Advertisement

Epilepsy

  • Dong Soo Lee
  • So Won Oh
  • Myung-Chul Lee
Chapter

Abstract

Positron emission tomography (PET) has a key role in the management of patients with focal epilepsy as a well-established, functional imaging modality. Especially among various PET agents to evaluate brain function, 18F-fluorodeoxyglucose (FDG) has been widely used because it reflects neuronal activity and allows quantification of cerebral glucose metabolism using tracer kinetic modeling. In the management of patients with medically intractable epilepsy, FDG PET became a routine process to localize epileptogenic foci, particularly in cases of patients presenting with normal anatomic structures on magnetic resonance imaging (MRI). Recently, this pivotal role of FDG PET in presurgical evaluation had been challenged by high-quality MRI (Duncan Curr Opin Neurol 22(2):179–84, 2009).

Keywords

Positron Emission Tomography Temporal Lobe Epilepsy Statistical Parametric Mapping Epileptogenic Zone Temporal Lobe Epilepsy Patient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Duncan J. The current status of neuroimaging for epilepsy. Curr Opin Neurol. 2009;22(2):179–84.PubMedGoogle Scholar
  2. 2.
    la Fougère C, Rominger A, Förster S, Geisler J, Bartenstein P. PET and SPECT in epilepsy: a critical review. Epilepsy Behav. 2009;15:50–5.PubMedCrossRefGoogle Scholar
  3. 3.
    Kwan P, Brodie MJ. Early identification of refractory epilepsy. N Engl J Med. 2000;342(5):314–9.PubMedCrossRefGoogle Scholar
  4. 4.
    Engel Jr J, Wiebe S, French J. The quality standards subcommittee of the American Academy of Neurology; American Epilepsy Society; American Association of Neurological Surgeons. Practice parameter: temporal lobe and localized neocortical resections for epilepsy: report of the quality standards subcommittee of the American Academy of Neurology, in association with the American Epilepsy Society and the American Association of Neurological Surgeons. Neurology. 2003;60(4):538–47.PubMedCrossRefGoogle Scholar
  5. 5.
    Devous Sr MD, Thisted RA, Morgan GF, Leroy RF, Rowe CC. SPECT brain imaging in epilepsy: a meta-analysis. J Nucl Med. 1998;39(2):285–93.PubMedGoogle Scholar
  6. 6.
    Wiebe S, Blume WT, Girvin JP, et al. A randomized, controlled trial of surgery for temporal-lobe epilepsy. N Engl J Med. 2001;345:311–8.PubMedCrossRefGoogle Scholar
  7. 7.
    Schramm J, Kral T, Grunwald T, et al. Surgical treatment for neocortical temporal lobe epilepsy: clinical and surgical aspects and seizure outcome. J Neurosurg. 2001;94:33–42.PubMedCrossRefGoogle Scholar
  8. 8.
    Foldvary N, Nashold B, Mascha E, et al. Seizure outcome after temporal lobectomy for temporal lobe epilepsy: a Kaplan-Meier survival analysis. Neurology. 2000;54:630–4.PubMedCrossRefGoogle Scholar
  9. 9.
    Engel Jr J. Surgery for seizures. N Engl J Med. 1996;334(10):647–52.PubMedCrossRefGoogle Scholar
  10. 10.
    Duchowny M, Jayakar P, Resnick T, et al. Epilepsy surgery in the first three years of life. Epilepsia. 1998;39(7):737–43.PubMedCrossRefGoogle Scholar
  11. 11.
    O’Brien TJ, Miles K, Ware R, Cook MJ, Binns DS, Hicks RJ. The cost-effective use of 18F-FDG PET in the presurgical evaluation of medically refractory focal epilepsy. J Nucl Med. 2008;49(6):931–7.PubMedCrossRefGoogle Scholar
  12. 12.
    O’Brien TJ, Jupp B. In-vivo imaging with small animal FDG-PET: a tool to unlock the secrets of epileptogenesis? Exp Neurol. 2009;220(1):1–4.PubMedCrossRefGoogle Scholar
  13. 13.
    Spencer SS, Theodore WH, Berkovic SF. Clinical applications: MRI, SPECT, and PET. Magn Reson Imaging. 1995;13(8):1119–24.PubMedCrossRefGoogle Scholar
  14. 14.
    Lee JJ, Kang WJ, Lee DS, et al. Diagnostic performance of 18F-FDG PET and ictal 99mTc-HMPAO SPET in pediatric temporal lobe epilepsy: uantitative analysis by statistical parametric mapping, statistical probabilistic anatomical map, and subtraction ictal SPET. Seizure. 2005;14(3):213–20.PubMedCrossRefGoogle Scholar
  15. 15.
    Won HJ, Chang KH, Cheon JE, et al. Comparison of MR imaging with PET and ictal SPECT in 118 patients with intractable epilepsy. AJNR Am J Neuroradiol. 1999;20(4):593–9.PubMedGoogle Scholar
  16. 16.
    Lehéricy S, Semah F, Hasboun D, et al. Temporal lobe epilepsy with varying severity: MRI study of 222 patients. Neuroradiology. 1997;39(11):788–96.PubMedCrossRefGoogle Scholar
  17. 17.
    Son YJ, Chung CK, Lee SK, et al. Comparison of localizing values of various diagnostic tests in non-lesional medial temporal lobe epilepsy. Seizure. 1999;8:465–70.PubMedCrossRefGoogle Scholar
  18. 18.
    Nam H, Lee SK, Chung CK, et al. Incidence and clinical profile of extra-medial-temporal epilepsy with hippocampal atrophy. J Korean Med Sci. 2001;16:95–102.PubMedGoogle Scholar
  19. 19.
    Kutsy RL. Focal extratemporal epilepsy: clinical features, EEG patterns, and surgical approach. J Neurol Sci. 1999;166:1–15.PubMedCrossRefGoogle Scholar
  20. 20.
    Zentner J, Hufnagel A, Ostertun B, et al. Surgical treatment of extratemporal epilepsy: clinical, radiologic, and histopathologic findings in 60 patients. Epilepsia. 1996;37:1072–80.PubMedCrossRefGoogle Scholar
  21. 21.
    Lee DS, Lee SK, Chung J-K, et al. Predictive values of F-18 FDG-PET and ictal SPECT to find epileptogenic zones in cryptogenic neocortical epilepsies (Abstract). J Nucl Med. 1997;38:272.Google Scholar
  22. 22.
    Kim YK, Lee DS, Lee SK, et al. F-18 FDG-PET in localization of frontal lobe epilepsy: comparison of visual and SPM analysis. J Nucl Med. 2002;43:1167–74.PubMedGoogle Scholar
  23. 23.
    Kim SK, Lee DS, Lee SK, et al. Diagnostic performance of [18F]-FDG-PET and ictal [99mTc]-HMPAO SPECT in occipital lobe epilepsy. Epilepsia. 2001;42:1531–40.PubMedCrossRefGoogle Scholar
  24. 24.
    Spanaki MV, Spencer SS, Corsi M, et al. Sensitivity and specificity of quantitative difference SPECT analysis in seizure localization. J Nucl Med. 1999;40(5):730–6.PubMedGoogle Scholar
  25. 25.
    Weil S, Noachtar S, Arnold S, Yousry TA, Winkler PA, Tatsch K. Ictal ECD-SPECT differentiates between temporal and extratemporal epilepsy: confirmation by excellent postoperative seizure control. Nucl Med Commun. 2001;22(2):233–7.PubMedCrossRefGoogle Scholar
  26. 26.
    Zaknun JJ, Bal C, Maes A, et al. Comparative analysis of MR imaging, ictal SPECT and EEG in temporal lobe epilepsy: a prospective IAEA multi-center study. Eur J Nucl Med Mol Imaging. 2008;35(1):107–15.PubMedCrossRefGoogle Scholar
  27. 27.
    Lee DS, Kim SK, Lee SK, et al. Frequencies and implications of discordant findings of interictal SPECT and ictal SPECT in patients with intractable epilepsy (Abstract). Eur J Nucl Med. 1997;24:983.Google Scholar
  28. 28.
    Lee DS, Lee SK, Kim SK, et al. Late postictal residual perfusion abnormality in epileptogenic zone found on 6-hour postictal SPECT. Neurology. 2000;55:835–41.PubMedCrossRefGoogle Scholar
  29. 29.
    Signorini M, Paulesu E, Friston K, et al. Rapid assessment of regional cerebral metabolic abnormalities in single subjects with quantitative and nonquantitative F-18 FDG-PET: a clinical validation of statistical parametric mapping. Neuroimage. 1999;9:63–80.PubMedCrossRefGoogle Scholar
  30. 30.
    Van Bogaert P, Massager N, Tugendhaft P, et al. Statistical parametric mapping of regional glucose metabolism in mesial temporal lobe epilepsy. Neuroimage. 2000;12:129–38.PubMedCrossRefGoogle Scholar
  31. 31.
    Kang KW, Lee DS, Cho JH, et al. Quantification of F-18 FDG-PET images in temporal lobe epilepsy patients using probabilistic brain atlas. Neuroimage. 2001;14:1–6.PubMedCrossRefGoogle Scholar
  32. 32.
    Lee SK, Lee DS, Yeo JS, et al. FDG-PET images quantified by probabilistic atlas of brain and surgical prognosis of temporal lobe epilepsy. Epilepsia. 2002;43:1032–8.PubMedCrossRefGoogle Scholar
  33. 33.
    Vinton AB, Carne R, Hicks RJ, et al. The extent of resection of FDG-PET hypometabolism relates to outcome of temporal lobectomy. Brain. 2007;130:548–60.PubMedCrossRefGoogle Scholar
  34. 34.
    O’Brien TJ, Hicks RJ, Ware R, Binns DS, Murphy M, Cook MJ. The utility of a 3-dimensional, large-field-of-view, sodium iodide crystal-based PET scanner in the presurgical evaluation of partial epilepsy. J Nucl Med. 2001;42(8):1158–65.PubMedGoogle Scholar
  35. 35.
    Willmann O, Wennberg R, May T, Woermann FG, Pohlmann-Eden B. The contribution of 18F-FDG PET in preoperative epilepsy surgery evaluation for patients with temporal lobe epilepsy a meta-analysis. Seizure. 2007;16(6):509–20.PubMedCrossRefGoogle Scholar
  36. 36.
    Lee SK, Lee SY, Kim KK, Hong KS, Lee DS, Chung CK. Surgical outcome and prognostic factors of cryptogenic neocortical epilepsy. Ann Neurol. 2005;58(4):525–32.PubMedCrossRefGoogle Scholar
  37. 37.
    Treiman DM. GABAergic mechanisms in epilepsy. Epilepsia. 2001;42(Suppl 3):8–12.PubMedCrossRefGoogle Scholar
  38. 38.
    Ryvlin P, Bouvard S, Le Bars D, et al. Clinical utility of flumazenil-PET versus [18F]fluorodeoxyglucose-PET and MRI in refractory partial epilepsy: a prospective study in 100 patients. Brain. 1998;121:2067–81.PubMedCrossRefGoogle Scholar
  39. 39.
    Juhász C, Asano E, Shah A, et al. Focal decreases of cortical GABAA recpetor binding remote from the primary seizure focus:what do they indicate? Epilepsia. 2009;50(2):240–50.PubMedCrossRefGoogle Scholar
  40. 40.
    Chang YS, Jeong JM, Yoon YH, et al. Biological properties of 2′-[18F]fluoroflumazenil for central benzodiazepine receptor imaging. Nucl Med Biol. 2005;32(3):263–8.PubMedCrossRefGoogle Scholar
  41. 41.
    Diksic M, Nagahiro S, Sourkes TL, Yamamoto YL. A new method to measure brain serotonin synthesis in vivo. I. Theory and basic data for a biological model. J Cereb Blood Flow Metab. 1990;10(1):1–12.PubMedCrossRefGoogle Scholar
  42. 42.
    Chugani DC, Muzik O. Alpha[C-11]methyl-L-tryptophan PET maps brain serotonin synthesis and kynurenine pathway metabolism. J Cereb Blood Flow Metab. 2000;20(1):2–9.PubMedCrossRefGoogle Scholar
  43. 43.
    Chugani DC, Chugani HT, Muzik O, et al. Imaging epileptogenic tubers in children with tuberous sclerosis complex using alpha-[11C]methyl-L-tryptophan positron emission tomography. Ann Neurol. 1998;44(6):858–66.PubMedCrossRefGoogle Scholar
  44. 44.
    Fedi M, Reutens D, Okazawa H, et al. Localizing value of alpha-methyl-L-tryptophan PET in intractable epilepsy of neocortical origin. Neurology. 2001;57(9):1629–36.PubMedCrossRefGoogle Scholar
  45. 45.
    Juhász C, Chugani DC, Muzik O, et al. Alpha-methyl-L-tryptophan PET detects epileptogenic cortex in children with intractable epilepsy. Neurology. 2003;60:960–8.PubMedCrossRefGoogle Scholar
  46. 46.
    Didelot A, Ryvlin P, Lothe A, Merlet I, Hammers A, Mauguière F. PET imaging of brain 5-HT1A receptors in the preoperative evaluation of temporal lobe epilepsy. Brain. 2008;131:2751–64.PubMedCrossRefGoogle Scholar
  47. 47.
    Starr MS. The role of dopamine in epilepsy. Synapse. 1996;22(2):159–94.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Nuclear Medicine, WCU Department of Molecular Medicine and Biopharmaceutical SciencesSeoul National University College of Medicine, Seoul National UniversitySeoulSouth Korea
  2. 2.Department of Nuclear MedicineSeoul Metropolitan Government-Seoul National University, Boramae Medical CenterSeoulSouth Korea
  3. 3.Department of Nuclear MedicineGachon University School of MedicineIncheonSouth Korea

Personalised recommendations