Skip to main content

18F-FDG Positron Emission Tomography in the Evaluation of Infectious and Inflammatory Diseases

  • Chapter
  • First Online:

Abstract

Positron emission tomography (PET) with fluorine-18 fluoro-2-deoxy-d-glucose (FDG) is a powerful diagnostic tool that detects cells with enhanced glucose utilization. While this imaging technique is most widely applied for cancer disease, FDG is not a tumor-specific probe but is also avidly accumulated by inflammatory cells. Owing to this property, in the appropriate settings, FDG PET can also be applied in detecting and characterizing a variety of infectious and inflammatory diseases, which includes diseases caused by infections from bacteria, mycobacteria, virus, and fungi, as well as many noninfectious inflammatory processes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ma LD, Frassica FJ, Bluemke DA, Fishman EK. CT and MRI evaluation of musculoskeletal infection. Crit Rev Diagn Imaging. 1997;38:535–68.

    PubMed  CAS  Google Scholar 

  2. Alazraki NP. Radionuclide imaging in the evaluation of infections and inflammatory disease. Radiol Clin North Am. 1993;31:783–94.

    PubMed  CAS  Google Scholar 

  3. Sugawara Y, Braun DK, Kison PV, Russo JE, Zasadny KR, Wahl RL. Rapid detection of human infections with fluorine-18 fluorodeoxyglucose and positron emission tomography: preliminary results. Eur J Nucl Med. 1998;25(9):1238–43.

    Article  PubMed  CAS  Google Scholar 

  4. Kubota R, Yamada S, Kubota K, Ishiwata K, Tamahashi N, Ido T. Intratumoral distribution of fluorine-18-fluorodeoxygolucose in vivo: high accumulation in macrophages and granulation tissues studies by microautoradiography. J Nucl Med. 1992;33:1872–980.

    Google Scholar 

  5. Ishimori T, Saga T, Mamede M, Kobayashi H, Higashi T, Nakamoto Y, Sato N, Konishi J. Increased 18F-FDG uptake in a model of inflammation: Concanavalin A-mediated lymphocyte activation. J Nucl Med. 2002;43:658–63.

    PubMed  CAS  Google Scholar 

  6. Yamada S, Kubota K, Kubota R, Ido T, Tamahashi N. High accumulation of fluorine-18-fluorodeoxyglucose in turpentine-induced inflammatory tissue. J Nucl Med. 1995;36:1301–6.

    PubMed  CAS  Google Scholar 

  7. Nakamoto Y, Higashi T, Sakahara H, et al. Delayed FDG-PET scan for the differentiation between malignant and benign lesions. J Nucl Med. 1999;36:1301–6.

    Google Scholar 

  8. Weisdorf DJ, Craddock PR, Jacob HS. Glycogenolysis versus glucose transport in human granulocytes: differential activation in phagocytosis and chemotaxis. Blood. 1982;60:888–93.

    PubMed  CAS  Google Scholar 

  9. Ahmed N, Kansara M, Berridge MV. Acute regulation of glucose transport in a monocyte-macrophage cell line: Glut-3 affinity for glucose is enhanced ­during the respiratory burst. Biochem J. 1997;327:369–75.

    PubMed  CAS  Google Scholar 

  10. Tan AS, Ahmed N, Berridge MV. Acute regulation of glucose transport after activation of human peripheral blood neutrophils by phorbol myristate acetate, fMLP, and granulocyte-macrophage colony-stimulating factor. Blood. 1998;91:649–55.

    PubMed  CAS  Google Scholar 

  11. Paik JY, Ko BH, Choe YS, Choi Y, Lee KH, Kim BT. PMA-enhanced neutrophil [18F]FDG uptake is independent of integrin occupancy but requires PI3K activity. Nucl Med Biol. 2005;32:561–6.

    Article  PubMed  CAS  Google Scholar 

  12. Jones HA, Cadwallader KA, White JF, Uddin M, Peters AM, Chilvers ER. Dissociation between respiratory burst activity and deoxyglucose uptake in human neutrophil granulocytes: implications for interpretation of 18F-FDG PET images. J Nucl Med. 2002;43:652–7.

