Advertisement

Phase transitions, cortical gamma, and the selection and read-out of information stored in synapses

  • J.J. Wright
Chapter
Part of the Springer Series in Computational Neuroscience book series (NEUROSCI, volume 4)

Abstract

simulation of electro-cortical dynamics is extrapolated to outline a mechanism for selection and release of information stored in cortical synapses. The simulations accord with Freeman’s experimental and theoretical findings on gamma synchrony, phase transition, phase cones, and null spikes. Patches of cortex excited to gamma oscillation mutually synchronize into larger fields, are controlled, and organized into sequences, by traveling waves in the cortex and by cortical/subcortical interactions. At a critical level of cortical excitation, transition from damped gamma resonance to autonomous gamma oscillation occurs, and is roughly analogous to a phase transition in the thermodynamic sense. As transition is approached, patches of cortex exhibit selective sensitivity to action-potential pulse trains modulated in the gamma band, while autonomous gamma releases pulse trains modulated in the same band, implying coupling of input and output modes. Retrograde propagation of action potentials into the dendritic tree, coupled with a sharp change at the transition in the timing of firing of closely situated excitatory and inhibitory cells, implies a mechanism for the selective access and release of information from synapses with functionally different roles, in the proximal and distal pyramidal dendritic trees. In turn, this explanation is logically consistent with recent work on physiological modifications of synapses, and information-theoretic accounts of learning.

gamma activity

synchronous oscillation cortical self-regulation EEG phase cones null spikes cortical information storage Hebb rule STLR rule coherent infomax relevant infomax 

Notes

Acknowledgements

The author thanks Nick Hawthorn, Paul Bourke, Alistair Steyn-Ross, and Yanyang Xu for their help, and the Bioengineering Institute of the University of Auckland for computing resources.

References

  1. 1.
    Alexander, G.E., Crutcher, M.D., DeLong, M.R.: Basal ganglia-thalamocortical circuits: Parallel substrates for motor, oculomotor, refrontalâ and limbic functions. In: H.B.M. Uylings (ed.), The Prefrontal Cortex: Its Structure, Function, and Pathology, Elsevier, Amsterdam (1990)Google Scholar
  2. 2.
    Amit, D.J.: Modelling Brain Function. Cambridge University Press, Cambridge (1989)Google Scholar
  3. 3.
    Arbib, M.A. (ed.): The Handbook of Brain Theory and Neural Networks. MIT Press, Cambridge, Massachussetts (1995)Google Scholar
  4. 4.
    Barrie, J.M., Freeman, W.J., Lenhart, M.D.: Spatiotemporal analysis of prepyriform, visual, auditory, and somesthetic surface EEGs in trained rabbits. J. Neurophysiol. 76, 520–539 (1996)PubMedGoogle Scholar
  5. 5.
    Bower, J., Beeman, D.: The Book of GENESIS. Exploring Realistic Neural Models with the GEneral NEural SImulation System. Springer, New York, 2nd edn. (1998)Google Scholar
  6. 6.
    Braitenberg, V., Schuz, A.: Anatomy of the Cortex: Statistics and Geometry. Springer-Verlag, Berlin, New York (1991)Google Scholar
  7. 7.
    Bressler, S.L., Coppola, R., Nakamura, R.: Episodic multiregional cortical coherence at multiple frequencies during visual task performance. Nature 366, 153–156 (1993), doi:10.1038/366153a0CrossRefPubMedGoogle Scholar
  8. 8.
    Buzsaki, G., Draguhn, A.: Neuronal oscillations in cortical networks. Science 304, 1926–1929 (2004), doi:10.1126/science.1099745CrossRefPubMedGoogle Scholar
  9. 9.
    Chapman, C.L., Bourke, P.D., Wright, J.J.: Spatial eigenmodes and synchronous oscillation: Coincidence detection in simulated cerebral cortex. J. Math. Biol. 45, 57–78 (2002), doi:10.1007/s002850200141CrossRefPubMedGoogle Scholar
  10. 10.
    Dominguez-Perrot, C., Feltz, P., Poulter, M.O.: Recombinant GABAa receptor desensitization: The role of the gamma2 subunit and its physiological significance. J. Physiol. 497, 145–159 (1996)PubMedGoogle Scholar
  11. 11.
    Eckhorn, R., Bauer, R., Jordon, W., Brosch, M., Kruse, W., Monk, M., Reitboeck, H.J.: Coherent oscillations: A mechanism of feature linking in the in the visual cortex? Biol. Cybern. 60, 121–130 (1988), doi:10.1007/BF00202899CrossRefGoogle Scholar
  12. 12.
    Freeman, W.J.: Predictions on neocortical dynamics derived from studies of paleocortex. In: Induced Rhythms of the Brain, Birkhauser, Boston (1991)Google Scholar
  13. 13.
    Freeman, W.J.: Origin, structure and role of background EEG activity. Part 1: Analytic amplitude. Clin. Neurophysiol. 115, 2077–2088 (2004), doi:10.1016/j.clinph.2004.02.029CrossRefGoogle Scholar
  14. 14.
    Freeman, W.J.: Origin, structure and role of background EEG activity. Part 2: Analytic phase. Clin. Neurophysiol. 115, 2089–2107 (2004), doi:10.1016/j.clinph.2004.02.028CrossRefGoogle Scholar
  15. 15.
    Freeman, W.J.: Origin, structure and role of background EEG activity. Part 3: Neural frame classification. Clin. Neurophysiol. 116, 1118–1129 (2005), doi:10.1016/j.clinph.2004.12.023CrossRefGoogle Scholar
  16. 16.
    Freeman, W.J.: Origin, structure and role of background EEG activity. Part 4: Neural frame simulation. Clin. Neurophysiol. 117, 572–589 (2006), doi:10.1016/j.clinph.2005.10.025CrossRefGoogle Scholar
  17. 17.
    Freeman, W.J.: Proposed cortical ‘shutter’ mechanism in cinematographic perception. In: L.I. Perlovsky, R. Kozma (eds.), Neurodynamics of Cognition and Consciousness, pp. 11–38, Springer, Heidelberg (2007), doi:10.1007/978-3-540-73267-9_2CrossRefGoogle Scholar
  18. 18.
    Freeman, W.J., Barrie, J.M.: Analysis of spatial patterns of phase in neocortical gamma EEGs in rabbit. J. Neurophysiol. 84, 1266–1278 (2000)PubMedGoogle Scholar
  19. 19.
    Freeman, W.J., Holmes, M.D., West, G.A., Vanhatalo, S.: Fine spatiotemporal structure of phase in human intracranial EEG. Clin. Neurophysiol. 117, 1228–1243 (2006), doi:10.1016/j.clinph.2006.03.012CrossRefGoogle Scholar
  20. 20.
    Freeman, W.J., Vitiello, G.: Dissipation and spontaneous symmetry breaking in brain dynamics. J. Phys. A: Gen. Phys. 41, 17p (2008), doi:10.1088/1751-8113/41/30/304042Google Scholar
  21. 21.
    Freeman, W.: Mass Action in the Nervous System. Academic Press, New York (1975)Google Scholar
  22. 22.
    Freeman, W., O’Nuillain, S., Rodriguez, J.: Simulating cortical background activity at rest with filtered noise. J. Integr. Neurosci. 7(3), 337–344 (2008), doi:10.1142/S0219635208001885CrossRefPubMedGoogle Scholar
  23. 23.
    Gray, C.M., Engel, A.K., Konig, P., Singer, W.: Synchronization of oscillatory neuronal responses in cat striate cortex: Temporal properties. Vis. Neurosci. 8, 337–347 (1992)CrossRefPubMedGoogle Scholar
  24. 24.
    Gray, C.M., Konig, P., Engel, A.K., Singer, W.: Oscillatory responses in cat visual cortex exhibit intercolumnar synchronisation which reflects global stimulus properties. Nature 388, 334–337 (1989), doi:10.1038/338334a0CrossRefGoogle Scholar
  25. 25.
    Gray, C.M., Singer, W.: Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proc. Natl. Acad. Sci. U.S.A. 86, 1698–1702 (1989), doi:10.1073/pnas.86.5.1698CrossRefPubMedGoogle Scholar
  26. 26.
    Haken, H.: Principles of Brain Functioning. Springer, Berlin (1996)Google Scholar
  27. 27.
    Hasenstaub, A., Shu, Y., Haider, B., Kraushaar, U., Duque, A., McCormick, D.A.: Inhibitory postsynaptic potentials carry synchronized frequency information in active cortical networks. Neuron 47, 423–435 (2005), doi:10.1016/j.neuron.2005.06.016CrossRefPubMedGoogle Scholar
  28. 28.
    Hausser, W., Roth, A.: Dendritic and somatic glutamate receptor channels in rat cerebellar purkinje cells. J. Physiol. 501, 77–95 (1997), doi:10.1111/j.1469-7793.1997.077bo.xCrossRefPubMedGoogle Scholar
  29. 29.
    Jirsa, V.K., Haken, H.: Field theory of electromagnetic brain activity. Phys. Rev. Lett. 77, 960–963 (1996), doi:10.1103/PhysRevLett.77.960CrossRefPubMedGoogle Scholar
  30. 30.
    Kandel, E.R., Schwartz, J.H., Jessell, T.M.: Principles of Neural Science. Prentice-Hall International, London, 3 edn. (1991)Google Scholar
  31. 31.
    Kaneki, K., Ariki, O., Tsukada, M.: Dual synaptic plasticity in the hippocampus: Hebbian and spatiotemporal learning dynamics. Cogn. Neurodyn. (in Press) (2008), doi:10.1007/s11571-008-9071-zGoogle Scholar
  32. 32.
    Kay, J., Floreano, D., Phillips, W.A.: Contextually guided unsupervised learning using local multivariate binary processors. Neural Netw. 11(1), 117–140 (1998), doi:10.1016/S0893-6080(97)00110-XCrossRefGoogle Scholar
  33. 33.
    Kay, J., Phillips, W.A.: Activation functions, computational goals and learning rules for local processors with contextual guidance. Neural Comp. 9, 763–768 (1997), doi:10.1162/neco.1997.9.4.895CrossRefGoogle Scholar
  34. 34.
    Kording, K.P., Konig, P.: Learning with two sites of synaptic integration. Network: Comp. Neural Sys. 11, 25–39 (2000), doi:10.1088/0954-898X/11/1/302CrossRefGoogle Scholar
  35. 35.
    Lester, R.A., Jahr, C.E.: NDMA channel behavior depends on agonist affinity. J. Neurosci. 12, 635–643 (1992)PubMedGoogle Scholar
  36. 36.
    Liley, D.T.J., Wright, J.J.: Intracortical connectivity of pyramidal and stellate cells: Estimates of synaptic densities and coupling symmetry. Network: Comp. Neural Sys. 5, 175–189 (1994), doi:10.1088/0954-898X/5/2/004CrossRefGoogle Scholar
  37. 37.
    Miltner, W.H., Braun, C., Arnold, M., Witte, H., Taube, E.: Coherence of gamma-band EEG activity as a basis for associative learning. Nature 397, 434–436 (1999), doi:10.1038/17126CrossRefPubMedGoogle Scholar
  38. 38.
    Morita, K., Kalra, R., Aihara, K., Robinson, H.P.C.: Recurrent synaptic input and the timing of gamma-frequency-modulated firing of pyramidal cells during neocortical “up” states. J. Neurosci. 28, 1871–1881 (2008), doi:10.1523/JNEUROSCI.3948-07.2008CrossRefPubMedGoogle Scholar
  39. 39.
    Mountcastle, V.B.: An organizing principle for cerebral function: The unit module and the distributed system. In: The Neurosciences 4th Study Program, MIT Press, Cambridge, Mass (1979)Google Scholar
  40. 40.
    Neuenschwander, S., Singer, W.: Long-range synchronisation of oscillatory light responses in the cat retina and lateral geniculate nucleus. Nature 379, 728–733 (1996), doi:10.1038/379728a0CrossRefPubMedGoogle Scholar
  41. 41.
    Nunez, P.L.: Electric Fields of the Brain. Oxford University Press, New York (1981)Google Scholar
  42. 42.
    Nunez, P.L.: Neocortical Dynamics and Human EEG Rhythms. Oxford University Press, New York (1995)Google Scholar
  43. 43.
    O’Connor, S.C., Robinson, P.A.: Wave-number spectrum of electrocorticographic signals. Phys. Rev. E 67, 1–13 (2003), doi:10.1103/PhysRevE.67.051912Google Scholar
  44. 44.
    Phillips, W.A., Singer, W.: In search of common foundations for cortical computation. Behav. Brain Sci. 20, 657–722 (1997), doi:10.1017/S0140525X9700160XCrossRefPubMedGoogle Scholar
  45. 45.
    Rennie, C.J., Robinson, P.A., Wright, J.J.: Effects of local feedback on dispersion of electrical waves in the cerebral cortex. Phys. Rev. E 59, 3320–3329 (1999), doi:10.1103/PhysRevE.59.3320CrossRefGoogle Scholar
  46. 46.
    Rennie, C.J., Robinson, P.A., Wright, J.J.: Unified neurophysical model of EEG spectra and evoked potentials. Biol. Cybern. 86, 457–471 (2002), doi:10.1007/s00422-002-0310-9CrossRefPubMedGoogle Scholar
  47. 47.
    Rennie, C.J., Wright, J.J., Robinson, P.A.: Mechanisms of cortical electrical activity and the emergence of gamma rhythm. J. Theoretical. Biol. 205, 17–35 (2000), doi:10.1006/jtbi.2000.2040CrossRefGoogle Scholar
  48. 48.
    Robinson, P.A., Rennie, C.J., Rowe, D.L., O’Connor, S.C., Wright, J.J., Gordon, E.: Neurophysical modelling of brain dynamics. Neuropsychopharmacol. 28, S74–S79 (2003), doi:10.1038/sj.npp.1300143CrossRefGoogle Scholar
  49. 49.
    Robinson, P.A., Rennie, C.J., Wright, J.J.: Propagation and stability of waves of electrical activity in the cerebral cortex. Phys. Rev. E 56, 826–840 (1997), doi:10.1103/PhysRevE.56.826CrossRefGoogle Scholar
  50. 50.
    Robinson, P.A., Rennie, C.J., Wright, J.J., Bahramali, H., Gordon, E., Rowe, D.L.: Prediction of electroencephalographic spectra from neurophysiology. Phys. Rev. E 63, 1–18 (2001), doi:10.1103/PhysRevE.63.021903Google Scholar
  51. 51.
    Robinson, P.A., Wright, J.J., Rennie, C.J.: Synchronous oscillations in the cerebral cortex. Phys. Rev. E 57, 4578–4588 (1998), doi:10.1103/PhysRevE.57.4578CrossRefGoogle Scholar
  52. 52.
    Scholl, D.A.: The Organization of the Cerebral Cortex. Wiley, New York (1956)Google Scholar
  53. 53.
    Singer, W.: Putative functions of temporal correlations in neocortical processing. In: C. Koch, J.L. Davis (eds.), Large Scale Neuronal Theories of the Brain, MIT Press, Cambridge Mass., London (1994)Google Scholar
  54. 54.
    Singer, W., Gray, C.M.: Visual feature integration and the temporal correlation hypothesis. Annu. Rev. Neurosci. 18, 555–586 (1995), doi:10.1146/annurev.ne.18.030195.003011CrossRefPubMedGoogle Scholar
  55. 55.
    Steriade, M., Timofeev, I., Grenier, F.: Natural waking and sleep states: A view from inside cortical neurons. J. Neurophysiol. 85, 1969–1985 (2001)PubMedGoogle Scholar
  56. 56.
    Steyn-Ross, D.A., Steyn-Ross, M.L., Sleigh, J.W., Wilson, M.T., Gillies, I.P., Wright, J.J.: The sleep cycle modelled as a cortical phase transition. J. Biol. Phys. 31, 547–569 (2005), doi:10.1007/s10867-005-1285-2CrossRefGoogle Scholar
  57. 57.
    Stryker, M.P.: Is grandmother an oscillation? Nature 388, 297–298 (1989), doi:10.1038/338297a0CrossRefGoogle Scholar
  58. 58.
    Stuart, G.J., Sakmann, B.: Active propagation of somatic action potentials into neocortical cell pyramidal dendrites. Nature 367, 69–72 (1994), doi:10.1038/367069a0CrossRefPubMedGoogle Scholar
  59. 59.
    Suffczynski, P., Kalitzin, S., Pfurtscheller, G., Lopes da Silva, F.H.: Computational model of thalamocortical networks: Dynamical control of alpha rhythms in relation to focal attention. Int. J. Psychophysiol. 43, 25–40 (2001), doi:10.1016/S0167-8760(01)00177-5CrossRefPubMedGoogle Scholar
  60. 60.
    Szentagothai, J.: Local neuron circuits of the neocortex. In: F. Schmitt, F. Worden (eds.), The Neurosciences 4th Study Program, pp. 399–415, MIT Press, Cambridge, Mass (1979)Google Scholar
  61. 61.
    Thomson, A.M.: Activity dependent properties of synaptic transmission at two classes of connections made by rat neocortical pyramidal neurons in vitro. J. Physiol. 502, 131–147 (1997), doi:10.1111/j.1469-7793.1997.131bl.xCrossRefPubMedGoogle Scholar
  62. 62.
    Thomson, A.M., West, D.C., Hahn, J., Deuchars, J.: Single axon IPSPs elicited in pyramidal cells by three classes of interneurones in slices of rat neocortex. J. Physiol. 496, 81–102 (1996)PubMedGoogle Scholar
  63. 63.
    Traub, R.D., Whittington, M.A., Stanford, I.M., Jeffereys, J.G.R.: A mechanism for generation of long-range synchronous fast oscillations in the cortex. Nature 383, 621–624 (1996), doi:10.1038/383621a0CrossRefPubMedGoogle Scholar
  64. 64.
    Tsukada, M., Aihara, T., Saito, H.: Hippocampal LTP depends on spatial and temporal correlation of inputs. Neural Netw. 9, 1357–1365 (1996), doi:10.1016/S0893-6080(96)00047-0CrossRefPubMedGoogle Scholar
  65. 65.
    Tsukada, M., Yamazaki, Y., Kojima, H.: Interaction between the spatio-temporal learning rule (STLR) and Hebb in single pyramidal cells in the hippocampal CA1 area. Cogn. Neurodyn. 1, 305–316 (2007), doi:10.1007/s11571-006-9014-5CrossRefGoogle Scholar
  66. 66.
    van Rotterdam, A., Lopes da Silva, F.H., van den Ende, J., Viergever, M.A., Hermans, A.J.: A model of the spatio-temporal characteristics of the alpha rhythm. Bull. Math. Biol. 44, 283–305 (1982), doi:10.1016/S0092-8240(82)80070-0CrossRefPubMedGoogle Scholar
  67. 67.
    von der Malsburg, C.: How are nervous structures organised? In: E. Basar (ed.), Synergetics of the Brain, Springer, Berlin, Heidelberg, New York (1983)Google Scholar
  68. 68.
    Wilson, H.R., Cowan, J.D.: A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik 13, 55–80 (1973), doi:10.1007/BF00288786CrossRefPubMedGoogle Scholar
  69. 69.
    Wright, J.J.: Reticular activation and the dynamics of neuronal networks. Biol. Cybern. 62, 289–298 (1990), doi:10.1007/BF00201443CrossRefPubMedGoogle Scholar
  70. 70.
    Wright, J.J.: Cortical phase transitions: Properties demonstrated in continuum simulations at mesoscopic and macroscopic scales. J. New Math. Nat. Comput. (in press) (2009)Google Scholar
  71. 71.
    Wright, J.J.: Generation and control of cortical gamma: Findings from simulation at two scales. Neural Netw. (in press) (2009)Google Scholar
  72. 72.
    Wright, J.J., Alexander, D.M., Bourke, P.D.: Contribution of lateral interactions in V1 to organization of response properties. Vision Res. 46, 2703–2720 (2006), doi:10.1016/j.visres.2006.02.017CrossRefPubMedGoogle Scholar
  73. 73.
    Wright, J.J., Bourke, P.D.: An outline of functional self-organization in V1: Synchrony, stlr and hebb rules. Cogn. Neurodyn. 2, 147–157 (2008), doi:10.1007/s11571-008-9048-yCrossRefGoogle Scholar
  74. 74.
    Wright, J.J., Bourke, P.D., Chapman, C.L.: Synchronous oscillation in the cerebral cortex and object coherence: Simulation of basic electrophysiological findings. Biol. Cybern. 83, 341–353 (2000), doi:10.1007/s004220000155CrossRefPubMedGoogle Scholar
  75. 75.
    Wright, J.J., Liley, D.T.J.: Dynamics of the brain at global and microscopic scales. Neural networks and the EEG. Behav. Brain Sci. 19, 285–320 (1996)CrossRefGoogle Scholar
  76. 76.
    Wright, J.J., Rennie, C.J., Lees, G.J., Robinson, P.A., Bourke, P.D., Chapman, C.L., Gordon, E., Rowe, D.L.: Simulated electrocortical activity at microscopic, mesoscopic, and global scales. Neuropsychopharmacol. 28, 80–93 (2003), doi:10.1038/sj.npp.1300138CrossRefGoogle Scholar
  77. 77.
    Wright, J.J., Sergejew, A.A.: Radial coherence, wave velocity and damping of electrocortical waves. Electroencephalogr. Clin. Neurophysiol. 79, 403–412 (1991), doi:10.1016/0013-4694(91)90205-IGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Liggins Institute, and Department of Psychological MedicineUniversity of AucklandNew ZealandAuckland
  2. 2.Brain Dynamics CentreUniversity of SydneyAustraliaSydney

Personalised recommendations