Advertisement

Cerebrovascular Disease and PET

  • Hidehiko Okazawa
  • Yu-Kyeong Kim
Chapter

Abstract

Positron emission tomography (PET) and O-15 tracers have been used greater than 30 years to evaluate human cerebral hemodynamics in patients with cerebral vascular disease (CVD). Quantitative measurement of cerebral blood flow (CBF) and metabolism is important because critical impairment of cerebral circulation induces irreversible damage to the cerebral cortex, causing neuronal deficits or functional damage. The cerebral regions of impaired hemodynamics, also referred to as “misery perfusion” are visualized by mismatch between oxygen metabolism and CBF (Lenzi et al. J Neurol Neurosurg Psychiatry 41:11–7, 1978; Baron et al. Stroke 12:454–9, 1981), which is usually delineated by the elevation of oxygen extraction fraction (OEF) in O-15 gas PET (Baron et al. Stroke 12:454–9, 1981; Powers et al. Ann Neurol 16:546–52, 1984; Powers and Raichle Stroke 16:361–76, 1985; Powers et al. Ann Intern Med 106:27–34, 1987; Powers Ann Neurol 29:231–40, 1991). Because patients with misery perfusion show a significantly higher incidence rate of stroke or recurrent stroke (Yamauchi et al. J Neurol Neurosurg Psychiatry 61:18–25, 1996; Yamauchi et al. J Nucl Med 40:1992–8; Grubb et al. JAMA 280:1055–60), evaluation of hemodynamic status in CVD patients is very important to determine indication of neurosurgical treatment. To quantitatively evaluate cerebral hemodynamic status, methods for precise measurement were developed and its accuracy has also been improved with the progression of PET scanner resolution.

Keywords

Positron Emission Tomography Cerebral Blood Flow Cerebral Perfusion Pressure Cerebral Blood Volume Recurrent Stroke 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Lenzi GL, Jones T, McKenzie CG, Moss S. Non-invasive regional study of chronic cerebrovascular disorders using the oxygen-15 inhalation technique. J Neurol Neurosurg Psychiatry. 1978;41:11–7.PubMedCrossRefGoogle Scholar
  2. 2.
    Baron JC, Bousser MG, Rey A, Guillard A, Comar D, Castaigne P. Reversal of focal “misery-perfusion ­syndrome” by extra-intracranial arterial bypass in hemodynamic cerebral ischemia. A case study with 15O positron emission tomography. Stroke. 1981;12:454–9.PubMedCrossRefGoogle Scholar
  3. 3.
    Powers WJ, Grubb Jr RL, Raichle ME. Physiological responses to focal cerebral ischemia in humans. Ann Neurol. 1984;16:546–52.PubMedCrossRefGoogle Scholar
  4. 4.
    Powers WJ, Raichle ME. Positron emission tomography and its application to the study of cerebrovascular disease in man. Stroke. 1985;16:361–76.PubMedCrossRefGoogle Scholar
  5. 5.
    Powers WJ, Press GA, Grubb Jr RL, Gado M, Raichle ME. The effect of hemodynamically significant carotid artery disease on the hemodynamic status of the cerebral circulation. Ann Intern Med. 1987;106:27–34.PubMedGoogle Scholar
  6. 6.
    Powers WJ. Cerebral hemodynamics in ischemic cerebrovascular disease. Ann Neurol. 1991;29:231–40.PubMedCrossRefGoogle Scholar
  7. 7.
    Yamauchi H, Fukuyama H, Nagahama Y, Nabatame H, Nakamura K, Yamamoto Y, et al. Evidence of misery perfusion and risk for recurrent stroke in major cerebral arterial occlusive diseases from PET. J Neurol Neurosurg Psychiatry. 1996;61:18–25.PubMedCrossRefGoogle Scholar
  8. 8.
    Yamauchi H, Fukuyama H, Nagahama Y, Nabatame H, Ueno M, Nishizawa S, et al. Significance of increased oxygen extraction fraction in five-year prognosis of major cerebral arterial occlusive diseases. J Nucl Med. 1999;40:1992–8.PubMedGoogle Scholar
  9. 9.