    PubMed  CAS  Google Scholar 

  13. Schuster DP, Brody SL, Zhou Z, Bernstein M, Arch R, Link D, Mueckler M. Regulation of lipopolysaccharide-induced increases in neutrophil glucose uptake. Am J Physiol Lung Cell Mol Physiol. 2007;292:L845–51.

    Article  PubMed  CAS  Google Scholar 

  14. Fukuzumi M, Shinomiya H, Shimizu Y, Ohishi K, Utsumi S. Endotoxin-induced enhancement of glucose influx into murine peritoneal macrophages via GLUT1. Infect Immun. 1996;64:108–12.

    PubMed  CAS  Google Scholar 

  15. Paik JY, Lee KH, Choe YS, Choi Y, Kim BT. Augmented 18F-FDG uptake in activated monocytes occurs during the priming process and involves tyrosine kinases and protein kinase C. J Nucl Med. 2004;45:124–8.

    PubMed  CAS  Google Scholar 

  16. Chakrabarti R, Jung CY, Lee TP, Liu H, Mookerjee BK. Changes in glucose transport and transporter isoforms during the activation of human peripheral blood lymphocytes by phytohemagglutinin. J Immunol. 1994;152:2660–8.

    PubMed  CAS  Google Scholar 

  17. Paik J-Y, Lee K-H, Byun S-S, Choe YS, Kim B-T. Usefulness of insulin to improve F-18 FDG labeling and retention for in vivo PET imaging of monocyte trafficking. Nucl Med Commun. 2002;23:551–7.

    Article  PubMed  CAS  Google Scholar 

  18. Zhuang HM, Cortés-Blanco A, Pourdehnad M, Adam LE, Yamamoto AJ, Martínez-Lázaro R, Lee JH, Loman JC, Rossman MD, Alavi A. Do high glucose levels have differential effect on FDG uptake in inflammatory and malignant disorders? Nucl Med Commun. 2001;22:1123–8.

    Article  PubMed  CAS  Google Scholar 

  19. Merkel KD, Brown ML, Dewanjee MK, Fitzgerald RH. Comparison of indium-labeled leukocyte imaging with sequential technetium-gallium scanning in the diagnosis of low-grade musculoskeletal sepsis. J Bone Joint Surg. 1985;67A:465–76.

    Google Scholar 

  20. Al-Sheik W, Sfakianakis GN, Mnaymneh W, Hourani M, Heal A, Duncan RC, Burnett A, Ashkar FS, Serafini AN. Subacute and chronic bone infections: diagnosis using In-111, Ga-67 and Tc-99 m MDP bone scintigraphy, and radiology. Radiology. 1985;155:501–6.

    Google Scholar 

  21. Plestro JP. The current role of gallium imaging in infection. Semin Nucl Med. 1994;24:128–41.

    Article  Google Scholar 

  22. Datz FL. Indium-111 labeled leukocytes for the detection of infection: current status. Semin Nucl Med. 1994;24:92–109.

    Article  PubMed  CAS  Google Scholar 

  23. Palestro CJ, Kim CK, Swyer AJ, Vallabhajosula S, Goldsmith SJ. Radionuclide diagnosis of vertebral osteomyelitis: indium-111-leukocyte and technetium-99m-methylene diphosphonate bone scintigraphy. J Nucl Med. 1991;32(10):1861–5.

    PubMed  CAS  Google Scholar 

  24. Stumpe KD, Dazzi H, Schaffner A, von Schulthess GK. Infection imaging using whole-body FDG-PET. Eur J Nucl Med. 2000;27:822–32.

    Article  PubMed  CAS  Google Scholar 

  25. Guhlmann A, Brecht-Krauss D, Suger G, Glatting G, Kotzerke J, Kinzl L, Reske SN. Chronic osteomyelitis: detection with FDG PET and correlation with histopathologic findings. Radiology. 1998;206(3):749–54.

    PubMed  CAS  Google Scholar 

  26. Guhlmann A, Brecht-Krauss D, Suger G, Glatting G, Kotzerke J, Kinzl L, Reske SN. Fluorine-18-FDG PET and technetium-99 m antigranulocyte antibody scintigraphy in chronic osteomyelitis. J Nucl Med. 1998;39(12):2145–52.

