Atherosclerosis is a condition where arteries harden following the formation of atheroma in the vessel wall. As a result of atherosclerosis, the lumen of arteries narrows and blood flow to the subtended organ is restricted. Angina and transient ischemic attack are clinical manifestations from atherosclerosis of coronary or cerebral arteries. However, graver consequence of atherosclerosis is thromboembolism of the end organs, such as cerebral infarct, myocardial infarct, or unstable angina. Thromboembolism is caused by rupture of atherosclerotic plaques in the critical arteries.


Positron Emission Tomography Atherosclerotic Plaque Standardize Uptake Value Inflammatory Activity Giant Cell Arteritis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Tuzcu EM, Kapadia SR, Tutar E, et al. High prevalence of coronary atherosclerosis in asymptomatic teenagers and young adults: evidence from intravascular ultrasound. Circulation. 2001;103:2705–10.PubMedCrossRefGoogle Scholar
  2. 2.
    Hackett D, Davies G, Maseri A. Pre-existing coronary stenoses in patients with first myocardial infarction are not necessarily severe. Eur Heart J. 1988;9:1317–23.PubMedCrossRefGoogle Scholar
  3. 3.
    Murabito JM, Evans JC, Larson MG, et al. Prognosis after the onset of coronary heart disease. An investigation of differences in outcome between the sexes according to initial coronary disease presentation. Circulation. 1993;88:2548–55.PubMedCrossRefGoogle Scholar
  4. 4.
    Scandinavian Simvastatin Survival Study Group. Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S). Lancet 1994;344:1383–9.Google Scholar
  5. 5.
    The Long-Term Intervention with Pravastatin in Ischaemic Disease (LPID) Study Group. Prevention of cardiovascular events and death with pravastatin in patients with coronary heart disease and a broad range of initial cholesterol levels. The Long-Term Intervention with Pravastatin in Ischaemic Disease (LIPID) Study Group. N Engl J Med 1998;339:1349–57.Google Scholar
  6. 6.
    Kruth HS. Sequestration of aggregated low-density lipoproteins by macrophages. Curr Opin Lipidol. 2002;13:483–8.PubMedCrossRefGoogle Scholar
  7. 7.
    Skalen K, Gustafsson M, Rydberg EK, et al. Subendothelial retention of atherogenic lipoproteins in early atherosclerosis. Nature. 2002;417:750–4.PubMedCrossRefGoogle Scholar
  8. 8.
    Glass CK, Witztum JL. Atherosclerosis. The road ahead. Cell. 2001;104:503–16.PubMedCrossRefGoogle Scholar
  9. 9.
    Miller YI, Chang MK, Binder CJ, et al. Oxidized low density lipoprotein and innate immune receptors. Curr Opin Lipidol. 2003;14:437–45.PubMedCrossRefGoogle Scholar
  10. 10.
    Cybulsky MI, Iiyama K, Li H, et al. A major role for VCAM-1, but not ICAM-1, in early atherosclerosis. J Clin Invest. 2001;107:1255–62.PubMedCrossRefGoogle Scholar
  11. 11.
    Amorino GP, Hoover RL. Interactions of monocytic cells with human endothelial cells stimulate monocytic metalloproteinase production. Am J Pathol. 1998;152:199–207.PubMedGoogle Scholar
  12. 12.
    Mason DP, Kenagy RD, Hasenstab D, et al. Matrix metalloproteinase-9 overexpression enhances vascular smooth muscle cell migration and alters remodeling in the injured rat carotid artery. Circ Res. 1999;85:1179–85.PubMedCrossRefGoogle Scholar
  13. 13.
    Moulton KS, Heller E, Konerding MA, et al. Angiogenesis inhibitors endostatin or TNP-470 reduce intimal neovascularization and plaque growth in apolipoprotein E-deficient mice. Circulation. 1999;99:1726–32.PubMedCrossRefGoogle Scholar
  14. 14.