    Grubb Jr RL, Derdeyn CP, Fritsch SM, Carpenter DA, Yundt KD, Videen TO, et al. Importance of hemodynamic factors in the prognosis of symptomatic carotid occlusion. JAMA. 1998;280:1055–60.PubMedCrossRefGoogle Scholar
  10. 10.
    Ter-Pogossian MM, Eichling JO, Davis DO, Welch MJ, Metzger JM. The determination of regional cerebral blood flow by means of water labeled with radioactive oxygen 15. Radiology. 1969;93:31–40.PubMedGoogle Scholar
  11. 11.
    Ter-Pogossian MM, Eichling JO, Davis DO, Welch MJ. The measure in vivo of regional cerebral oxygen utilization by means of oxyhemoglobin labeled with radioactive oxygen-15. J Clin Invest. 1970;49:381–91.PubMedCrossRefGoogle Scholar
  12. 12.
    Raichle ME, Grubb Jr RL, Gado MH, Eichling JO, Ter-Pogossian MM. Correlation between regional cerebral blood flow and oxidative metabolism. In vivo studies in man. Arch Neurol. 1976;33:523–6.PubMedCrossRefGoogle Scholar
  13. 13.
    Raichle ME, Grubb Jr RL, Eichling JO, Ter-Pogossian MM. Measurement of brain oxygen utilization with radioactive oxygen-15: experimental verification. J Appl Physiol. 1976;40:638–40.PubMedGoogle Scholar
  14. 14.
    Jones T, Chesler DA, Ter-Pogossian MM. The continuous inhalation of oxygen-15 for assessing regional oxygen extraction in the brain of man. Br J Radiol. 1976;49:339–43.PubMedCrossRefGoogle Scholar
  15. 15.
    Frackowiak RS, Lenzi GL, Jones T, Heather JD. Quantitative measurement of regional cerebral blood flow and oxygen metabolism in man using 15O and positron emission tomography: theory, procedure, and normal values. J Comput Assist Tomogr. 1980;4:727–36.PubMedCrossRefGoogle Scholar
  16. 16.
    Lammertsma AA, Jones T, Frackowiak RS, Lenzi GL. A theoretical study of the steady-state model for measuring regional cerebral blood flow and oxygen utilisation using oxygen-15. J Comput Assist Tomogr. 1981;5:544–50.PubMedCrossRefGoogle Scholar
  17. 17.
    Lammertsma AA, Wise RJ, Heather JD, Gibbs JM, Leenders KL, Frackowiak RS, et al. Correction for the presence of intravascular oxygen-15 in the steady-state technique for measuring regional oxygen extraction ratio in the brain: 2. Results in normal subjects and brain tumour and stroke patients. J Cereb Blood Flow Metab. 1983;3:425–31.PubMedCrossRefGoogle Scholar
  18. 18.
    Herscovitch P, Markham J, Raichle ME. Brain blood flow measured with intravenous H 2 15 O. I. Theory and error analysis. J Nucl Med. 1983;24:782–9.PubMedGoogle Scholar
  19. 19.
    Raichle ME, Martin WR, Herscovitch P, Mintun MA, Markham J. Brain blood flow measured with intravenous H 2 15 O. II. Implementation and validation. J Nucl Med. 1983;24:790–8.PubMedGoogle Scholar
  20. 20.
    Mintun MA, Raichle ME, Martin WR, Herscovitch P. Brain oxygen utilization measured with O-15 radiotracers and positron emission tomography. J Nucl Med. 1984;25:177–87.PubMedGoogle Scholar
  21. 21.
    Lammertsma AA, Brooks DJ, Beaney RP, Turton DR, Kensett MJ, Heather JD, et al. In vivo measurement of regional cerebral haematocrit using positron emission tomography. J Cereb Blood Flow Metab. 1984;4:317–22.PubMedCrossRefGoogle Scholar
  22. 22.