    PubMed  CAS  Google Scholar 

  27. de Winter F, van de Wiele C, Vogelaers D, de Smet K, Verdonk R, Dierckx RA. Fluorine-18 fluorodeoxyglucose-position emission tomography: a highly accurate imaging modality for the diagnosis of chronic musculoskeletal infections. J Bone Joint Surg Am. 2001;83-A(5):651–60.

    PubMed  Google Scholar 

  28. Schmitz A, Kalicke T, Willkomm P, Grunwald F, Kandyba J, Schmitt O. Use of fluorine-18 fluoro-2-deoxy-d-glucose positron emission tomography in assessing the process of tuberculous spondylitis. J Spinal Disord. 2000;13(6):541–4.

    Article  PubMed  CAS  Google Scholar 

  29. Ho AY, Pagliuca A, Maisey MN, Mufti GJ. Positron emission scanning with 18F-FDG in the diagnosis of deep fungal infections. Br J Haematol. 1998;101:392–3.

    Article  PubMed  CAS  Google Scholar 

  30. Kalicke T, Schmitz A, Risse JH, Arens S, Keller E, Hansis M, Schmitt O, Biersack HJ, Grunwald F. Fluorine-18 fluorodeoxyglucose PET in infectious bone diseases: results of histologically confirmed cases. Eur J Nucl Med. 2000;27:524–8.

    Article  PubMed  CAS  Google Scholar 

  31. Zhuang H, Duarte PS, Pourdehand M, Shnier D, Alavi A. Exclusion of chronic osteomyelitis with F-18 fluorodeoxyglucose positron emission tomographic imaging. Clin Nucl Med. 2000;25(4):281–4.

    Article  PubMed  CAS  Google Scholar 

  32. Hartmann A, Eid K, Dora C, Trentz O, von Schulthess GK, Stumpe KD. Diagnostic value of 18F-FDG PET/CT in trauma patients with suspected chronic osteomyelitis. Eur J Nucl Med Mol Imaging. 2007;34:704–14.

    Article  PubMed  Google Scholar 

  33. Termaat MF, Raijmakers PG, Scholten HJ, Bakker FC, Patka P, Haarman HJ. The accuracy of diagnostic imaging for the assessment of chronic osteomyelitis: a systematic review and meta-analysis. J Bone Joint Surg Am. 2005;87(11):2464–71.

    Article  PubMed  CAS  Google Scholar 

  34. Smith SL, Wastie ML, Forster I. Radionuclide bone scintigraphy in the detection of significant complications after total knee joint replacement. Clin Radiol. 2001;56(3):221–4.

    Article  PubMed  CAS  Google Scholar 

  35. Merkel KD, Brown ML, Fitzgerald Jr RH. Sequential technetium-99 m HMDP gallium-67 citrate imaging for the evaluation of infection in the painful prosthesis. J Nucl Med. 1986;27:1413–7.

    PubMed  CAS  Google Scholar 

  36. Kraemer WJ, Saplys R, Waddell JP, Morton J. Bone scan, gallium scan, and hip aspiration in the diagnosis of infected total hip arthroplasty. J Arthroplasty. 1993;8(6):611–6.

    Article  PubMed  CAS  Google Scholar 

  37. Scher DM, Pak K, Lonner JH, et al. The predictive value of indium-111 leukocyte scans in the diagnosis of infected total hip, knee, or resection arthroplasties. J Arthroplasty. 2000;15:295–300.

    Article  PubMed  CAS  Google Scholar 

  38. Temmerman OP, Heyligers IC, Hoekstra OS, Comans EF, Roos JC. Detection of osteomyelitis using FDG and positron emission tomography. J Arthroplasty. 2001;16(2):243–6.

    Article  PubMed  CAS  Google Scholar 

  39. Zhuang H, Duarte PS, Pourdehnad M, Maes A, Van Acker F, Shnier D, Garino JP, Fitzgerald RH, Alavi A. The promising role of 18F-FDG PET in detecting infected lower limb prosthesis implants. J Nucl Med. 2001;42(1):44–8.