    Sukhova GK, Schonbeck U, Rabkin E, et al. Evidence for increased collagenolysis by interstitial collagenases-1 and -3 in vulnerable human atheromatous plaques. Circulation. 1999;99:2503–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Iuliano L, Signore A, Vallabajosula S, et al. Preparation and biodistribution of 99m technetium labelled oxidized LDL in man. Atherosclerosis. 1996;126:131–41.PubMedCrossRefGoogle Scholar
  16. 16.
    Tsimikas S, Palinski W, Halpern SE, et al. Radiolabeled MDA2, an oxidation-specific, monoclonal antibody, identifies native atherosclerotic lesions in vivo. J Nucl Cardiol. 1999;6:41–53.PubMedCrossRefGoogle Scholar
  17. 17.
    Shaw PX, Horkko S, Tsimikas S, et al. Human-derived anti-oxidized LDL autoantibody blocks uptake of oxidized LDL by macrophages and localizes to atherosclerotic lesions in vivo. Arterioscler Thromb Vasc Biol. 2001;21:1333–9.PubMedCrossRefGoogle Scholar
  18. 18.
    Tekabe Y, Li Q, Rosario R, et al. Development of receptor for advanced glycation end products-directed imaging of atherosclerotic plaque in a murine model of spontaneous atherosclerosis. Circ Cardiovasc Imag. 2008;1:212–9.CrossRefGoogle Scholar
  19. 19.
    Virgolini I, Muller C, Fitscha P, et al. Radiolabelling autologous monocytes with 111-indium-oxine for reinjection in patients with atherosclerosis. Prog Clin Biol Res. 1990;355:271–80.PubMedGoogle Scholar
  20. 20.
    Kircher MF, Grimm J, Swirski FK, et al. Noninvasive in vivo imaging of monocyte trafficking to atherosclerotic lesions. Circulation. 2008;117:388–95.PubMedCrossRefGoogle Scholar
  21. 21.
    Schafers M, Riemann B, Kopka K, et al. Scintigraphic imaging of matrix metalloproteinase activity in the arterial wall in vivo. Circulation. 2004;109:2554–9.PubMedCrossRefGoogle Scholar
  22. 22.
    Fujimoto S, Hartung D, Ohshima S, et al. Molecular imaging of matrix metalloproteinase in atherosclerotic lesions: resolution with dietary modification and statin therapy. J Am Coll Cardiol. 2008;52:1847–57.PubMedCrossRefGoogle Scholar
  23. 23.
    Narula J, Petrov A, Bianchi C, et al. Noninvasive localization of experimental atherosclerotic lesions with mouse/human chimeric Z2D3 F(ab′)2 specific for the proliferating smooth muscle cells of human atheroma Imaging with conventional and negative charge-modified antibody fragments. Circulation. 1995;92:474–84.PubMedCrossRefGoogle Scholar
  24. 24.
    Carrio I, Pieri PL, Narula J, et al. Noninvasive localization of human atherosclerotic lesions with indium 111-labeled monoclonal Z2D3 antibody specific for proliferating smooth muscle cells. J Nucl Cardiol. 1998;5:551–7.PubMedCrossRefGoogle Scholar
  25. 25.
    Johnson LL, Schofield LM, Weber DK, et al. Uptake of 111In-Z2D3 on SPECT imaging in a swine model of coronary stent restenosis correlated with cell proliferation. J Nucl Med. 2004;45:294–9.PubMedGoogle Scholar
  26. 26.
    Minar E, Ehringer H, Dudczak R, et al. Indium-111-labeled platelet scintigraphy in carotid atherosclerosis. Stroke. 1989;20:27–33.PubMedCrossRefGoogle Scholar
  27. 27.
    Moriwaki H, Matsumoto M, Handa N, et al. Functional and anatomic evaluation of carotid atherothrombosis. A combined study of indium 111 platelet scintigraphy and B-mode ultrasonography. Arterioscler Thromb Vasc Biol. 1995;15:2234–40.PubMedCrossRefGoogle Scholar
  28. 28.
    Mitchel J, Waters D, Lai T, et al. Identification of coronary thrombus with a IIb/IIIa platelet inhibitor radiopharmaceutical, technetium-99m DMP-444: a canine model. Circulation. 2000;101:1643–6.PubMedCrossRefGoogle Scholar
  29. 29.