    Gambhir SS, Huang SC, Hawkins RA, Phelps ME. A study of the single compartment tracer kinetic model for the measurement of local cerebral blood flow using 15O-water and positron emission tomography. J Cereb Blood Flow Metab. 1987;7:13–20.PubMedCrossRefGoogle Scholar
  23. 23.
    Lammertsma AA, Frackowiak RS, Hoffman JM, Huang SC, Weinberg IN, Dahlbom M, et al. The C15O2 build-up technique to measure regional cerebral blood flow and volume of distribution of water. J Cereb Blood Flow Metab. 1989;9:461–70.PubMedCrossRefGoogle Scholar
  24. 24.
    Ohta S, Meyer E, Thompson CJ, Gjedde A. Oxygen consumption of the living human brain measured after a single inhalation of positron emitting oxygen. J Cereb Blood Flow Metab. 1992;12:179–92.PubMedCrossRefGoogle Scholar
  25. 25.
    Ohta S, Meyer E, Fujita H, Reutens DC, Evans A, Gjedde A. Cerebral [15O]water clearance in humans determined by PET: I. Theory and normal values. J Cereb Blood Flow Metab. 1996;16:765–80.PubMedCrossRefGoogle Scholar
  26. 26.
    Herscovitch P, Raichle ME. Effect of tissue heterogeneity on the measurement of cerebral blood flow with the equilibrium C15O2 inhalation technique. J Cereb Blood Flow Metab. 1983;3:407–15.PubMedCrossRefGoogle Scholar
  27. 27.
    Alpert NM, Eriksson L, Chang JY, Bergstrom M, Litton JE, Correia JA, et al. Strategy for the measurement of regional cerebral blood flow using short-lived tracers and emission tomography. J Cereb Blood Flow Metab. 1984;4:28–34.PubMedCrossRefGoogle Scholar
  28. 28.
    Carson RE, Huang SC, Green MV. Weighted integration method for local cerebral blood flow measurements with positron emission tomography. J Cereb Blood Flow Metab. 1986;6:245–58.PubMedCrossRefGoogle Scholar
  29. 29.
    Huang SC, Feng DG, Phelps ME. Model dependency and estimation reliability in measurement of cerebral oxygen utilization rate with oxygen-15 and dynamic positron emission tomography. J Cereb Blood Flow Metab. 1986;6:105–19.PubMedCrossRefGoogle Scholar
  30. 30.
    Koeppe RA, Holden JE, Ip WR. Performance comparison of parameter estimation techniques for the quantitation of local cerebral blood flow by dynamic positron computed tomography. J Cereb Blood Flow Metab. 1985;5:224–34.PubMedCrossRefGoogle Scholar
  31. 31.
    Iida H, Kanno I, Miura S, Murakami M, Takahashi K, Uemura K. Error analysis of a quantitative cerebral blood flow measurement using H 2 15 O autoradiography and positron emission tomography, with respect to the dispersion of the input function. J Cereb Blood Flow Metab. 1986;6:536–45.PubMedCrossRefGoogle Scholar
  32. 32.
    Iida H, Kanno I, Miura S, Murakami M, Takahashi K, Uemura K. A determination of the regional brain/blood partition coefficient of water using dynamic positron emission tomography. J Cereb Blood Flow Metab. 1989;9:874–85.PubMedCrossRefGoogle Scholar
  33. 33.
    Cunningham VJ, Jones T. Spectral analysis of dynamic PET studies. J Cereb Blood Flow Metab. 1993;13:15–23.PubMedCrossRefGoogle Scholar
  34. 34.
    Kimura Y, Hsu H, Toyama H, Senda M, Alpert NM. Improved signal-to-noise ratio in parametric images by cluster analysis. Neuroimage. 1999;9:554–61.PubMedCrossRefGoogle Scholar
  35. 35.