    PubMed  CAS  Google Scholar 

  40. Zoccali C, Teori G, Salducca N. The role of FDG-PET in distinguishing between septic and aseptic loosening in hip prosthesis: a review of literature. Int Orthop. 2009;33(1):1–5.

    Article  PubMed  CAS  Google Scholar 

  41. Zhuang H, Alavi A. F-18-fluorodeoxyglucose positron emission tomographic imaging in the detection and monitoring of infection and inflammation. Semin Nucl Med. 2002;32(1):47–59.

    Article  PubMed  Google Scholar 

  42. Van Acker F, Nuyts J, Maes A, Vanquickenborne B, Stuyck J, Bellemans J, Vleugels S, Bormans G, Mortelmans L. FDG-PET, 99mTc-HMPAO white blood cell SPET and bone scintigraphy in the evaluation of painful total knee arthroplasties. Eur J Nucl Med. 2001;28(10):1496–504.

    Article  PubMed  CAS  Google Scholar 

  43. Heiba SI, Luo JQ, Sadek S, Macalental E, Cacavio A, Rosen G, Abdel-Dayem HA. Attenuation correction induced artifact in F-18 FDG PET imaging following total knee replacement. Clin Positron Imaging. 2000;3:237–9.

    Article  PubMed  Google Scholar 

  44. Johnston SL, Lock RJ, Gompels MM. Takayasu arteritis: a review. J Clin Pathol. 2002;55(7):481–6.

    Article  PubMed  CAS  Google Scholar 

  45. Angeli E, Vanzulli A, Venturini M, Zoccai GB, Del Maschio A. The role of radiology in the diagnosis and management of Takayasu’s arteritis. J Nephrol. 2001;14(6):514–24.

    PubMed  CAS  Google Scholar 

  46. Peters AM. Nuclear medicine in vasculitis. Rheumatology. 2000;39:463–70.

    Article  PubMed  CAS  Google Scholar 

  47. Jonker N, Peters AM, Gaskin G, Pusey CD, Lavender JP. A retrospective study of granulocyte kinetics in patients with systemic vasculitis. J Nucl Med. 1992;33:491–7.

    PubMed  CAS  Google Scholar 

  48. Reuter H, Wraight EP, Qasim FJ, Lockwood CM. Management of systemic vasculitis: contribution of scintigraphic imaging to evaluation of disease activity and classification. Q J Med. 1995;88:509–16.

    CAS  Google Scholar 

  49. Walter MA. [18F]fluorodeoxyglucose PET in large vessel vasculitis. Radiol Clin North Am. 2007;45(4):735–44.

    Article  PubMed  Google Scholar 

  50. Blockmans D, Maes A, Stroobants S, Nuyts J, Bormans G, Knockaert D, Bobbaers H, Mortelmans L. New arguments for a vasculitic nature of polymyalgia rheumatica using positron emission tomography. Rheumatology (Oxford). 1999;38(5):444–7.

    Article  CAS  Google Scholar 

  51. Blockmans D, Stroobants S, Maes A, Mortelmans L. Positron emission tomography in giant cell arteritis and polymyalgia rheumatica: evidence for inflammation of the aortic arch. Am J Med. 2000;108(3):246–9.

    Article  PubMed  CAS  Google Scholar 

  52. Turlakow A, Yeung HW, Pui J, Macapinlac H, Liebovitz E, Rusch V, Goy A, Larson SM. Fluorodeoxyglucose positron emission tomography in the diagnosis of giant cell arteritis. Arch Intern Med. 2001;161(7):1003–7.

    Article  PubMed  CAS  Google Scholar 

  53. Blockmans D. The use of (18F)fluoro-deoxyglucose positron emission tomography in the assessment of large vessel vasculitis. Clin Exp Rheumatol. 2003;21(6 Suppl 32):S15–22.

    PubMed  CAS  Google Scholar 

  54. Hara M, Goodman PC, Leder RA. FDG-PET finding in early-phase Takayasu arteritis. J Comput Assist Tomogr. 1999;23(1):16–8.

    Article  PubMed  CAS  Google Scholar 

  55. Belhocine T, Blockmans D, Hustinx R, Vandevivere J, Mortelmans L. Imaging of large vessel vasculitis with (18)FDG PET: illusion or reality? A critical review of the literature data. Eur J Nucl Med Mol Imaging. 2003;30(9):1305–13.