    Gawaz M, Konrad I, Hauser AI, et al. Non-invasive imaging of glycoprotein VI binding to injured arterial lesions. Thromb Haemost. 2005;93:910–3.PubMedGoogle Scholar
  30. 30.
    Sadeghi MM, Krassilnikova S, Zhang J, et al. Detection of injury-induced vascular remodeling by targeting activated alphavbeta3 integrin in vivo. Circulation. 2004;110:84–90.PubMedCrossRefGoogle Scholar
  31. 31.
    Lee KH, Jung KH, Song SH, et al. Radiolabeled RGD uptake and alphav integrin expression is enhanced in ischemic murine hindlimbs. J Nucl Med. 2005;46:472–8.PubMedGoogle Scholar
  32. 32.
    Hua J, Dobrucki LW, Sadeghi MM, et al. Noninvasive imaging of angiogenesis with a 99mTc-labeled peptide targeted at alphavbeta3 integrin after murine hindlimb ischemia. Circulation. 2005;111:3255–60.PubMedCrossRefGoogle Scholar
  33. 33.
    Kolodgie FD, Petrov A, Virmani R, et al. Targeting of apoptotic macrophages and experimental atheroma with radiolabeled annexin V: a technique with potential for noninvasive imaging of vulnerable plaque. Circulation. 2003;108:3134–9.PubMedCrossRefGoogle Scholar
  34. 34.
    Kietselaer BL, Reutelingsperger CP, Heidendal GA, et al. Noninvasive detection of plaque instability with use of radiolabeled annexin A5 in patients with carotid-artery atherosclerosis. N Engl J Med. 2004;350:1472–3.PubMedCrossRefGoogle Scholar
  35. 35.
    Johnson LL, Schofield L, Donahay T, et al. 99mTc-annexin V imaging for in vivo detection of atherosclerotic lesions in porcine coronary arteries. J Nucl Med. 2005;46:1186–93.PubMedGoogle Scholar
  36. 36.
    Isobe S, Tsimikas S, Zhou J, et al. Noninvasive imaging of atherosclerotic lesions in apolipoprotein E-deficient and low-density-lipoprotein receptor-deficient mice with annexin A5. J Nucl Med. 2006;47:1497–505.PubMedGoogle Scholar
  37. 37.
    Sarai M, Hartung D, Petrov A, et al. Broad and specific caspase inhibitor-induced acute repression of apoptosis in atherosclerotic lesions evaluated by radiolabeled annexin A5 imaging. J Am Coll Cardiol. 2007;50:2305–12.PubMedCrossRefGoogle Scholar
  38. 38.
    Annovazzi A, Bonanno E, Arca M, et al. 99mTc-interleukin-2 scintigraphy for the in vivo imaging of vulnerable atherosclerotic plaques. Eur J Nucl Med Mol Imag. 2006;33:117–26.CrossRefGoogle Scholar
  39. 39.
    Elmaleh DR, Narula J, Babich JW, et al. Rapid noninvasive detection of experimental atherosclerotic lesions with novel 99mTc-labeled diadenosine tetraphosphates. Proc Natl Acad Sci USA. 1998;95:691–5.PubMedCrossRefGoogle Scholar
  40. 40.
    Tepe G, Duda SH, Meding J, et al. Tc-99m-labeled endothelin derivative for imaging of experimentally induced atherosclerosis. Atherosclerosis. 2001;157:383–92.PubMedCrossRefGoogle Scholar
  41. 41.
    Yano Y, Budinger TF, Ebbe SN, et al. Gallium-68 lipophilic complexes for labeling platelets. J Nucl Med. 1985;26:1429–37.PubMedGoogle Scholar
  42. 42.
    Elmaleh DR, Fischman AJ, Tawakol A, et al. Detection of inflamed atherosclerotic lesions with diadenosine-5′,5″′-P1, P4-tetraphosphate (Ap4A) and positron-emission tomography. Proc Natl Acad Sci USA. 2006;103:15992–6.PubMedCrossRefGoogle Scholar
  43. 43.
    Schulz C, Penz S, Hoffmann C, et al. Platelet GPVI binds to collagenous structures in the core region of human atheromatous plaque and is critical for atheroprogression in vivo. Basic Res Cardiol. 2008;103:356–67.PubMedCrossRefGoogle Scholar
  44. 44.
    Matter CM, Wyss MT, Meier P, et al. 18F-choline images murine atherosclerotic plaques ex vivo. Arterioscler Thromb Vasc Biol. 2006;26:584–9.PubMedCrossRefGoogle Scholar
  45. 45.
    Kato K, Schober O, Ikeda M, et al. Evaluation and comparison of 11C-choline uptake and calcification in aortic and common carotid arterial walls with combined PET/CT. Eur J Nucl Med Mol Imag. 2009;36:1622–8.CrossRefGoogle Scholar
  46. 46.
    Breyholz HJ, Wagner S, Levkau B, et al. A 18F-radiolabeled analogue of CGS 27023A as a potential agent for assessment of matrix-metalloproteinase activity in vivo. Q J Nucl Med Mol Imag. 2007;51:24–32.Google Scholar
  47. 47.
    Nahrendorf M, Zhang H, Hembrador S, et al. Nanoparticle PET-CT imaging of macrophages in inflammatory atherosclerosis. Circulation. 2008;117:379–87.PubMedCrossRefGoogle Scholar
  48. 48.
    Laitinen I, Saraste A, Weidl E, et al. Evaluation of alphavbeta3 integrin-targeted positron emission tomography tracer 18F-galacto-RGD for imaging of vascular inflammation in atherosclerotic mice. Circ Cardiovasc Imag. 2009;2:331–8.CrossRefGoogle Scholar
  49. 49.
    Nahrendorf M, Keliher E, Panizzi P, et al. (18)F-4V for PET-CT imaging of VCAM-1 expression in atherosclerosis. JACC Cardiovasc Imag. 2009;2:1213–22.CrossRefGoogle Scholar
  50. 50.
    Rudd JH, Warburton EA, Fryer TD, et al. Imaging atherosclerotic plaque inflammation with [18F]-fluorodeoxyglucose positron emission tomography. Circulation. 2002;105:2708–11.PubMedCrossRefGoogle Scholar
  51. 51.
    Tatsumi M, Cohade C, Nakamoto Y, et al. Fluorodeoxyglucose uptake in the aortic wall at PET/CT: possible finding for active atherosclerosis. Radiology. 2003;229:831–7.PubMedCrossRefGoogle Scholar
  52. 52.
    Laitinen I, Marjamaki P, Haaparanta M, et al. Non-specific binding of [18F]FDG to calcifications in atherosclerotic plaques: experimental study of mouse and human arteries. Eur J Nucl Med Mol Imag. 2006;33:1461–7.CrossRefGoogle Scholar
  53. 53.
    Ogawa M, Ishino S, Mukai T, et al. (18)F-FDG accumulation in atherosclerotic plaques: immunohistochemical and PET imaging study. J Nucl Med. 2004;45:1245–50.PubMedGoogle Scholar
  54. 54.
    Zhang Z, Machac J, Helft G, et al. Non-invasive imaging of atherosclerotic plaque macrophage in a rabbit model with F-18 FDG PET: a histopathological correlation. BMC Nucl Med. 2006;6:3.PubMedCrossRefGoogle Scholar
  55. 55.
    Aziz K, Berger K, Claycombe K, et al. Noninvasive detection and localization of vulnerable plaque and arterial thrombosis with computed tomography angiography/positron emission tomography. Circulation. 2008;117:2061–70.PubMedCrossRefGoogle Scholar
  56. 56.
    Davies JR, Izquierdo-Garcia D, Rudd JH, et al. FDG-PET can distinguish inflamed from non-inflamed plaque in an animal model of atherosclerosis. Int J Cardiovasc Imag. 2010;26:41–8.Google Scholar
  57. 57.
    Tawakol A, Migrino RQ, Bashian GG, et al. In vivo 18F-fluorodeoxyglucose positron emission tomography imaging provides a noninvasive measure of carotid plaque inflammation in patients. J Am Coll Cardiol. 2006;48:1818–24.PubMedCrossRefGoogle Scholar
  58. 58.
    Font MA, Fernandez A, Carvajal A, et al. Imaging of early inflammation in low-to-moderate carotid stenosis by 18-FDG-PET. Front Biosci. 2009;14:3352–60.PubMedCrossRefGoogle Scholar
  59. 59.
    Graebe M, Pedersen SF, Borgwardt L, et al. Molecular pathology in vulnerable carotid plaques: correlation with [18]-fluorodeoxyglucose positron emission tomography (FDG-PET). Eur J Vasc Endovasc Surg. 2009;37:714–21.PubMedCrossRefGoogle Scholar
  60. 60.
    Wu YW, Kao HL, Chen MF, et al. Characterization of plaques using 18F-FDG PET/CT in patients with carotid atherosclerosis and correlation with matrix metalloproteinase-1. J Nucl Med. 2007;48:227–33.PubMedGoogle Scholar
  61. 61.
    Rudd JH, Myers KS, Bansilal S, et al. Relationships among regional arterial inflammation, calcification, risk factors, and biomarkers: a prospective fluorodeoxyglucose positron-emission tomography/computed tomography imaging study. Circ Cardiovasc Imag. 2009;2:107–15.CrossRefGoogle Scholar
  62. 62.
    Tahara N, Kai H, Yamagishi S, et al. Vascular inflammation evaluated by [18F]-fluorodeoxyglucose positron emission tomography is associated with the metabolic syndrome. J Am Coll Cardiol. 2007;49:1533–9.PubMedCrossRefGoogle Scholar
  63. 63.
    Wasselius J, Larsson S, Sundin A, et al. Assessment of inactive, active and mixed atherosclerotic plaques by 18F-FDG-PET; an age group-based correlation with cardiovascular risk factors. Int J Cardiovasc Imag. 2009;25:133–40.CrossRefGoogle Scholar
  64. 64.
    Yun M, Jang S, Cucchiara A, et al. 18F FDG uptake in the large arteries: a correlation study with the atherogenic risk factors. Semin Nucl Med. 2002;32:70–6.PubMedCrossRefGoogle Scholar
  65. 65.
    Bural GG, Torigian DA, Chamroonrat W, et al. FDG-PET is an effective imaging modality to detect and quantify age-related atherosclerosis in large arteries. Eur J Nucl Med Mol Imag. 2008;35:562–9.CrossRefGoogle Scholar
  66. 66.
    Ben-Haim S, Kupzov E, Tamir A, et al. Changing patterns of abnormal vascular wall F-18 fluorodeoxyglucose uptake on follow-up PET/CT studies. J Nucl Cardiol. 2006;13:791–800.PubMedCrossRefGoogle Scholar
  67. 67.
    Wasselius JA, Larsson SA, Jacobsson H. FDG-accumulating atherosclerotic plaques identified with (18)F-FDG-PET/CT in 141 patients. Mol Imag Biol. 2009;11:455–9.CrossRefGoogle Scholar
  68. 68.
    Rominger A, Saam T, Wolpers S, et al. 18F-FDG PET/CT identifies patients at risk for future vascular events in an otherwise asymptomatic cohort with neoplastic disease. J Nucl Med. 2009;50:1611–20.PubMedCrossRefGoogle Scholar
  69. 69.
    Silvera SS, Aidi HE, Rudd JH, et al. Multimodality imaging of atherosclerotic plaque activity and ­composition using FDG-PET/CT and MRI in carotid and femoral arteries. Atherosclerosis. 2009;207(1):139–43.PubMedCrossRefGoogle Scholar
  70. 70.
    Arauz A, Hoyos L, Zenteno M, et al. Carotid plaque inflammation detected by 18F-fluorodeoxyglucose-positron emission tomography. Pilot study. Clin Neurol Neurosurg. 2007;109:409–12.PubMedCrossRefGoogle Scholar
  71. 71.
    Tahara N, Kai H, Nakaura H, et al. The prevalence of inflammation in carotid atherosclerosis: analysis with fluorodeoxyglucose-positron emission tomography. Eur Heart J. 2007;28:2243–8.PubMedCrossRefGoogle Scholar
  72. 72.
    Tahara N, Kai H, Ishibashi M, et al. Simvastatin attenuates plaque inflammation: evaluation by fluorodeoxyglucose positron emission tomography. J Am Coll Cardiol. 2006;48:1825–31.PubMedCrossRefGoogle Scholar
  73. 73.
    Potter K, Lenzo N, Eikelboom JW, et al. Effect of long-term homocysteine reduction with B vitamins on arterial wall inflammation assessed by fluorodeoxyglucose positron emission tomography: a randomised double-blind, placebo-controlled trial. Cerebrovasc Dis. 2009;27:259–65.PubMedCrossRefGoogle Scholar
  74. 74.
    Rudd JH, Myers KS, Bansilal S, et al. (18)Fluorodeoxyglucose positron emission tomography imaging of atherosclerotic plaque inflammation is highly reproducible: implications for atherosclerosis therapy trials. J Am Coll Cardiol. 2007;50:892–6.PubMedCrossRefGoogle Scholar
  75. 75.
    Rudd JH, Myers KS, Bansilal S, et al. Atherosclerosis inflammation imaging with 18F-FDG PET: carotid, iliac, and femoral uptake reproducibility, quantification methods, and recommendations. J Nucl Med. 2008;49:871–8.PubMedCrossRefGoogle Scholar
  76. 76.
    Wasselius J, Larsson S, Jacobsson H. Time-to-time correlation of high-risk atherosclerotic lesions identified with [(18)F]-FDG-PET/CT. Ann Nucl Med. 2009;23:59–64.PubMedCrossRefGoogle Scholar
  77. 77.
    Okane K, Ibaraki M, Toyoshima H, et al. 18F-FDG accumulation in atherosclerosis: use of CT and MR co-registration of thoracic and carotid arteries. Eur J Nucl Med Mol Imag. 2006;33:589–94.CrossRefGoogle Scholar
  78. 78.
    Hyafil F, Cornily JC, Rudd JH, et al. Quantification of inflammation within rabbit atherosclerotic plaques using the macrophage-specific CT contrast agent N1177: a comparison with 18F-FDG PET/CT and histology. J Nucl Med. 2009;50:959–65.PubMedCrossRefGoogle Scholar
  79. 79.
    Izquierdo-Garcia D, Davies JR, Graves MJ, et al. Comparison of methods for magnetic resonance-guided [18-F]fluorodeoxyglucose positron emission tomography in human carotid arteries: reproducibility, partial volume correction, and correlation between methods. Stroke. 2009;40:86–93.PubMedCrossRefGoogle Scholar
  80. 80.
    Williams G, Kolodny GM. Retrospective study of coronary uptake of 18F-fluorodeoxyglucose in association with calcification and coronary artery disease: a preliminary study. Nucl Med Commun. 2009;30:287–91.PubMedCrossRefGoogle Scholar
  81. 81.
    Wykrzykowska J, Lehman S, Williams G, et al. Imaging of inflamed and vulnerable plaque in coronary arteries with 18F-FDG PET/CT in patients with suppression of myocardial uptake using a low-carbohydrate, high-fat preparation. J Nucl Med. 2009;50:563–8.PubMedCrossRefGoogle Scholar
  82. 82.
    Arnaud L, Haroche J, Malek Z, et al. Is (18)F-fluorodeoxyglucose positron emission tomography scanning a reliable way to assess disease activity in Takayasu arteritis? Arthritis Rheum. 2009;60:1193–200.PubMedCrossRefGoogle Scholar
  83. 83.
    Kobayashi Y, Ishii K, Oda K, et al. Aortic wall inflammation due to Takayasu arteritis imaged with 18F-FDG PET coregistered with enhanced CT. J Nucl Med. 2005;46:917–22.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Nuclear MedicineSeoul National University HospitalSeoulSouth Korea

Personalised recommendations