    Shidahara M, Watabe H, Kim KM, Kudomi N, Ito H, Iida H. Optimal scan time of oxygen-15-labeled gas inhalation autoradiographic method for measurement of cerebral oxygen extraction fraction and cerebral oxygen metabolic rate. Ann Nucl Med. 2008;22:667–75.PubMedCrossRefGoogle Scholar
  36. 36.
    Okazawa H, Yamauchi H, Sugimoto K, Takahashi M, Toyoda H, Kishibe Y, et al. Quantitative comparison of the bolus and steady-state methods for measurement of cerebral perfusion and oxygen metabolism: PET study using 15O-gas and water. J Cereb Blood Flow Metab. 2001;21:793–803.PubMedCrossRefGoogle Scholar
  37. 37.
    Vafaee MS, Meyer E, Marrett S, Paus T, Evans AC, Gjedde A. Frequency-dependent changes in cerebral metabolic rate of oxygen during activation of human visual cortex. J Cereb Blood Flow Metab. 1999;19:272–7.PubMedCrossRefGoogle Scholar
  38. 38.
    Ito H, Kanno I, Kato C, Sasaki T, Ishii K, Ouchi Y, et al. Database of normal human cerebral blood flow, cerebral blood volume, cerebral oxygen extraction fraction and cerebral metabolic rate of oxygen measured by positron emission tomography with 15O-labelled carbon dioxide or water, carbon monoxide and oxygen: a multicentre study in Japan. Eur J Nucl Med Mol Imag. 2004;31:635–43.CrossRefGoogle Scholar
  39. 39.
    Derdeyn CP, Videen TO, Simmons NR, Yundt KD, Fritsch SM, Grubb RL, et al. Count-based PET method for predicting ischemic stroke in patients with symptomatic carotid arterial occlusion. Radiology. 1999;212:499–506.PubMedGoogle Scholar
  40. 40.
    Derdeyn CP, Videen TO, Grubb Jr RL, Powers WJ. Comparison of PET oxygen extraction fraction methods for the prediction of stroke risk. J Nucl Med. 2001;42:1195–7.PubMedGoogle Scholar
  41. 41.
    Ibaraki M, Shimosegawa E, Miura S, Takahashi K, Ito H, Kanno I, et al. PET measurements of CBF, OEF, and CMRO2 without arterial sampling in hyperacute ischemic stroke: method and error analysis. Ann Nucl Med. 2004;18:35–44.PubMedCrossRefGoogle Scholar
  42. 42.
    Kobayashi M, Okazawa H, Tsuchida T, Kawai K, Fujibayashi Y, Yonekura Y. Diagnosis of misery perfusion using noninvasive O-15 gas PET. J Nucl Med. 2006;47:1581–6.PubMedGoogle Scholar
  43. 43.
    Kobayashi M, Kudo T, Tsujikawa T, Isozaki M, Arai Y, Fujibayashi Y, et al. Shorter examination method for the diagnosis of misery perfusion using count-based OEF elevation in 15O-gas PET. J Nucl Med. 2008;49:242–6.PubMedCrossRefGoogle Scholar
  44. 44.
    Grubb Jr RL, Phelps ME, Raichle ME, Ter-Pogassian MM. The effect of arterial blood pressure on the regional cerebral blood volume by x-ray fluorescence. Stroke. 1973;4:390–9.PubMedCrossRefGoogle Scholar
  45. 45.
    MacKenzie ET, Farrar JK, Fitch W, Graham DI, Gregory PC, Harper AM. Effects of hemorrhagic hypotension on the cerebral circulation. I. Cerebral blood flow and pial arteriolar caliber. Stroke. 1979;10:711–8.PubMedCrossRefGoogle Scholar
  46. 46.
    Derdeyn CP, Grubb Jr RL, Powers WJ. Cerebral hemodynamic impairment: methods of measurement and association with stroke risk. Neurology. 1999;53:251–9.PubMedCrossRefGoogle Scholar
  47. 47.