    Article  PubMed  Google Scholar 

  56. Webb M, Al-Nahhas A. Molecular imaging of Takayasu’s arteritis and other large-vessel vasculitis with 18F-FDG PET. Nucl Med Commun. 2006;27(7):547–9.

    Article  PubMed  Google Scholar 

  57. Steňová E, Mištec S, Povinec P. FDG-PET/CT in large-vessel vasculitis: its diagnostic and follow-up role. Rheumatol Int. 2010; 30(8):1111–4.

    Google Scholar 

  58. Walter MA, Melzer RA, Schindler C, Müller-Brand J, Tyndall A, Nitzsche EU. The value of [18F]FDG-PET in the diagnosis of large-vessel vasculitis and the assessment of activity and extent of disease. Eur J Nucl Med Mol Imaging. 2005;32(6):674–81.

    Article  PubMed  Google Scholar 

  59. Otsuka H, Morita N, Yamashita K, Nishitani H. FDG-PET/CT for diagnosis and follow-up of vasculitis. J Med Invest. 2007;54(3–4):345–9.

    Article  PubMed  Google Scholar 

  60. Henes JC, Müller M, Krieger J, Balletshofer B, Pfannenberg AC, Kanz L, Kötter I. [18F] FDG-PET/CT as a new and sensitive imaging method for the diagnosis of large vessel vasculitis. Clin Exp Rheumatol. 2008;26(3 Suppl 49):S47–52.

    PubMed  CAS  Google Scholar 

  61. Kok J, Lin M, Patapanian H, Shingde M, Lin P, Chu J. [18F]FDG PET/CT in the diagnosis of large vessel vasculitis. Intern Med J. 2009;39(4):267–9.

    Article  PubMed  CAS  Google Scholar 

  62. Meller J, Becker W. Nuclear medicine diagnosis of patients with fever of unknown origin. Nuklearmedizin. 2001;40(3):59–70.

    PubMed  CAS  Google Scholar 

  63. Peters AM. The use of nuclear medicine in infections. Br J Radiol. 1998;71(843):252–61.

    PubMed  CAS  Google Scholar 

  64. Lorenzen J, Buchert R, Bohuslavizki KH. Value of FDG PET in patients with fever of unknown origin. Nucl Med Commun. 2001;22(7):779–83.

    Article  PubMed  CAS  Google Scholar 

  65. Blockmans D, Knockaert D, Maes A, De Caestecker J, Stroobants S, Bobbaers H, Mortelmans L. Clinical value of [18F]fluoro-deoxyglucose positron emission tomography for patients with fever of unknown origin. Clin Infect Dis. 2001;32(2):191–6.

    Article  PubMed  CAS  Google Scholar 

  66. Kjaer A, Lebech AM, Eigtved A, Højgaard L. Fever of unknown origin: prospective comparison of diagnostic value of 18F-FDG PET and 111In-granulocyte scintigraphy. Eur J Nucl Med Mol Imaging. 2004;31(5):622–6.

    Article  PubMed  Google Scholar 

  67. Buysschaert I, Vanderschueren S, Blockmans D, Mortelmans L, Knockaert D. Contribution of (18)fluoro-deoxyglucose positron emission tomography to the work-up of patients with fever of unknown origin. Eur J Intern Med. 2004;15(3):151–6.

    Article  PubMed  Google Scholar 

  68. Bleeker-Rovers CP, Vos FJ, Mudde AH, Dofferhoff AS, de Geus-Oei LF, Rijnders AJ, Krabbe PF, Corstens FH, van der Meer JW, Oyen WJ. A prospective multi-centre study of the value of FDG-PET as part of a structured diagnostic protocol in patients with fever of unknown origin. Eur J Nucl Med Mol Imaging. 2007;34(5):694–703.

    Article  PubMed  Google Scholar 

  69. Federici L, Blondet C, Imperiale A, Sibilia J, Pasquali JL, Pflumio F, Goichot B, Blaison G, Weber JC, Christmann D, Constantinesco A, Andrès E. Value of (18)F-FDG-PET/CT in patients with fever of unknown origin and unexplained prolonged inflammatory syndrome: a single centre analysis experience. Int J Clin Pract. 2010; 64(1): 55–60.

    Google Scholar 

  70. Keidar Z, Gurman-Balbir A, Gaitini D, Israel O. Fever of unknown origin: the role of 18F-FDG PET/CT. J Nucl Med. 2008;49(12):1980–5.

    Article  PubMed  Google Scholar 

  71. Ferda J, Ferdová E, Záhlava J, Matějovič M, Kreuzberg B. Fever of unknown origin: a value of (18)F-FDG-PET/CT with integrated full diagnostic isotropic CT imaging. Eur J Radiol. 2010; 73(3): 518–25.

    Google Scholar 

  72. Tatlidil R, Jadvar H, Bading JR, Conti PS. Incidental colonic fluorodeoxyglucose uptake: correlation with colonoscopic and histopathologic findings. Radiology. 2002;224(3):783–7.

    Article  PubMed  Google Scholar 

  73. Spier BJ, Perlman SB, Reichelderfer M. FDG-PET in inflammatory bowel disease. Q J Nucl Med Mol Imaging. 2009;53(1):64–71.

    PubMed  CAS  Google Scholar 

  74. Bicik I, Bauerfeind P, Breitbach T, von Schulthess GK, Fried M. Inflammatory bowel disease activity measured by positron-emission tomography. Lancet. 1997;350(9073):262.

    Article  PubMed  CAS  Google Scholar 

  75. Rubin DT, Surma BL, Gavzy SJ, Schnell KM, Bunnag AP, Huo D, Appelbaum DE. Positron emission tomography (PET) used to image subclinical inflammation associated with ulcerative colitis (UC) in remission. Inflamm Bowel Dis. 2009;15(5):750–5.

    Article  PubMed  Google Scholar 

  76. Skehan SJ, Issenman R, Mernagh J, Nahmias C, Jacobson K. 18F-fluorodeoxyglucose positron tomography in diagnosis of pediatric inflammatory bowel disease. Lancet. 1999;354(9181):836–7.

    Article  PubMed  CAS  Google Scholar 

  77. Löffler M, Weckesser M, Franzius C, Schober O, Zimmer KP. High diagnostic value of 18F-FDG-PET in pediatric patients with chronic inflammatory bowel disease. Ann N Y Acad Sci. 2006;1072:379–85.

    Article  PubMed  Google Scholar 

  78. Meisner RS, Spier BJ, Einarsson S, Roberson EN, Perlman SB, Bianco JA, Taylor AJ, Einstein M, Jaskowiak CJ, Massoth KM, Reichelderfer M. Pilot study using PET/CT as a novel, noninvasive assessment of disease activity in inflammatory bowel disease. Inflamm Bowel Dis. 2007;13(8):993–1000.

    Article  PubMed  Google Scholar 

  79. Jacene HA, Ginsburg P, Kwon J, Nguyen GC, Montgomery EA, Bayless TM, Wahl RL. Prediction of the need for surgical intervention in obstructive Crohn’s disease by 18F-FDG PET/CT. J Nucl Med. 2009;50(11):1751–9.

    Article  PubMed  CAS  Google Scholar 

  80. Spier BJ, Perlman SB, Jaskowiak CJ, Reichelderfer M. PET/CT in the evaluation of inflammatory bowel disease: studies in patients before and after treatment. Mol Imaging Biol. 2010; 12(1):85–8.

    Google Scholar 

  81. Bakheet SM, Saleem M, Powe J, Al-Amro A, Larsson SG, Mahassin Z. F-18 fluorodeoxyglucose chest uptake in lung inflammation and infection. Clin Nucl Med. 2000;25(4):273–8.

    Article  PubMed  CAS  Google Scholar 

  82. Jones HA, Clark RJ, Rhodes CG, Schofield JB, Krausz T, Haslett C. Positron emission tomography of 18FDG uptake in localized pulmonary inflammation. Acta Radiol Suppl. 1991;376:148.

    PubMed  CAS  Google Scholar 

  83. Goswami GK, Jana S, Santiago JF, Buyukdereli G, Salem SS, Heiba S, Abdel-Dayem HM. Discrepancy between Ga-67 citrate and F-18 fluorodeoxyglucose positron emission tomographic scans in pulmonary infection. Clin Nucl Med. 2000;25(6):490–1.

    Article  PubMed  CAS  Google Scholar 

  84. Kapucu LO, Meltzer CC, Townsend DW, Keenan RJ, Luketich JD. Fluorine-18-fluorodeoxyglucose uptake in pneumonia. J Nucl Med. 1998;39(7):1267–9.

    PubMed  CAS  Google Scholar 

  85. Tateishi U, Hasegawa T, Seki K, Terauchi T, Moriyama N, Arai Y. Disease activity and 18F-FDG uptake in organising pneumonia: semi-quantitative evaluation using computed tomography and positron emission tomography. Eur J Nucl Med Mol Imaging. 2006;33(8):906–12.

    Article  PubMed  Google Scholar 

  86. Bakheet SM, Powe J, Ezzat A, Rostom A. F-18-FDG uptake in tuberculosis. Clin Nucl Med. 1998;23(11):739–42.

    Article  PubMed  CAS  Google Scholar 

  87. Goo JM, Im JG, Do KH, Yeo JS, Seo JB, Kim HY, Chung JK. Pulmonary tuberculoma evaluated by means of FDG PET: findings in 10 cases. Radiology. 2000;216(1):117–21.

    PubMed  CAS  Google Scholar 

  88. Yang CM, Hsu CH, Lee CM, Wang FC. Intense uptake of [F-18]-fluoro-2 deoxy-d-glucose in active pulmonary tuberculosis. Ann Nucl Med. 2003;17(5):407–10.

    Article  PubMed  Google Scholar 

  89. Hofmeyr A, Lau WF, Slavin MA. Mycobacterium tuberculosis infection in patients with cancer, the role of 18-fluorodeoxyglucose positron emission tomography for diagnosis and monitoring treatment response. Tuberculosis (Edinb). 2007;87(5):459–63.

    Article  Google Scholar 

  90. Nusair S, Rubinstein R, Freedman NM, Amir G, Bogot NR, Izhar U, Breuer R. Positron emission tomography in interstitial lung disease. Respirology. 2007;12(6):843–7.

    Article  PubMed  Google Scholar 

  91. Umeda Y, Demura Y, Ishizaki T, Ameshima S, Miyamori I, Saito Y, Tsuchida T, Fujibayashi Y, Okazawa H. Dual-time-point 18F-FDG PET imaging for diagnosis of disease type and disease activity in patients with idiopathic interstitial pneumonia. Eur J Nucl Med Mol Imaging. 2009;36(7): 1121–30.

    Article  PubMed  Google Scholar 

  92. Gotway MB, Storto ML, Golden JA, Reddy GP, Webb WR. Incidental detection of thoracic sarcoidosis on whole-body 18fluorine-2- fluoro-2-deoxy-d-glucose positron emission tomography. J Thorac Imaging. 2000;15(3):201–4.

    Article  PubMed  CAS  Google Scholar 

  93. Lewis PJ, Salama A. Uptake of fluorine-18-fluorodeoxyglucose in sarcoidosis. Nucl Med. 1994;35(10):1647–9.

    CAS  Google Scholar 

  94. Prabhakar HB, Rabinowitz CB, Gibbons FK, O’Donnell WJ, Shepard JA, Aquino SL. Imaging features of sarcoidosis on MDCT, FDG PET, and PET/CT. AJR Am J Roentgenol. 2008;190(3 Suppl):S1–6.

    Article  PubMed  Google Scholar 

  95. Krüger S, Buck AK, Mottaghy FM, Pauls S, Schelzig H, Hombach V, Reske SN. Use of integrated FDG-PET/CT in sarcoidosis. Clin Imaging. 2008;32(4):269–73.

    Article  PubMed  Google Scholar 

  96. Nishiyama Y, Yamamoto Y, Fukunaga K, Takinami H, Iwado Y, Satoh K, Ohkawa M. Comparative evaluation of 18F-FDG PET and 67Ga scintigraphy in patients with sarcoidosis. J Nucl Med. 2006;47(10):1571–6.

    PubMed  Google Scholar 

  97. Prager E, Wehrschuetz M, Bisail B, Woltsche M, Schwarz T, Lanz H, Sorantin E, Aigner RM. Comparison of 18F-FDG and 67Ga-citrate in sarcoidosis imaging. Nuklearmedizin. 2008;47(1):18–23.

    PubMed  CAS  Google Scholar 

  98. Brudin LH, Valind SO, Rhodes CG, Pantin CF, Sweatman M, Jones T, Hughes JM. Fluorine-18 deoxyglucose uptake in sarcoidosis measured with positron emission tomography. Eur J Nucl Med. 1994;21(4):297–305.

    Article  PubMed  CAS  Google Scholar 

  99. Milman N, Mortensen J, Sloth C. Fluorodeoxyglucose PET scan in pulmonary sarcoidosis during treatment with inhaled and oral corticosteroids. Respiration. 2003;70(4):408–13.

    Article  PubMed  CAS  Google Scholar 

  100. Braun JJ, Kessler R, Constantinesco A, Imperiale A. 18F-FDG PET/CT in sarcoidosis management: review and report of 20 cases. Eur J Nucl Med Mol Imaging. 2008;35(8):1537–43.

    Article  PubMed  Google Scholar 

  101. Keijsers RG, Verzijlbergen JF, van Diepen DM, van den Bosch JM, Grutters JC. 18F-FDG PET in sarcoidosis: an observational study in 12 patients treated with infliximab. Sarcoidosis Vasc Diffuse Lung Dis. 2008;25(2):143–9.

    PubMed  CAS  Google Scholar 

  102. Aide N, Allouache D, Ollivier Y, de Raucourt S, Switsers O, Bardet S. Early 2′-deoxy-2′-[18F]fluoro-d-glucose PET metabolic response after corticosteroid therapy to differentiate cancer from sarcoidosis and sarcoid-like lesions. Mol Imaging Biol. 2009;11(4):224–8.

    Article  PubMed  Google Scholar 

  103. O’Doherty MJ, Barrington SF, Campbell M, Lowe J, Bradbeer CS. PET scanning and the human immunodeficiency virus-positive patient. J Nucl Med. 1997;38(10):1575–83.

    PubMed  Google Scholar 

  104. Castaigne C, Tondeur M, de Wit S, Hildebrand M, Clumeck N, Dusart M. Clinical value of FDG-PET/CT for the diagnosis of human immunodeficiency virus-associated fever of unknown origin: a retrospective study. Nucl Med Commun. 2009;30(1):41–7.

    Article  PubMed  Google Scholar 

  105. Flinn IW, Ambinder RF. AIDS primary central nervous system lymphoma. Curr Opin Oncol. 1996;8(5):37357–66.

    Article  Google Scholar 

  106. Hoffman JM, Waskin HA, Schifter T, Hanson MW, Gray L, Rosenfeld S, Coleman RE. FDG-PET in ­differentiating lymphoma from nonmalignant central nervous system lesions in patients with AIDS. J Nucl Med. 1993;34(4):567–75.

    PubMed  CAS  Google Scholar 

  107. Villringer K, Jager H, Dichgans M, Ziegler S, Poppinger J, Herz M, Kruschke C, Minoshima S, Pfister HW, Schwaiger M. Differential diagnosis of CNS lesions in AIDS patients by FDG-PET. J Comput Assist Tomogr. 1995;19(4): 532–6.

    Article  PubMed  CAS  Google Scholar 

  108. Heald AE, Hoffman JM, Bartlett JA, Waskin HA. Differentiation of central nervous system lesions in AIDS patients using positron emission tomography (PET). Int J STD AIDS. 1996;7(5): 337–46.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyung-Han Lee M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lee, KH., Chung, JK. (2013). 18F-FDG Positron Emission Tomography in the Evaluation of Infectious and Inflammatory Diseases. In: Kim, E., Lee, MC., Inoue, T., Wong, WH. (eds) Clinical PET and PET/CT. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0802-5_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0802-5_30

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-0801-8

  • Online ISBN: 978-1-4419-0802-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics