HIV Coreceptors and Their Roles in Leukocyte Trafficking During Neuroinflammatory Diseases

  • Robyn S. Klein
  • Erin E. McCandless


Due to the increasing resistance of HIV-1 to antiretroviral therapies, there has been much emphasis on the discovery and development of alternative therapeutics for HIV-1-infected individuals. The chemokine receptors CXCR4 (Bleul et al. 1996a; Feng et al. 1996; Nagasawa et al. 1996; Oberlin et al. 1996) and CCR5 (Alkhatib et al. 1996; Deng et al. 1996; Dragic et al. 1996) were identified as target molecules from the time their role as coreceptors for HIV-1 entry into leukocytes was first discovered 10 years ago. Initial studies focused on the use of the chemokine ligands, or altered derivatives, of CXCR4 and CCR5 to prevent the entrance of HIV-1 into immune cells (Schols 2006). While these studies showed some initial promise, there was evidence of significant caveats to their use, including selection of alternative coreceptor utilizing strains (Marechal et al. 1999; Mosier et al. 1999) and the potential to cause inflammatory side effects. These data prompted the development and study of small molecule inhibitors of CXCR4 and CCR5, which have also been used to examine the roles of these molecules in a variety of inflammatory and infectious diseases.


Multiple Sclerosis Experimental Autoimmune Encephalomyelitis Multiple Sclerosis Patient West Nile Virus Simian Immunodeficiency Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by NIH/NINDS NS052632 and by grants from the National Multiple Sclerosis Society and the Midwest Regional Center for Excellence in Emerging Infectious Diseases (all to R.S.K.). The authors would also like to thank Drs. Eric Lyng and Jigisha Patel for their critical readings of the manuscript.


  1. Abromson-Leeman S, Bronson R, Luo Y, Berman M, Leeman R, Leeman J, Dorf M (2004) T-cell properties determine disease site, clinical presentation, and cellular pathology of experimental autoimmune encephalomyelitis. Am J Pathol 165:1519–1533PubMedCrossRefGoogle Scholar
  2. Adamson DC, Wildemann B, Sasaki M, Glass JD, McArthur JC, Christov VI, Dawson TM, Dawson VL (1996) Immunologic NO synthase: elevation in severe AIDS dementia and induction by HIV-1 gp41. Science 274:1917–1921PubMedCrossRefGoogle Scholar
  3. Adelman B, Sandrock A, Panzara MA (2005) Natalizumab and progressive multifocal leukoencephalopathy. N Engl J Med 353:432–433PubMedCrossRefGoogle Scholar
  4. Ajami B, Bennett JL, Krieger C, Tetzlaff W, Rossi FM (2007) Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nat Neurosci 10:1538–1543PubMedCrossRefGoogle Scholar
  5. Akekawatchai C, Holland JD, Kochetkova M, Wallace JC, McColl SR (2005) Transactivation of CXCR4 by the insulin-like growth factor-1 receptor (IGF-1R) in human MDA-MB-231 breast cancer epithelial cells. J Biol Chem 280:39701–39708PubMedCrossRefGoogle Scholar
  6. Alkhatib G, Combadiere C, Broder CC, Feng Y, Kennedy PE, Murphy PM, Berger EA (1996) CC CKR5: a RANTES, MIP-1alpha, MIP-1beta receptor as a fusion cofactor for macrophage-tropic HIV-1. Science 272:1955–1958PubMedCrossRefGoogle Scholar
  7. Allie R, Hu L, Mullen KM, Dhib-Jalbut S, Calabresi PA (2005) Bystander modulation of chemokine receptor expression on peripheral blood T lymphocytes mediated by glatiramer therapy. Arch Neurol 62:889–894PubMedCrossRefGoogle Scholar
  8. Ambrosini E, Remoli ME, Giacomini E, Rosicarelli B, Serafini B, Lande R, Aloisi F, Coccia EM (2005) Astrocytes produce dendritic cell-attracting chemokines in vitro and in multiple sclerosis lesions. J Neuropathol Exp Neurol 64:706–715PubMedCrossRefGoogle Scholar