    Nemoto EM, Yonas H, Kuwabara H, Pindzola RR, Sashin D, Meltzer CC, et al. Identification of hemodynamic compromise by cerebrovascular reserve and oxygen extraction fraction in occlusive vascular disease. J Cereb Blood Flow Metab. 2004;24:1081–9.PubMedCrossRefGoogle Scholar
  48. 48.
    Baron JC, Bousser MG, Comar D, Soussaline F, Castaigne P. Noninvasive tomographic study of cerebral blood flow and oxygen metabolism in vivo. Potentials, limitations, and clinical applications in cerebral ischemic disorders. Eur Neurol. 1981;20:273–84.PubMedCrossRefGoogle Scholar
  49. 49.
    The EC/IC bypass study group, Barnett HJM, Sackett DL, Taylor DW, Peerless SJ, Haynes RB, Gates PC, et al. Failure of extracranial-intracranial arterial bypass to reduce the risk of ischemic stroke. Results of an international randomized trial. The EC/IC bypass study group. N Engl J Med. 1985;313:1191–200.CrossRefGoogle Scholar
  50. 50.
    The EC/IC bypass study group, Haynes RB, Taylor DW, Mukherjee J, Sackett DL, Cote R, Meguro K, et al. The international cooperative study of extracranial/intracranial arterial anastomosis (EC/IC bypass study): methodology and entry characteristics. The EC/IC bypass study group. Stroke. 1985;16:397–406.CrossRefGoogle Scholar
  51. 51.
    Hennerici M, Hülsbömer HB, Rautenberg W, Hefter H. Spontaneous history of asymptomatic internal carotid occlusion. Stroke. 1986;17:718–22.PubMedCrossRefGoogle Scholar
  52. 52.
    Hankey GJ, Warlow CP. Prognosis of symptomatic carotid occlusion: an overview. Cerebrovasc Dis. 1991;1:245–56.CrossRefGoogle Scholar
  53. 53.
    Derdeyn CP, Yundt KD, Videen TO, Carpenter DA, Grubb Jr RL, Powers WJ. Increased oxygen extraction fraction is associated with prior ischemic events in patients with carotid occlusion. Stroke. 1998;29:754–8.PubMedCrossRefGoogle Scholar
  54. 54.
    Vorstrup S. Tomographic cerebral blood flow measurements in patients with ischemic cerebrovascular disease and evaluation of the vasodilatory capacity by the acetazolamide test. Acta Neurol Scand. 1988;114(Suppl):1–48.Google Scholar
  55. 55.
    Yonas H, Smith HA, Durham SR, Pentheny SL, Johnson DW. Increased stroke risk predicted by compromised cerebral blood flow reactivity. J Neurosurg. 1993;79:483–9.PubMedCrossRefGoogle Scholar
  56. 56.
    Yonas H, Pindzola RR. Physiological determination of cerebrovascular reserves and its use in clinical management. Cerebrovasc Brain Metab Rev. 1994;6:325–40.PubMedGoogle Scholar
  57. 57.
    Gotoh F, Meyer JS, Tomita M. Carbonic anhydrase inhibition and cerebral venous blood gases and ions in man. Demonstration of increased oxygen availability to ischemic brain. Arch Intern Med. 1966;117:39–46.PubMedCrossRefGoogle Scholar
  58. 58.
    Okazawa H, Yamauchi H, Sugimoto K, Toyoda H, Kishibe Y, Takahashi M. Effects of acetazolamide on cerebral blood flow, blood volume and oxygen metabolism: a PET study with healthy volunteers. J Cereb Blood Flow Metab. 2001;21:1472–9.PubMedCrossRefGoogle Scholar
  59. 59.
    Kuroda S, Kamiyama H, Abe H, Houkin K, Isobe M, Mitsumori K. Acetazolamide test in detecting reduced cerebral perfusion reserve and predicting long-term prognosis in patients with internal carotid artery occlusion. Neurosurgery. 1993;32:912–8.PubMedCrossRefGoogle Scholar
  60. 60.
    Webster MW, Makaroun MS, Steed DL, Smith HA, Johnson DW, Yonas H. Compromised cerebral blood flow reactivity is a predictor of stroke in patients with symptomatic carotid artery occlusive disease. J Vasc Surg. 1995;21:338–44. discussion 344–345.PubMedCrossRefGoogle Scholar
  61. 61.
    Kuroda S, Houkin K, Kamiyama H, Mitsumori K, Iwasaki Y, Abe H. Long-term prognosis of medically treated patients with internal carotid or middle cerebral artery occlusion: can acetazolamide test predict it? Stroke. 2001;32:2110–6.PubMedCrossRefGoogle Scholar
  62. 62.
    Markus H, Cullinane M. Severely impaired cerebrovascular reactivity predicts stroke and TIA risk in patients with carotid artery stenosis and occlusion. Brain. 2001;124:457–67.PubMedCrossRefGoogle Scholar
  63. 63.
    Ogasawara K, Ogawa A, Yoshimoto T. Cerebrovascular reactivity to acetazolamide and outcome in patients with symptomatic internal carotid or middle cerebral artery occlusion: a xenon-133 single-photon emission computed tomography study. Stroke. 2002;33:1857–62.PubMedCrossRefGoogle Scholar
  64. 64.
    Ogasawara K, Ogawa A, Terasaki K, Shimizu H, Tominaga T, Yoshimoto T. Use of cerebrovascular reactivity in patients with symptomatic major cerebral artery occlusion to predict 5-year outcome: comparison of xenon-133 and iodine-123-IMP single-photon emission computed tomography. J Cereb Blood Flow Metab. 2002;22:1142–8.PubMedCrossRefGoogle Scholar
  65. 65.
    Hasegawa Y, Yamaguchi T, Tsuchiya T, Minematsu K, Nishimura T. Sequential change of hemodynamic reserve in patients with major cerebral artery occlusion or severe stenosis. Neuroradiology. 1992;34:15–21.PubMedCrossRefGoogle Scholar
  66. 66.
    Yokota C, Hasegawa Y, Minematsu K, Yamaguchi T. Effect of acetazolamide reactivity and long-term outcome in patients with major cerebral artery occlusive diseases. Stroke. 1998;29:640–4.PubMedCrossRefGoogle Scholar
  67. 67.
    Yonas H, Pindzola RR, Meltzer CC, Sasser H. Qualitative versus quantitative assessment of cerebrovascular reserves. Neurosurgery. 1998;42:1005–10. discussion 1011–1012.PubMedCrossRefGoogle Scholar
  68. 68.
    Okazawa H, Tsuchida T, Kobayashi M, Arai Y, Pagani M, Isozaki M, Yonekura Y. Can reductions in baseline CBF and vasoreactivity detect misery perfusion in chronic cerebrovascular disease? Eur J Nucl Med Mol Imag. 2007;34:121–9.CrossRefGoogle Scholar
  69. 69.
    Mountz JM, Liu HG, Deutsch G. Neuroimaging in cerebrovascular disorders: measurement of cerebral physiology after stroke and assessment of stroke recovery. Semin Nucl Med. 2003;33:56–76.PubMedCrossRefGoogle Scholar
  70. 70.
    Liu HG, Mountz JM. F-18 FDG brain positron emission tomography and Tl-201 early and delayed SPECT in distinguishing atypical cerebral tumor from cerebral infarction. Clin Nucl Med. 2003;28:241–2.PubMedGoogle Scholar
  71. 71.
    Feeney DM, Baron JC. Diaschisis. Stroke. 1986;17:817–30.PubMedCrossRefGoogle Scholar
  72. 72.
    Herold S, Brown MM, Frackowiak RS, Mansfield AO, Thomas DJ, Marshall J. Assessment of cerebral haemodynamic reserve: correlation between PET parameters and CO2 reactivity measured by the intravenous 133 xenon injection technique. J Neurol Neurosurg Psychiatry. 1988;51:1045–50.PubMedCrossRefGoogle Scholar
  73. 73.
    Ito H, Kanno I, Shimosegawa E, Tamura H, Okane K, Hatazawa J. Hemodynamic changes during neural deactivation in human brain: a positron emission tomography study of crossed cerebellar diaschisis. Ann Nucl Med. 2002;16:249–54.PubMedCrossRefGoogle Scholar
  74. 74.
    Astrup J, Siesjo BK, Symon L. Thresholds in cerebral ischemia – the ischemic penumbra. Stroke. 1981;12:723–5.PubMedCrossRefGoogle Scholar
  75. 75.
    Baron JC. Positron tomography in cerebral ischemia. A review. Neuroradiology. 1985;27:509–16.PubMedCrossRefGoogle Scholar
  76. 76.
    Raynaud C, Rancurel G, Samson Y, Baron JC, Soucy JP, Kieffer E, et al. Pathophysiologic study of chronic infarcts with I-123 isopropyl iodo-amphetamine (IMP): the importance of periinfarct area. Stroke. 1987;18:21–9.PubMedCrossRefGoogle Scholar
  77. 77.
    Seitz RJ, Azari NP, Knorr U, Binkofski F, Herzog H, Freund HJ. The role of diaschisis in stroke recovery. Stroke. 1999;30:1844–50.PubMedCrossRefGoogle Scholar
  78. 78.
    Karbe H, Kessler J, Herholz K, Fink GR, Heiss WD. Long-term prognosis of poststroke aphasia studied with positron emission tomography. Arch Neurol. 1995;52:186–90.PubMedCrossRefGoogle Scholar
  79. 79.
    Cappa SF, Perani D, Grassi F, Bressi S, Alberoni M, Franceschi M, et al. A PET follow-up study of ­recovery after stroke in acute aphasics. Brain Lang. 1997;56:55–67.PubMedCrossRefGoogle Scholar
  80. 80.
    Carmichael ST, Tatsukawa K, Katsman D, Tsuyuguchi N, Kornblum HI. Evolution of diaschisis in a focal stroke model. Stroke. 2004;35:758–63.PubMedCrossRefGoogle Scholar
  81. 81.
    Clarke S, Assal G, Bogousslavsky J, Regli F, Townsend DW, Leenders KL, et al. Pure amnesia after unilateral left polar thalamic infarct: topographic and sequential neuropsychological and metabolic (PET) correlations. J Neurol Neurosurg Psychiatry. 1994;57:27–34.PubMedCrossRefGoogle Scholar
  82. 82.
    Stenset V, Grambaite R, Reinvang I, Hessen E, Cappelen T, Bjornerud A, et al. Diaschisis after thalamic stroke: a comparison of metabolic and structural changes in a patient with amnesic syndrome. Acta Neurol Scand Suppl. 2007;187:68–71.PubMedCrossRefGoogle Scholar
  83. 83.
    Heiss WD, Emunds HG, Herholz K. Cerebral glucose metabolism as a predictor of rehabilitation after ischemic stroke. Stroke. 1993;24:1784–8.PubMedCrossRefGoogle Scholar
  84. 84.
    Herholz K, Heiss WD. Functional imaging correlates of recovery after stroke in humans. J Cereb Blood Flow Metab. 2000;20:1619–31.PubMedCrossRefGoogle Scholar
  85. 85.
    Karbe H, Szelies B, Herholz K, Heiss WD. Impairment of language is related to left parieto-temporal glucose metabolism in aphasic stroke patients. J Neurol. 1990;237:19–23.PubMedCrossRefGoogle Scholar
  86. 86.
    Heiss WD, Thiel A, Kessler J, Herholz K. Disturbance and recovery of language function: correlates in PET activation studies. Neuroimage. 2003;20(Suppl 1):S42–9.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Division of Biomedical Imaging, The Faculty of Medical SciencesUniversity of FukuiFukuiJapan
  2. 2.Department of Nuclear MedicineSeoul National University, Bundang HospitalGyeonggi-DoSouth Korea

Personalised recommendations