Chang TC, et al. Defining the priority of using 18F-FDG PET for recurrent cervical cancer. J Nucl Med. 2004;45:1632–9.

    PubMed  Google Scholar 

  226. Chang WC, Hung YC, Lin CC, Shen YY, Kao CH. Usefulness of FDG–PET to detect recurrent cervical cancer based on asymptomatically elevated tumor marker serum levels–a preliminary report. Cancer Invest. 2004;22:180–4.

    Article  PubMed  CAS  Google Scholar 

  227. Sakurai H, Suzuki Y, Nonaka T, et al. FDG–PET in the detection of recurrence of uterine cervical carcinoma following radiation therapy–tumor volume and FDG uptake value. Gynecol Oncol. 2006;100:601–7.

    Article  PubMed  Google Scholar 

  228. Chung HH, Kim SK, Kim TH, Lee S, Kang KW, Kim JY, Park SY. Clinical impact of FDG-PET imaging in post-therapy surveillance of uterine cervical cancer: from diagnosis to prognosis. Gynecol Oncol. 2006;103:165–70.

    Article  PubMed  Google Scholar 

  229. Sironi S, Picchio M, Landoni C, Galimberti S, Signorelli M, Bettinardi V, Perego P, Mangioni C, Messa C, Fazio F. Posttherapy surveillance of patients with uterine cancers: value of integrated FDG PET/CT in the detection of recurrence. Eur J Nucl Med Mol Imaging. 2007;34:472–9.

    Article  PubMed  Google Scholar 

  230. Chung HH, Jo H, Kang WJ, Kim JW, Park NH, Song YS, Chung JK, Kang SB, Lee HP. Clinical impact of integrated PET/CT on the management of suspected cervical cancer recurrence. Gynecol Oncol. 2007;104:529–34.

    Article  PubMed  Google Scholar 

  231. Kitajima K, Murakami K, Yamasaki E, Domeki Y, Kaji Y, Sugimura K. Performance of FDG-PET/CT for diagnosis of recurrent uterine cervical cancer. Eur Radiol. 2008;18:2040–7.

    Article  PubMed  Google Scholar 

  232. Belhocine T, Thille A, Fridman V, et al. Contribution of whole-body 18FDG PET imaging in the management of cervical cancer. Gynecol Oncol. 2002;87:90–7.

    Article  PubMed  Google Scholar 

  233. Dizendorf EV, Baumert BG, von Schulthess GK, et al. Impact of whole-body 18F-FDG PET on staging and managing patients for radiation therapy. J Nucl Med. 2003;44:24–9.

    PubMed  Google Scholar 

  234. Lai CH, Huang KG, See LC. Restaging of recurrent cervical carcinoma with dual-phase [18F]fluoro-2-deoxy-d-glucose positron emission tomography. Cancer. 2004;100:544–52.

    Article  PubMed  Google Scholar 

  235. Schwarz JK, Siegel BA, Dehdashti F, Grigsby PW. Association of posttherapy positron emission tomography with tumor response and survival in cervical carcinoma. JAMA. 2007;298:2289–95.

    Article  PubMed  CAS  Google Scholar 

  236. Grigsby PW, Siegel BA, Dehdashti F. Posttherapy surveillance monitoring of cervical cancer by FDG-PET. Int J Radiat Oncol Biol Phys. 2004;55:907–13.

    Article  Google Scholar 

  237. Yoshida Y, Kurokawa T, et al. Incremental benefits of FDG positron emission tomography over CT alone for the preoperative staging of ovarian cancer. AJR Am J Roentgenol. 2004;182:227–33.

    PubMed  Google Scholar 

  238. Castellucci P, Perrone AM, Picchio M, et al. Diagnostic accuracy of 18F-FDG PET/CT in characterizing ovarian lesions and staging ovarian cancer: correlation with transvaginal ultrasonography, computed tomography, and histology. Nucl Med Commun. 2007;28:589–95.

    Article  PubMed  CAS  Google Scholar 

  239. Kitajima K, Murakami K, Yamasaki E, et al. Diagnostic accuracy of integrated FDG PET/contrast-enhanced CT in staging ovarian cancer: comparison with enhanced CT. Eur J Nucl Med Mol Imaging. 2008;35:1912–20.

    Article  PubMed  Google Scholar 

  240. Hubner KF, McDonald TW, Niethammer JG, et al. Assessment of primary and metastatic ovarian cancer by positron emission tomography (PET) using 2-[18F]deoxyglucose (2-[18F]FDG). Gynecol Oncol. 1993;51:197–204.

    Article  PubMed  CAS  Google Scholar 

  241. Jimenez-Bonilla J, Maldonado A, Morales S, et al. Clinical impact of 18F-FDG-PET in the suspicion of recurrent ovarian carcinoma based on elevated tumor marker serum levels. Clin Positron Imaging. 2000;3:231–6.

    Article  PubMed  Google Scholar 

  242. Yen RF, Sun SS, Shen YY, et al. Whole body positron emission tomography with 18F-fluoro-2-deoxyglucose for the detection of recurrent ovarian cancer. Anticancer Res. 2001;21:3691–4.

    PubMed  CAS  Google Scholar 

  243. Rose PG, Faulhaber P, Miraldi F, et al. Positive emission tomography for evaluating a complete clinical response in patients with ovarian or peritoneal carcinoma: correlation with second-look laparotomy. Gynecol Oncol. 2001;82:17–21.

    Article  PubMed  CAS  Google Scholar 

  244. Torizuka T, Nobezawa S, Kanno T, et al. Ovarian cancer recurrence: role of whole-body positron emission tomography using 2-[fluorine-18]-fluoro-2-deoxy- d-glucose. Eur J Nucl Med Mol Imaging. 2002;29:797–803.

    Article  PubMed  CAS  Google Scholar 

  245. Nanni C, Rubello D, Farsad M, et al. (18)F-FDG PET/CT in the evaluation of recurrent ovarian cancer: a prospective study on forty-one patients. Eur J Surg Oncol. 2005;31:792–7.

    Article  PubMed  CAS  Google Scholar 

  246. Havrilesky LJ, Kulasingam SL, Matchar DB, et al. FDG-PET for management of cervical and ovarian cancer. Gynecol Oncol. 2005;97:183–91.

    Article  PubMed  Google Scholar 

  247. Mangili G, Picchio M, Sironi S, Viganò R, Rabaiotti E, Bornaghi D, Bettinardi V, Crivellaro C, Messa C, Fazio F. Integrated PET/CT as a first-line re-staging modality in patients with suspected recurrence of ovarian cancer. Eur J Nucl Med Mol Imaging. 2007;34:658–66.

    Article  PubMed  CAS  Google Scholar 

  248. Chung HH, Kang WJ, Kim JW, Park NH, Song YS, Chung JK, Kang SB, Lee HP. Role of [18F]FDG PET/CT in the assessment of suspected recurrent ovarian cancer: correlation with clinical or histological findings. Eur J Nucl Med Mol Imaging. 2007;34:480–6.

    Article  PubMed  Google Scholar 

  249. Simcock B, Neesham D, Quinn M, Drummond E, Milner A, Hicks RJ. The impact of PET/CT in the management of recurrent ovarian cancer. Gynecol Oncol. 2006;103:271–6.

    Article  PubMed  Google Scholar 

  250. Nakamoto Y, Saga T, Ishimori T, et al. Clinical value of positron emission tomography with FDG for recurrent ovarian cancer. AJR Am J Roentgenol. 2001;176:1449–54.

    PubMed  CAS  Google Scholar 

  251. Soussan M, Wartski M, Cherel P, Fourme E, Goupil A, Le Stanc E, Callet N, Alexandre J, Pecking AP, Alberini JL. Impact of FDG PET-CT imaging on the decision making in the biologic suspicion of ovarian carcinoma recurrence. Gynecol Oncol. 2008;108:160–5.

    Article  PubMed  Google Scholar 

  252. Baum RP, Przetak C. Evaluation of therapy response in breast and ovarian cancer patients by positron emission tomography (PET). Q J Nucl Med. 2001;45:257–68.

    PubMed  CAS  Google Scholar 

  253. Avril N, Sassen S, Schmalfeldt B, et al. Prediction of response to neoadjuvant chemotherapy by sequential F-18-fluorodeoxyglucose positron emission tomography in patients with advanced-stage ovarian cancer. J Clin Oncol. 2005;23:7445–53.

    Article  PubMed  Google Scholar 

  254. Smith GT, Hubner KF, McDonald T, et al. Avoiding second-look surgery and reducing costs in managing patients with ovarian cancer by applying F-18-FDG PET. Clin Positron Imaging. 1998;1:263.

    Article  PubMed  Google Scholar 

  255. Smith GT, Hubner KF, McDonald T, et al. Cost analysis of FDG PET for managing patients with ovarian cancer. Clin Positron Imaging. 1999;2:63–70.

    Article  PubMed  Google Scholar 

  256. Krug B, Crott R, Lonneux M, Baurain JF, Pirson AS, Vander Borght T. Role of PET in the initial staging of cutaneous malignant melanoma: systematic review. Radiology. 2008;249:836–44.

    Article  PubMed  Google Scholar 

  257. Mottaghy FM, Sunderkotter C, Schubert R, Wohlfart P, Blumstein NM, Neumaier B, et al. Direct comparison of [18F]FDG PET/CT with PET alone and with side-by-side PET and CT in patients with malignant melanoma. Eur J Nucl Med Mol Imaging. 2007;34:1355–64.

    Article  PubMed  Google Scholar 

  258. Strobel K, Skalsky J, Steinert HC, et al. S-100B and FDG-PET/CT in therapy response assessment of melanoma patients. Dermatology. 2007;215:192–201.

    Article  PubMed  CAS  Google Scholar 

  259. Bastiaannet E, Oyen WJ, Meijer S, et al. Impact of [18F]fluorodeoxyglucose positron emission tomography on surgical management of melanoma patients. Br J Surg. 2006;93:243–9.

    Article  PubMed  CAS  Google Scholar 

  260. Damian DL, Fulham MJ, Thompson E, Thompson JF. Positron emission tomography in the detection and management of metastatic melanoma. Melanoma Res. 1996;6:325–9.

    Article  PubMed  CAS  Google Scholar 

  261. Tyler DS, Onaitis M, Kherani A, et al. Positron emission tomography scanning in malignant melanoma. Cancer. 2000;89:1019–25.

    Article  PubMed  CAS  Google Scholar 

  262. Jadvar H, Johnson DL, Segall GM. The effect of fluorine-18 fluorodeoxyglucose positron emission tomography on the management of cutaneous malignant melanoma. Clin Nucl Med. 2000;25:48–51.

    Article  PubMed  CAS  Google Scholar 

  263. Gulec SA, Faries MB, Lee CC, et al. The role of fluorine-18 deoxyglucose positron emission tomography in the management of patients with metastatic melanoma: impact on surgical decision making. Clin Nucl Med. 2003;28:961–5.

    Article  PubMed  Google Scholar 

  264. Falk MS, Truitt AK, Coakley FV, Kashani-Sabet M, Hawkins RA, Franc B. Interpretation, accuracy and management implications of FDG PET/CT in cutaneous malignant melanoma. Nucl Med Commun. 2007;28:273–80.

    Article  PubMed  CAS  Google Scholar 

  265. Rinne D, Baum RP, Hor G, Kaufmann R. Primary staging and follow-up of high risk melanoma patients with whole-body 18F-fluorodeoxyglucose positron emission tomography: results of a prospective study of 100 patients. Cancer. 1998;82:1664–71.

    Article  PubMed  CAS  Google Scholar 

  266. Wagner JD, Schauwecker D, Davidson D, Logan T, Coleman 3rd JJ, Hutchins G, et al. Inefficacy of F-18 fluorodeoxy-d-glucose-positron emission tomography scans for initial evaluation in early-stage cutaneous melanoma. Cancer. 2005;104:570–9.

    Article  PubMed  Google Scholar 

  267. Stas M, Stroobants S, Dupont P, Gysen M, Hoe LV, Garmyn M, et al. 18-FDG PET scan in the staging of recurrent melanoma: additional value and therapeutic impact. Melanoma Res. 2002;12:479–90.

    Article  PubMed  CAS  Google Scholar 

  268. Mijnhout GS, Comans EF, Raijmakers P, Hoekstra OS, Teule GJ, Boers M, et al. Reproducibility and clinical value of 18F-fluorodeoxyglucose positron emission tomography in recurrent melanoma. Nucl Med Commun. 2002;23:475–81.

    Article  PubMed  CAS  Google Scholar 

  269. Fuster D, Chiang S, Johnson G, Schuchter LM, Zhuang H, Alavi A. Is 18F-FDG PET more accurate than standard diagnostic procedures in the detection of suspected recurrent melanoma? J Nucl Med. 2004;45:1323–7.

    PubMed  Google Scholar 

  270. Reinhardt MJ, Joe AY, Jaeger U, Huber A, Matthies A, Bucerius J, et al. Diagnostic performance of whole body dual modality 18F-FDG PET/CT imaging for N- and M-staging of malignant melanoma: experience with 250 consecutive patients. J Clin Oncol. 2006;24:1178–87.

    Article  PubMed  Google Scholar 

  271. Nguyen NC, Chaar BT, Osman MM. Prevalence and patterns of soft tissue metastasis: detection with true whole-body F-18 FDG PET/CT. BMC Med Imaging. 2007;7:8.

    Article  PubMed  Google Scholar 

  272. Koskivuo IO, Seppanen MP, Suominen EA, Minn HR. Whole body positron emission tomography in follow-up of high risk melanoma. Acta Oncol. 2007;46:685–90.

    Article  PubMed  Google Scholar 

  273. Hofman MS, Constantinidou A, Acland K, Healy C, Harries M, O’Doherty M. Assessing response to chemotherapy in metastatic melanoma with FDG PET: early experience. Nucl Med Commun. 2007;28:902–6.

    Article  PubMed  Google Scholar 

  274. Isasi CR, Lu P, Blaufox MD. A metaanalysis of 18F-2-deoxy-2-fluoro-d-glucose positron emission tomography in the staging and restaging of patients with lymphoma. Cancer. 2005;104:1066–74.

    Article  PubMed  Google Scholar 

  275. Seam P, Juweid ME, Cheson BD. The role of FDG-PET scans in patients with lymphoma. Blood. 2007;110:3507–16.

    Article  PubMed  CAS  Google Scholar 

  276. Schiepers C, Filmont JE, Czernin J. PET for staging of Hodgkin’s disease and non-Hodgkin’s lymphoma. Eur J Nucl Med Mol Imaging. 2003;30(Suppl 1):S82–8.

    Article  PubMed  CAS  Google Scholar 

  277. Raanani P, Shasha Y, Perry C, et al. Is CT scan still necessary for staging in Hodgkin and non-Hodgkin lymphoma patients in the PET/CT era? Ann Oncol. 2006;17:117–22.

    Article  PubMed  CAS  Google Scholar 

  278. la Fougère C, Hundt W, Bröckel N, et al. Value of PET/CT versus PET and CT performed as separate investigations in patients with Hodgkin’s disease and non-Hodgkin’s lymphoma. Eur J Nucl Med Mol Imaging. 2006;33:1417–25.

    Article  PubMed  Google Scholar 

  279. Jerusalem G, Beguin Y, Najjar F, et al. Positron emission tomography (PET) with 18F-fluorodeoxyglucose (18F-FDG) for the staging of low grade non-Hodgkin’s lymphoma (NHL). Ann Oncol. 2001;12:825–30.

    Article  PubMed  CAS  Google Scholar 

  280. Elstrom R, Guan L, Baker G, et al. Utility of FDG PET scanning in lymphoma by WHO classification. Blood. 2003;101:3875–6.

    Article  PubMed  CAS  Google Scholar 

  281. Okada J, Yoshikawa K, Imazeki K, et al. The use of FDG-PET in the detection and management of malignant lymphoma: correlation of uptake with prognosis. J Nucl Med. 1991;32:686–91.

    PubMed  CAS  Google Scholar 

  282. Reske SN. PET and restaging of malignant lymphoma including residual masses and relapse. Eur J Nucl Med Mol Imaging. 2003;30(Suppl 1):S89–96.

    Article  PubMed  Google Scholar 

  283. Terasawa T, Nihashi T, Hotta T, Nagai H. 18F-FDG PET for posttherapy assessment of Hodgkin’s disease and aggressive non-Hodgkin’s lymphoma: a systematic review. J Nucl Med. 2008;49:13–21.

    Article  PubMed  Google Scholar 

  284. Spaepen K, Stroobants S, Verhoef G, Mortelmans L. Positron emission tomography with [18F]FDG for therapy response monitoring in lymphoma patients. Eur J Nucl Med Mol Imaging. 2003;30(Suppl 1):S97–105.

    Article  PubMed  Google Scholar 

  285. Hutchings M, Barrington SF. PET/CT for therapy response assessment in lymphoma. J Nucl Med. 2009;50(Suppl 1):21S–30.

    Article  PubMed  CAS  Google Scholar 

  286. Terasawa T, Lau J, Bardet S, et al. Fluorine-18-fluorodeoxyglucose positron emission tomography for interim response assessment of advanced-stage Hodgkin’s lymphoma and diffuse large B-cell lymphoma: a systematic review. J Clin Oncol. 2009;27:1906–14.

    Article  PubMed  Google Scholar 

  287. Poulou LS, Thanos L, Ziakas PD. Unifying the predictive value of pretransplant FDG PET in patients with lymphoma: a review and meta-analysis of published trials. Eur J Nucl Med Mol Imaging. 2010;37:156–62.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joon Young Choi M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Choi, J.Y. (2013). Evidence-Based Positron Emission Tomography. In: Kim, E., Lee, MC., Inoue, T., Wong, WH. (eds) Clinical PET and PET/CT. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0802-5_32

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0802-5_32

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-0801-8

  • Online ISBN: 978-1-4419-0802-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics