18F-FDG Positron Emission Tomography in the Evaluation of Infectious and Inflammatory Diseases



Positron emission tomography (PET) with fluorine-18 fluoro-2-deoxy-d-glucose (FDG) is a powerful diagnostic tool that detects cells with enhanced glucose utilization. While this imaging technique is most widely applied for cancer disease, FDG is not a tumor-specific probe but is also avidly accumulated by inflammatory cells. Owing to this property, in the appropriate settings, FDG PET can also be applied in detecting and characterizing a variety of infectious and inflammatory diseases, which includes diseases caused by infections from bacteria, mycobacteria, virus, and fungi, as well as many noninfectious inflammatory processes.


Positron Emission Tomography Inflammatory Bowel Disease Idiopathic Pulmonary Fibrosis Giant Cell Arteritis Chronic Osteomyelitis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ma LD, Frassica FJ, Bluemke DA, Fishman EK. CT and MRI evaluation of musculoskeletal infection. Crit Rev Diagn Imaging. 1997;38:535–68.PubMedGoogle Scholar
  2. 2.
    Alazraki NP. Radionuclide imaging in the evaluation of infections and inflammatory disease. Radiol Clin North Am. 1993;31:783–94.PubMedGoogle Scholar
  3. 3.
    Sugawara Y, Braun DK, Kison PV, Russo JE, Zasadny KR, Wahl RL. Rapid detection of human infections with fluorine-18 fluorodeoxyglucose and positron emission tomography: preliminary results. Eur J Nucl Med. 1998;25(9):1238–43.PubMedCrossRefGoogle Scholar
  4. 4.
    Kubota R, Yamada S, Kubota K, Ishiwata K, Tamahashi N, Ido T. Intratumoral distribution of fluorine-18-fluorodeoxygolucose in vivo: high accumulation in macrophages and granulation tissues studies by microautoradiography. J Nucl Med. 1992;33:1872–980.Google Scholar
  5. 5.
    Ishimori T, Saga T, Mamede M, Kobayashi H, Higashi T, Nakamoto Y, Sato N, Konishi J. Increased 18F-FDG uptake in a model of inflammation: Concanavalin A-mediated lymphocyte activation. J Nucl Med. 2002;43:658–63.PubMedGoogle Scholar
  6. 6.
    Yamada S, Kubota K, Kubota R, Ido T, Tamahashi N. High accumulation of fluorine-18-fluorodeoxyglucose in turpentine-induced inflammatory tissue. J Nucl Med. 1995;36:1301–6.PubMedGoogle Scholar
  7. 7.
    Nakamoto Y, Higashi T, Sakahara H, et al. Delayed FDG-PET scan for the differentiation between malignant and benign lesions. J Nucl Med. 1999;36:1301–6.Google Scholar
  8. 8.
    Weisdorf DJ, Craddock PR, Jacob HS. Glycogenolysis versus glucose transport in human granulocytes: differential activation in phagocytosis and chemotaxis. Blood. 1982;60:888–93.PubMedGoogle Scholar
  9. 9.
    Ahmed N, Kansara M, Berridge MV. Acute regulation of glucose transport in a monocyte-macrophage cell line: Glut-3 affinity for glucose is enhanced ­during the respiratory burst. Biochem J. 1997;327:369–75.PubMedGoogle Scholar
  10. 10.
    Tan AS, Ahmed N, Berridge MV. Acute regulation of glucose transport after activation of human peripheral blood neutrophils by phorbol myristate acetate, fMLP, and granulocyte-macrophage colony-stimulating factor. Blood. 1998;91:649–55.PubMedGoogle Scholar
  11. 11.
    Paik JY, Ko BH, Choe YS, Choi Y, Lee KH, Kim BT. PMA-enhanced neutrophil [18F]FDG uptake is independent of integrin occupancy but requires PI3K activity. Nucl Med Biol. 2005;32:561–6.PubMedCrossRefGoogle Scholar
  12. 12.
    Jones HA, Cadwallader KA, White JF, Uddin M, Peters AM, Chilvers ER. Dissociation between respiratory burst activity and deoxyglucose uptake in human neutrophil granulocytes: implications for interpretation of 18F-FDG PET images. J Nucl Med. 2002;43:652–7.PubMedGoogle Scholar
  13. 13.
    Schuster DP, Brody SL, Zhou Z, Bernstein M, Arch R, Link D, Mueckler M. Regulation of lipopolysaccharide-induced increases in neutrophil glucose uptake. Am J Physiol Lung Cell Mol Physiol. 2007;292:L845–51.PubMedCrossRefGoogle Scholar
  14. 14.
    Fukuzumi M, Shinomiya H, Shimizu Y, Ohishi K, Utsumi S. Endotoxin-induced enhancement of glucose influx into murine peritoneal macrophages via GLUT1. Infect Immun. 1996;64:108–12.PubMedGoogle Scholar
  15. 15.
    Paik JY, Lee KH, Choe YS, Choi Y, Kim BT. Augmented 18F-FDG uptake in activated monocytes occurs during the priming process and involves tyrosine kinases and protein kinase C. J Nucl Med. 2004;45:124–8.PubMedGoogle Scholar
  16. 16.
    Chakrabarti R, Jung CY, Lee TP, Liu H, Mookerjee BK. Changes in glucose transport and transporter isoforms during the activation of human peripheral blood lymphocytes by phytohemagglutinin. J Immunol. 1994;152:2660–8.PubMedGoogle Scholar
  17. 17.
    Paik J-Y, Lee K-H, Byun S-S, Choe YS, Kim B-T. Usefulness of insulin to improve F-18 FDG labeling and retention for in vivo PET imaging of monocyte trafficking. Nucl Med Commun. 2002;23:551–7.PubMedCrossRefGoogle Scholar
  18. 18.
    Zhuang HM, Cortés-Blanco A, Pourdehnad M, Adam LE, Yamamoto AJ, Martínez-Lázaro R, Lee JH, Loman JC, Rossman MD, Alavi A. Do high glucose levels have differential effect on FDG uptake in inflammatory and malignant disorders? Nucl Med Commun. 2001;22:1123–8.PubMedCrossRefGoogle Scholar
  19. 19.
    Merkel KD, Brown ML, Dewanjee MK, Fitzgerald RH. Comparison of indium-labeled leukocyte imaging with sequential technetium-gallium scanning in the diagnosis of low-grade musculoskeletal sepsis. J Bone Joint Surg. 1985;67A:465–76.Google Scholar
  20. 20.
    Al-Sheik W, Sfakianakis GN, Mnaymneh W, Hourani M, Heal A, Duncan RC, Burnett A, Ashkar FS, Serafini AN. Subacute and chronic bone infections: diagnosis using In-111, Ga-67 and Tc-99 m MDP bone scintigraphy, and radiology. Radiology. 1985;155:501–6.Google Scholar
  21. 21.
    Plestro JP. The current role of gallium imaging in infection. Semin Nucl Med. 1994;24:128–41.CrossRefGoogle Scholar
  22. 22.
    Datz FL. Indium-111 labeled leukocytes for the detection of infection: current status. Semin Nucl Med. 1994;24:92–109.PubMedCrossRefGoogle Scholar
  23. 23.
    Palestro CJ, Kim CK, Swyer AJ, Vallabhajosula S, Goldsmith SJ. Radionuclide diagnosis of vertebral osteomyelitis: indium-111-leukocyte and technetium-99m-methylene diphosphonate bone scintigraphy. J Nucl Med. 1991;32(10):1861–5.PubMedGoogle Scholar
  24. 24.
    Stumpe KD, Dazzi H, Schaffner A, von Schulthess GK. Infection imaging using whole-body FDG-PET. Eur J Nucl Med. 2000;27:822–32.PubMedCrossRefGoogle Scholar
  25. 25.
    Guhlmann A, Brecht-Krauss D, Suger G, Glatting G, Kotzerke J, Kinzl L, Reske SN. Chronic osteomyelitis: detection with FDG PET and correlation with histopathologic findings. Radiology. 1998;206(3):749–54.PubMedGoogle Scholar
  26. 26.
    Guhlmann A, Brecht-Krauss D, Suger G, Glatting G, Kotzerke J, Kinzl L, Reske SN. Fluorine-18-FDG PET and technetium-99 m antigranulocyte antibody scintigraphy in chronic osteomyelitis. J Nucl Med. 1998;39(12):2145–52.PubMedGoogle Scholar
  27. 27.
    de Winter F, van de Wiele C, Vogelaers D, de Smet K, Verdonk R, Dierckx RA. Fluorine-18 fluorodeoxyglucose-position emission tomography: a highly accurate imaging modality for the diagnosis of chronic musculoskeletal infections. J Bone Joint Surg Am. 2001;83-A(5):651–60.PubMedGoogle Scholar
  28. 28.
    Schmitz A, Kalicke T, Willkomm P, Grunwald F, Kandyba J, Schmitt O. Use of fluorine-18 fluoro-2-deoxy-d-glucose positron emission tomography in assessing the process of tuberculous spondylitis. J Spinal Disord. 2000;13(6):541–4.PubMedCrossRefGoogle Scholar
  29. 29.
    Ho AY, Pagliuca A, Maisey MN, Mufti GJ. Positron emission scanning with 18F-FDG in the diagnosis of deep fungal infections. Br J Haematol. 1998;101:392–3.PubMedCrossRefGoogle Scholar
  30. 30.
    Kalicke T, Schmitz A, Risse JH, Arens S, Keller E, Hansis M, Schmitt O, Biersack HJ, Grunwald F. Fluorine-18 fluorodeoxyglucose PET in infectious bone diseases: results of histologically confirmed cases. Eur J Nucl Med. 2000;27:524–8.PubMedCrossRefGoogle Scholar
  31. 31.
    Zhuang H, Duarte PS, Pourdehand M, Shnier D, Alavi A. Exclusion of chronic osteomyelitis with F-18 fluorodeoxyglucose positron emission tomographic imaging. Clin Nucl Med. 2000;25(4):281–4.PubMedCrossRefGoogle Scholar
  32. 32.
    Hartmann A, Eid K, Dora C, Trentz O, von Schulthess GK, Stumpe KD. Diagnostic value of 18F-FDG PET/CT in trauma patients with suspected chronic osteomyelitis. Eur J Nucl Med Mol Imaging. 2007;34:704–14.PubMedCrossRefGoogle Scholar
  33. 33.
    Termaat MF, Raijmakers PG, Scholten HJ, Bakker FC, Patka P, Haarman HJ. The accuracy of diagnostic imaging for the assessment of chronic osteomyelitis: a systematic review and meta-analysis. J Bone Joint Surg Am. 2005;87(11):2464–71.PubMedCrossRefGoogle Scholar
  34. 34.
    Smith SL, Wastie ML, Forster I. Radionuclide bone scintigraphy in the detection of significant complications after total knee joint replacement. Clin Radiol. 2001;56(3):221–4.PubMedCrossRefGoogle Scholar
  35. 35.
    Merkel KD, Brown ML, Fitzgerald Jr RH. Sequential technetium-99 m HMDP gallium-67 citrate imaging for the evaluation of infection in the painful prosthesis. J Nucl Med. 1986;27:1413–7.PubMedGoogle Scholar
  36. 36.
    Kraemer WJ, Saplys R, Waddell JP, Morton J. Bone scan, gallium scan, and hip aspiration in the diagnosis of infected total hip arthroplasty. J Arthroplasty. 1993;8(6):611–6.PubMedCrossRefGoogle Scholar
  37. 37.
    Scher DM, Pak K, Lonner JH, et al. The predictive value of indium-111 leukocyte scans in the diagnosis of infected total hip, knee, or resection arthroplasties. J Arthroplasty. 2000;15:295–300.PubMedCrossRefGoogle Scholar
  38. 38.
    Temmerman OP, Heyligers IC, Hoekstra OS, Comans EF, Roos JC. Detection of osteomyelitis using FDG and positron emission tomography. J Arthroplasty. 2001;16(2):243–6.PubMedCrossRefGoogle Scholar
  39. 39.
    Zhuang H, Duarte PS, Pourdehnad M, Maes A, Van Acker F, Shnier D, Garino JP, Fitzgerald RH, Alavi A. The promising role of 18F-FDG PET in detecting infected lower limb prosthesis implants. J Nucl Med. 2001;42(1):44–8.PubMedGoogle Scholar
  40. 40.
    Zoccali C, Teori G, Salducca N. The role of FDG-PET in distinguishing between septic and aseptic loosening in hip prosthesis: a review of literature. Int Orthop. 2009;33(1):1–5.PubMedCrossRefGoogle Scholar
  41. 41.
    Zhuang H, Alavi A. F-18-fluorodeoxyglucose positron emission tomographic imaging in the detection and monitoring of infection and inflammation. Semin Nucl Med. 2002;32(1):47–59.PubMedCrossRefGoogle Scholar
  42. 42.
    Van Acker F, Nuyts J, Maes A, Vanquickenborne B, Stuyck J, Bellemans J, Vleugels S, Bormans G, Mortelmans L. FDG-PET, 99mTc-HMPAO white blood cell SPET and bone scintigraphy in the evaluation of painful total knee arthroplasties. Eur J Nucl Med. 2001;28(10):1496–504.PubMedCrossRefGoogle Scholar
  43. 43.
    Heiba SI, Luo JQ, Sadek S, Macalental E, Cacavio A, Rosen G, Abdel-Dayem HA. Attenuation correction induced artifact in F-18 FDG PET imaging following total knee replacement. Clin Positron Imaging. 2000;3:237–9.PubMedCrossRefGoogle Scholar
  44. 44.
    Johnston SL, Lock RJ, Gompels MM. Takayasu arteritis: a review. J Clin Pathol. 2002;55(7):481–6.PubMedCrossRefGoogle Scholar
  45. 45.
    Angeli E, Vanzulli A, Venturini M, Zoccai GB, Del Maschio A. The role of radiology in the diagnosis and management of Takayasu’s arteritis. J Nephrol. 2001;14(6):514–24.PubMedGoogle Scholar
  46. 46.
    Peters AM. Nuclear medicine in vasculitis. Rheumatology. 2000;39:463–70.PubMedCrossRefGoogle Scholar
  47. 47.
    Jonker N, Peters AM, Gaskin G, Pusey CD, Lavender JP. A retrospective study of granulocyte kinetics in patients with systemic vasculitis. J Nucl Med. 1992;33:491–7.PubMedGoogle Scholar
  48. 48.
    Reuter H, Wraight EP, Qasim FJ, Lockwood CM. Management of systemic vasculitis: contribution of scintigraphic imaging to evaluation of disease activity and classification. Q J Med. 1995;88:509–16.Google Scholar
  49. 49.
    Walter MA. [18F]fluorodeoxyglucose PET in large vessel vasculitis. Radiol Clin North Am. 2007;45(4):735–44.PubMedCrossRefGoogle Scholar
  50. 50.
    Blockmans D, Maes A, Stroobants S, Nuyts J, Bormans G, Knockaert D, Bobbaers H, Mortelmans L. New arguments for a vasculitic nature of polymyalgia rheumatica using positron emission tomography. Rheumatology (Oxford). 1999;38(5):444–7.CrossRefGoogle Scholar
  51. 51.
    Blockmans D, Stroobants S, Maes A, Mortelmans L. Positron emission tomography in giant cell arteritis and polymyalgia rheumatica: evidence for inflammation of the aortic arch. Am J Med. 2000;108(3):246–9.PubMedCrossRefGoogle Scholar
  52. 52.
    Turlakow A, Yeung HW, Pui J, Macapinlac H, Liebovitz E, Rusch V, Goy A, Larson SM. Fluorodeoxyglucose positron emission tomography in the diagnosis of giant cell arteritis. Arch Intern Med. 2001;161(7):1003–7.PubMedCrossRefGoogle Scholar
  53. 53.
    Blockmans D. The use of (18F)fluoro-deoxyglucose positron emission tomography in the assessment of large vessel vasculitis. Clin Exp Rheumatol. 2003;21(6 Suppl 32):S15–22.PubMedGoogle Scholar
  54. 54.
    Hara M, Goodman PC, Leder RA. FDG-PET finding in early-phase Takayasu arteritis. J Comput Assist Tomogr. 1999;23(1):16–8.PubMedCrossRefGoogle Scholar
  55. 55.
    Belhocine T, Blockmans D, Hustinx R, Vandevivere J, Mortelmans L. Imaging of large vessel vasculitis with (18)FDG PET: illusion or reality? A critical review of the literature data. Eur J Nucl Med Mol Imaging. 2003;30(9):1305–13.PubMedCrossRefGoogle Scholar
  56. 56.
    Webb M, Al-Nahhas A. Molecular imaging of Takayasu’s arteritis and other large-vessel vasculitis with 18F-FDG PET. Nucl Med Commun. 2006;27(7):547–9.PubMedCrossRefGoogle Scholar
  57. 57.
    Steňová E, Mištec S, Povinec P. FDG-PET/CT in large-vessel vasculitis: its diagnostic and follow-up role. Rheumatol Int. 2010; 30(8):1111–4.Google Scholar
  58. 58.
    Walter MA, Melzer RA, Schindler C, Müller-Brand J, Tyndall A, Nitzsche EU. The value of [18F]FDG-PET in the diagnosis of large-vessel vasculitis and the assessment of activity and extent of disease. Eur J Nucl Med Mol Imaging. 2005;32(6):674–81.PubMedCrossRefGoogle Scholar
  59. 59.
    Otsuka H, Morita N, Yamashita K, Nishitani H. FDG-PET/CT for diagnosis and follow-up of vasculitis. J Med Invest. 2007;54(3–4):345–9.PubMedCrossRefGoogle Scholar
  60. 60.
    Henes JC, Müller M, Krieger J, Balletshofer B, Pfannenberg AC, Kanz L, Kötter I. [18F] FDG-PET/CT as a new and sensitive imaging method for the diagnosis of large vessel vasculitis. Clin Exp Rheumatol. 2008;26(3 Suppl 49):S47–52.PubMedGoogle Scholar
  61. 61.
    Kok J, Lin M, Patapanian H, Shingde M, Lin P, Chu J. [18F]FDG PET/CT in the diagnosis of large vessel vasculitis. Intern Med J. 2009;39(4):267–9.PubMedCrossRefGoogle Scholar
  62. 62.
    Meller J, Becker W. Nuclear medicine diagnosis of patients with fever of unknown origin. Nuklearmedizin. 2001;40(3):59–70.PubMedGoogle Scholar
  63. 63.
    Peters AM. The use of nuclear medicine in infections. Br J Radiol. 1998;71(843):252–61.PubMedGoogle Scholar
  64. 64.
    Lorenzen J, Buchert R, Bohuslavizki KH. Value of FDG PET in patients with fever of unknown origin. Nucl Med Commun. 2001;22(7):779–83.PubMedCrossRefGoogle Scholar
  65. 65.
    Blockmans D, Knockaert D, Maes A, De Caestecker J, Stroobants S, Bobbaers H, Mortelmans L. Clinical value of [18F]fluoro-deoxyglucose positron emission tomography for patients with fever of unknown origin. Clin Infect Dis. 2001;32(2):191–6.PubMedCrossRefGoogle Scholar
  66. 66.
    Kjaer A, Lebech AM, Eigtved A, Højgaard L. Fever of unknown origin: prospective comparison of diagnostic value of 18F-FDG PET and 111In-granulocyte scintigraphy. Eur J Nucl Med Mol Imaging. 2004;31(5):622–6.PubMedCrossRefGoogle Scholar
  67. 67.
    Buysschaert I, Vanderschueren S, Blockmans D, Mortelmans L, Knockaert D. Contribution of (18)fluoro-deoxyglucose positron emission tomography to the work-up of patients with fever of unknown origin. Eur J Intern Med. 2004;15(3):151–6.PubMedCrossRefGoogle Scholar
  68. 68.
    Bleeker-Rovers CP, Vos FJ, Mudde AH, Dofferhoff AS, de Geus-Oei LF, Rijnders AJ, Krabbe PF, Corstens FH, van der Meer JW, Oyen WJ. A prospective multi-centre study of the value of FDG-PET as part of a structured diagnostic protocol in patients with fever of unknown origin. Eur J Nucl Med Mol Imaging. 2007;34(5):694–703.PubMedCrossRefGoogle Scholar
  69. 69.
    Federici L, Blondet C, Imperiale A, Sibilia J, Pasquali JL, Pflumio F, Goichot B, Blaison G, Weber JC, Christmann D, Constantinesco A, Andrès E. Value of (18)F-FDG-PET/CT in patients with fever of unknown origin and unexplained prolonged inflammatory syndrome: a single centre analysis experience. Int J Clin Pract. 2010; 64(1): 55–60.Google Scholar
  70. 70.
    Keidar Z, Gurman-Balbir A, Gaitini D, Israel O. Fever of unknown origin: the role of 18F-FDG PET/CT. J Nucl Med. 2008;49(12):1980–5.PubMedCrossRefGoogle Scholar
  71. 71.
    Ferda J, Ferdová E, Záhlava J, Matějovič M, Kreuzberg B. Fever of unknown origin: a value of (18)F-FDG-PET/CT with integrated full diagnostic isotropic CT imaging. Eur J Radiol. 2010; 73(3): 518–25.Google Scholar
  72. 72.
    Tatlidil R, Jadvar H, Bading JR, Conti PS. Incidental colonic fluorodeoxyglucose uptake: correlation with colonoscopic and histopathologic findings. Radiology. 2002;224(3):783–7.PubMedCrossRefGoogle Scholar
  73. 73.
    Spier BJ, Perlman SB, Reichelderfer M. FDG-PET in inflammatory bowel disease. Q J Nucl Med Mol Imaging. 2009;53(1):64–71.PubMedGoogle Scholar
  74. 74.
    Bicik I, Bauerfeind P, Breitbach T, von Schulthess GK, Fried M. Inflammatory bowel disease activity measured by positron-emission tomography. Lancet. 1997;350(9073):262.PubMedCrossRefGoogle Scholar
  75. 75.
    Rubin DT, Surma BL, Gavzy SJ, Schnell KM, Bunnag AP, Huo D, Appelbaum DE. Positron emission tomography (PET) used to image subclinical inflammation associated with ulcerative colitis (UC) in remission. Inflamm Bowel Dis. 2009;15(5):750–5.PubMedCrossRefGoogle Scholar
  76. 76.
    Skehan SJ, Issenman R, Mernagh J, Nahmias C, Jacobson K. 18F-fluorodeoxyglucose positron tomography in diagnosis of pediatric inflammatory bowel disease. Lancet. 1999;354(9181):836–7.PubMedCrossRefGoogle Scholar
  77. 77.
    Löffler M, Weckesser M, Franzius C, Schober O, Zimmer KP. High diagnostic value of 18F-FDG-PET in pediatric patients with chronic inflammatory bowel disease. Ann N Y Acad Sci. 2006;1072:379–85.PubMedCrossRefGoogle Scholar
  78. 78.
    Meisner RS, Spier BJ, Einarsson S, Roberson EN, Perlman SB, Bianco JA, Taylor AJ, Einstein M, Jaskowiak CJ, Massoth KM, Reichelderfer M. Pilot study using PET/CT as a novel, noninvasive assessment of disease activity in inflammatory bowel disease. Inflamm Bowel Dis. 2007;13(8):993–1000.PubMedCrossRefGoogle Scholar
  79. 79.
    Jacene HA, Ginsburg P, Kwon J, Nguyen GC, Montgomery EA, Bayless TM, Wahl RL. Prediction of the need for surgical intervention in obstructive Crohn’s disease by 18F-FDG PET/CT. J Nucl Med. 2009;50(11):1751–9.PubMedCrossRefGoogle Scholar
  80. 80.
    Spier BJ, Perlman SB, Jaskowiak CJ, Reichelderfer M. PET/CT in the evaluation of inflammatory bowel disease: studies in patients before and after treatment. Mol Imaging Biol. 2010; 12(1):85–8.Google Scholar
  81. 81.
    Bakheet SM, Saleem M, Powe J, Al-Amro A, Larsson SG, Mahassin Z. F-18 fluorodeoxyglucose chest uptake in lung inflammation and infection. Clin Nucl Med. 2000;25(4):273–8.PubMedCrossRefGoogle Scholar
  82. 82.
    Jones HA, Clark RJ, Rhodes CG, Schofield JB, Krausz T, Haslett C. Positron emission tomography of 18FDG uptake in localized pulmonary inflammation. Acta Radiol Suppl. 1991;376:148.PubMedGoogle Scholar
  83. 83.
    Goswami GK, Jana S, Santiago JF, Buyukdereli G, Salem SS, Heiba S, Abdel-Dayem HM. Discrepancy between Ga-67 citrate and F-18 fluorodeoxyglucose positron emission tomographic scans in pulmonary infection. Clin Nucl Med. 2000;25(6):490–1.PubMedCrossRefGoogle Scholar
  84. 84.
    Kapucu LO, Meltzer CC, Townsend DW, Keenan RJ, Luketich JD. Fluorine-18-fluorodeoxyglucose uptake in pneumonia. J Nucl Med. 1998;39(7):1267–9.PubMedGoogle Scholar
  85. 85.
    Tateishi U, Hasegawa T, Seki K, Terauchi T, Moriyama N, Arai Y. Disease activity and 18F-FDG uptake in organising pneumonia: semi-quantitative evaluation using computed tomography and positron emission tomography. Eur J Nucl Med Mol Imaging. 2006;33(8):906–12.PubMedCrossRefGoogle Scholar
  86. 86.
    Bakheet SM, Powe J, Ezzat A, Rostom A. F-18-FDG uptake in tuberculosis. Clin Nucl Med. 1998;23(11):739–42.PubMedCrossRefGoogle Scholar
  87. 87.
    Goo JM, Im JG, Do KH, Yeo JS, Seo JB, Kim HY, Chung JK. Pulmonary tuberculoma evaluated by means of FDG PET: findings in 10 cases. Radiology. 2000;216(1):117–21.PubMedGoogle Scholar
  88. 88.
    Yang CM, Hsu CH, Lee CM, Wang FC. Intense uptake of [F-18]-fluoro-2 deoxy-d-glucose in active pulmonary tuberculosis. Ann Nucl Med. 2003;17(5):407–10.PubMedCrossRefGoogle Scholar
  89. 89.
    Hofmeyr A, Lau WF, Slavin MA. Mycobacterium tuberculosis infection in patients with cancer, the role of 18-fluorodeoxyglucose positron emission tomography for diagnosis and monitoring treatment response. Tuberculosis (Edinb). 2007;87(5):459–63.CrossRefGoogle Scholar
  90. 90.
    Nusair S, Rubinstein R, Freedman NM, Amir G, Bogot NR, Izhar U, Breuer R. Positron emission tomography in interstitial lung disease. Respirology. 2007;12(6):843–7.PubMedCrossRefGoogle Scholar
  91. 91.
    Umeda Y, Demura Y, Ishizaki T, Ameshima S, Miyamori I, Saito Y, Tsuchida T, Fujibayashi Y, Okazawa H. Dual-time-point 18F-FDG PET imaging for diagnosis of disease type and disease activity in patients with idiopathic interstitial pneumonia. Eur J Nucl Med Mol Imaging. 2009;36(7): 1121–30.PubMedCrossRefGoogle Scholar
  92. 92.
    Gotway MB, Storto ML, Golden JA, Reddy GP, Webb WR. Incidental detection of thoracic sarcoidosis on whole-body 18fluorine-2- fluoro-2-deoxy-d-glucose positron emission tomography. J Thorac Imaging. 2000;15(3):201–4.PubMedCrossRefGoogle Scholar
  93. 93.
    Lewis PJ, Salama A. Uptake of fluorine-18-fluorodeoxyglucose in sarcoidosis. Nucl Med. 1994;35(10):1647–9.Google Scholar
  94. 94.
    Prabhakar HB, Rabinowitz CB, Gibbons FK, O’Donnell WJ, Shepard JA, Aquino SL. Imaging features of sarcoidosis on MDCT, FDG PET, and PET/CT. AJR Am J Roentgenol. 2008;190(3 Suppl):S1–6.PubMedCrossRefGoogle Scholar
  95. 95.
    Krüger S, Buck AK, Mottaghy FM, Pauls S, Schelzig H, Hombach V, Reske SN. Use of integrated FDG-PET/CT in sarcoidosis. Clin Imaging. 2008;32(4):269–73.PubMedCrossRefGoogle Scholar
  96. 96.
    Nishiyama Y, Yamamoto Y, Fukunaga K, Takinami H, Iwado Y, Satoh K, Ohkawa M. Comparative evaluation of 18F-FDG PET and 67Ga scintigraphy in patients with sarcoidosis. J Nucl Med. 2006;47(10):1571–6.PubMedGoogle Scholar
  97. 97.
    Prager E, Wehrschuetz M, Bisail B, Woltsche M, Schwarz T, Lanz H, Sorantin E, Aigner RM. Comparison of 18F-FDG and 67Ga-citrate in sarcoidosis imaging. Nuklearmedizin. 2008;47(1):18–23.PubMedGoogle Scholar
  98. 98.
    Brudin LH, Valind SO, Rhodes CG, Pantin CF, Sweatman M, Jones T, Hughes JM. Fluorine-18 deoxyglucose uptake in sarcoidosis measured with positron emission tomography. Eur J Nucl Med. 1994;21(4):297–305.PubMedCrossRefGoogle Scholar
  99. 99.
    Milman N, Mortensen J, Sloth C. Fluorodeoxyglucose PET scan in pulmonary sarcoidosis during treatment with inhaled and oral corticosteroids. Respiration. 2003;70(4):408–13.PubMedCrossRefGoogle Scholar
  100. 100.
    Braun JJ, Kessler R, Constantinesco A, Imperiale A. 18F-FDG PET/CT in sarcoidosis management: review and report of 20 cases. Eur J Nucl Med Mol Imaging. 2008;35(8):1537–43.PubMedCrossRefGoogle Scholar
  101. 101.
    Keijsers RG, Verzijlbergen JF, van Diepen DM, van den Bosch JM, Grutters JC. 18F-FDG PET in sarcoidosis: an observational study in 12 patients treated with infliximab. Sarcoidosis Vasc Diffuse Lung Dis. 2008;25(2):143–9.PubMedGoogle Scholar
  102. 102.
    Aide N, Allouache D, Ollivier Y, de Raucourt S, Switsers O, Bardet S. Early 2′-deoxy-2′-[18F]fluoro-d-glucose PET metabolic response after corticosteroid therapy to differentiate cancer from sarcoidosis and sarcoid-like lesions. Mol Imaging Biol. 2009;11(4):224–8.PubMedCrossRefGoogle Scholar
  103. 103.
    O’Doherty MJ, Barrington SF, Campbell M, Lowe J, Bradbeer CS. PET scanning and the human immunodeficiency virus-positive patient. J Nucl Med. 1997;38(10):1575–83.PubMedGoogle Scholar
  104. 104.
    Castaigne C, Tondeur M, de Wit S, Hildebrand M, Clumeck N, Dusart M. Clinical value of FDG-PET/CT for the diagnosis of human immunodeficiency virus-associated fever of unknown origin: a retrospective study. Nucl Med Commun. 2009;30(1):41–7.PubMedCrossRefGoogle Scholar
  105. 105.
    Flinn IW, Ambinder RF. AIDS primary central nervous system lymphoma. Curr Opin Oncol. 1996;8(5):37357–66.CrossRefGoogle Scholar
  106. 106.
    Hoffman JM, Waskin HA, Schifter T, Hanson MW, Gray L, Rosenfeld S, Coleman RE. FDG-PET in ­differentiating lymphoma from nonmalignant central nervous system lesions in patients with AIDS. J Nucl Med. 1993;34(4):567–75.PubMedGoogle Scholar
  107. 107.
    Villringer K, Jager H, Dichgans M, Ziegler S, Poppinger J, Herz M, Kruschke C, Minoshima S, Pfister HW, Schwaiger M. Differential diagnosis of CNS lesions in AIDS patients by FDG-PET. J Comput Assist Tomogr. 1995;19(4): 532–6.PubMedCrossRefGoogle Scholar
  108. 108.
    Heald AE, Hoffman JM, Bartlett JA, Waskin HA. Differentiation of central nervous system lesions in AIDS patients using positron emission tomography (PET). Int J STD AIDS. 1996;7(5): 337–46.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Nuclear Medicine, Samsung Medical CenterSungkyunkwan University, School of MedicineSeoulSouth Korea
  2. 2.Department of Nuclear MedicineSeoul National University College of MedicineSeoulSouth Korea

Personalised recommendations