  9. Avecilla ST, Hattori K, Heissig B, Tejada R, Liao F, Shido K, Jin DK, Dias S, Zhang F, Hartman TE, Hackett NR, Crystal RG, Witte L, Hicklin DJ, Bohlen P, Eaton D, Lyden D, de Sauvage F, Rafii S (2004) Chemokine-mediated interaction of hematopoietic progenitors with the bone marrow vascular niche is required for thrombopoiesis. Nat Med 10:64–71PubMedCrossRefGoogle Scholar
  10. Bagaeva LV, Williams LP, Segal BM (2003) IL-12 dependent/IFN gamma independent expression of CCR5 by myelin-reactive T cells correlates with encephalitogenicity. J Neuroimmunol 137:109–116PubMedCrossRefGoogle Scholar
  11. Bajetto A, Barbero S, Bonavia R, Piccioli P, Pirani P, Florio T, Schettini G (2001a) Stromal cell-derived factor-1alpha induces astrocyte proliferation through the activation of extracellular signal-regulated kinases 1/2 pathway. J Neurochem 77:1226–1236PubMedCrossRefGoogle Scholar
  12. Bajetto A, Bonavia R, Barbero S, Florio T, Schettini G (2001b) Chemokines and their receptors in the central nervous system. Front Neuroendocrinol 22:147–184PubMedCrossRefGoogle Scholar
  13. Balashov KE, Rottman JB, Weiner HL, Hancock WW (1999) CCR5(+) and CXCR3(+) T cells are increased in multiple sclerosis and their ligands MIP-1alpha and IP-10 are expressed in demyelinating brain lesions. Proc Natl Acad Sci USA 96:6873–6878PubMedCrossRefGoogle Scholar
  14. Ballabh P, Braun A, Nedergaard M (2004) The blood-brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol Dis 16:1–13PubMedCrossRefGoogle Scholar
  15. Barcellos LF, Schito AM, Rimmler JB, Vittinghoff E., Shih A, Lincoln R, Callier S, Elkins MK, Goodkin DE, Haines JL, Pericak-Vance MA, Hauser SL, Oksenberg JR (2000) CC-chemokine receptor 5 polymorphism and age of onset in familiar multiple sclerosis. Immunogenetics 51(4-5):281–288Google Scholar
  16. Basu S, Broxmeyer HE (2005) Transforming growth factor-{beta}1 modulates responses of CD34+ cord blood cells to stromal cell-derived factor-1/CXCL12. Blood 106:485–493PubMedCrossRefGoogle Scholar
  17. Bennetts BH, Teutsch SM, Buhler MM, Heard RN, Stewart GJ (1997) The CCR5 deletion mutation fails to protect against multiple sclerosis. Hum Immunol 58:52–59PubMedCrossRefGoogle Scholar
  18. Benveniste EN, Merrill JE (1986) Stimulation of oligodendroglial proliferation and maturation by interleukin-2. Nature 321:610–613PubMedCrossRefGoogle Scholar
  19. Biernacki K, Prat A, Blain M, Antel JP (2001) Regulation of Th1 and Th2 lymphocyte migration by human adult brain endothelial cells. J Neuropathol Exp Neurol 60:1127–1136PubMedGoogle Scholar
  20. Bleul CC, Farzan M, Choe H, Parolin C, Clark-Lewis I, Sodroski J, Springer TA (1996a) The lymphocyte chemoattractant SDF-1 is a ligand for LESTR/fusin and blocks HIV-1 entry. Nature 382:829–833PubMedCrossRefGoogle Scholar
  21. Bleul CC, Fuhlbrigge RC, Casasnovas JM, Aiuti A, Springer TA (1996b) A highly efficacious lymphocyte chemoattractant, stromal cell-derived factor 1 (SDF-1). J Exp Med 184:1101–1109PubMedCrossRefGoogle Scholar
  22. Bleul CC, Wu L, Hoxie JA, Springer TA, Mackay CR (1997) The HIV coreceptors CXCR4 and CCR5 are differentially expressed and regulated on human T lymphocytes. Proc Natl Acad Sci USA 94:1925–1930PubMedCrossRefGoogle Scholar
  23. Boffito M, Pillay D, Wilkins E (2006) Management of advanced HIV disease: resistance, antiretroviral brain penetration and malignancies. Int J Clin Pract 60:1098–1106PubMedCrossRefGoogle Scholar
  24. Bonwetsch R, Croul S, Richardson MW, Lorenzana C, Valle LD, Sverstiuk AE, Amini S, Morgello S, Khalili K, Rappaport J (1999) Role of HIV-1 Tat and CC chemokine MIP-1alpha in the pathogenesis of HIV associated central nervous system disorders. J Neurovirol 5:685–694PubMedCrossRefGoogle Scholar
  25. Bullard DC, Hu X, Schoeb TR, Collins RG, Beaudet AL, Barnum SR (2007) Intercellular adhesion molecule-1 expression is required on multiple cell types for the development of experimental autoimmune encephalomyelitis. J Immunol 178:851–857PubMedGoogle Scholar
  26. Butcher EC, Picker LJ (1996) Lymphocyte homing and homeostasis. Science 272:60–66PubMedCrossRefGoogle Scholar
  27. Calderon TM, Eugenin EA, Lopez L, Kumar SS, Hesselgesser J, Raine CS, Berman JW (2006) A role for CXCL12 (SDF-1alpha) in the pathogenesis of multiple sclerosis: regulation of CXCL12 expression in astrocytes by soluble myelin basic protein. J Neuroimmunol 177:27–39PubMedCrossRefGoogle Scholar
  28. Campbell GL, Marfin AA, Lanciotti RS, Gubler DJ (2002) West Nile virus. Lancet Infect Dis 2:519–529PubMedCrossRefGoogle Scholar
  29. Cartier L, Hartley O, Dubois-Dauphin M, Krause KH (2005) Chemokine receptors in the central nervous system: role in brain inflammation and neurodegenerative diseases. Brain Res Brain Res Rev 48:16–42PubMedCrossRefGoogle Scholar
  30. Charo IF, Ransohoff RM (2006) The many roles of chemokines and chemokine receptors in inflammation. N Engl J Med 354:610–621PubMedCrossRefGoogle Scholar
  31. Cheeran MC, Hu S, Sheng WS, Rashid A, Peterson PK, Lokensgard JR (2005) Differential responses of human brain cells to West Nile virus infection. J Neurovirol 11:512–524PubMedCrossRefGoogle Scholar
  32. Cudrici C, Ito T, Zafranskaia E, Niculescu F, Mullen KM, Vlaicu S, Judge SI, Calabresi PA, Rus H (2007) Dendritic cells are abundant in non-lesional gray matter in multiple sclerosis. Exp Mol Pathol 83:198–206PubMedCrossRefGoogle Scholar
  33. D’Apuzzo M, Rolink A, Loetscher M, Hoxie JA, Clark-Lewis I, Melchers F, Baggiolini M, Moser B (1997) The chemokine SDF-1, stromal cell-derived factor 1, attracts early stage B cell precursors via the chemokine receptor CXCR4. Eur J Immunol 27:1788–1793PubMedCrossRefGoogle Scholar
  34. Dawson VL, Dawson TM, Uhl GR, Snyder SH (1993) Human immunodeficiency virus type 1 coat protein neurotoxicity mediated by nitric oxide in primary cortical cultures. Proc Natl Acad Sci USA 90:3256–3259PubMedCrossRefGoogle Scholar
  35. Dawson MR, Polito A, Levine JM, Reynolds R (2003) NG2-expressing glial progenitor cells: an abundant and widespread population of cycling cells in the adult rat CNS. Mol Cell Neurosci 24:476–488PubMedCrossRefGoogle Scholar
  36. De Clercq E (2003) The bicyclam AMD3100 story. Nat Rev Drug Discov 2:581–587PubMedCrossRefGoogle Scholar
  37. de Lemos C, Christensen JE, Nansen A, Moos T, Lu B, Gerard C, Christensen JP, Thomsen AR (2005) Opposing effects of CXCR3 and CCR5 deficiency on CD8+ T cell-mediated inflammation in the central nervous system of virus-infected mice. J Immunol 175:1767–1775PubMedGoogle Scholar
  38. Deng H, Liu R, Ellmeier W, Choe S, Unutmaz D, Burkhart M, Di Marzio P, Marmon S, Sutton RE, Hill CM, Davis CB, Peiper SC, Schall TJ, Littman DR, Landau NR (1996) Identification of a major co-receptor for primary isolates of HIV-1. Nature 381:661–666PubMedCrossRefGoogle Scholar
  39. Deng L, Ammosova T, Pumfery A, Kashanchi F, Nekhai S (2002) HIV-1 Tat interaction with RNA polymerase II C-terminal domain (CTD) and a dynamic association with CDK2 induce CTD phosphorylation and transcription from HIV-1 promoter. J Biol Chem 277:33922–33929PubMedCrossRefGoogle Scholar
  40. Dragic T, Litwin V, Allaway GP, Martin SR, Huang Y, Nagashima KA, Cayanan C, Maddon PJ, Koup RA, Moore JP, Paxton WA (1996) HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5. Nature 381:667–673PubMedCrossRefGoogle Scholar
  41. Dziembowska M, Tham TN, Lau P, Vitry S, Lazarini F, Dubois-Dalcq M (2005) A role for CXCR4 signaling in survival and migration of neural and oligodendrocyte precursors. Glia 50:258–269PubMedCrossRefGoogle Scholar
  42. Eltayeb S, Berg AL, Lassmann H, Wallstrom E, Nilsson M, Olsson T, Ericsson-Dahlstrand A, Sunnemark D (2007) Temporal expression and cellular origin of CC chemokine receptors CCR1, CCR2 and CCR5 in the central nervous system: insight into mechanisms of MOG-induced EAE. J Neuroinflammation 4:14PubMedCrossRefGoogle Scholar
  43. Favorova OO, Andreewski TV, Boiko AN, Sudomoina MA, Alekseenkov AD, Kulakova OG, Slanova AV, Gusev EI (2002) The chemokine receptor CCR5 deletion mutation is associated with MS in HLA-DR4-positive Russians. Neurology 59:1652–1655PubMedCrossRefGoogle Scholar
  44. Favorova OO, Favorov AV, Boiko AN, Andreewski TV, Sudomoina MA, Alekseenkov AD, Kulakova OG, Gusev EI, Parmigiani G, Ochs MF (2006) Three allele combinations associated with multiple sclerosis. BMC Med. Genet. 7:63Google Scholar
  45. Feng Y, Broder CC, Kennedy PE, Berger EA (1996) HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science 272:872–877PubMedCrossRefGoogle Scholar
  46. Filipovic R, Jakovcevski I, Zecevic N (2003) GRO-alpha and CXCR2 in the human fetal brain and multiple sclerosis lesions. Dev Neurosci 25:279–290PubMedCrossRefGoogle Scholar
  47. Fischer FR, Santambrogio L, Luo Y, Berman MA, Hancock WW, Dorf ME (2000) Modulation of experimental autoimmune encephalomyelitis: effect of altered peptide ligand on chemokine and chemokine receptor expression. J Neuroimmunol 110:195–208PubMedCrossRefGoogle Scholar
  48. Fischer-Smith T, Rappaport J (2005) Evolving paradigms in the pathogenesis of HIV-1-associated dementia. Expert Rev Mol Med 7:1–26PubMedCrossRefGoogle Scholar
  49. Floris S, Ruuls SR, Wierinckx A, van der Pol SM, Dopp E, van der Meide PH, Dijkstra CD, De Vries HE (2002) Interferon-beta directly influences monocyte infiltration into the central nervous system. J Neuroimmunol 127:69–79PubMedCrossRefGoogle Scholar
  50. Franklin RJ (2002) Why does remyelination fail in multiple sclerosis? Nat Rev Neurosci 3:705–714PubMedCrossRefGoogle Scholar
  51. Fratkin JD, Leis AA, Stokic DS, Slavinski SA, Geiss RW (2004) Spinal cord neuropathology in human West Nile virus infection. Arch Pathol Lab Med 128:533–537PubMedGoogle Scholar
  52. Frohman EM, Racke MK, Raine CS (2006) Multiple sclerosis – the plaque and its pathogenesis. N Engl J Med 354:942–955PubMedCrossRefGoogle Scholar
  53. Frost EE, Nielsen JA, Le TQ, Armstrong RC (2003) PDGF and FGF2 regulate oligodendrocyte progenitor responses to demyelination. J Neurobiol 54:457–472PubMedCrossRefGoogle Scholar
  54. Gade-Andavolu R, Comings DE, MacMurray J, Rostamkhani M, Cheng LS, Tourtellotte WW, Cone LA (2004) Association of CCR5 delta32 deletion with early death in multiple sclerosis. Genet Med 6:126–131PubMedCrossRefGoogle Scholar
  55. Garcia-Vicuna R, Gomez-Gaviro MV, Dominguez-Luis MJ, Pec MK, Gonzalez-Alvaro I, Alvaro-Gracia JM, Diaz-Gonzalez F (2004) CC and CXC chemokine receptors mediate migration, proliferation, and matrix metalloproteinase production by fibroblast-like synoviocytes from rheumatoid arthritis patients. Arthritis Rheum 50:3866–3877PubMedCrossRefGoogle Scholar
  56. Giulian D, Yu J, Li X, Tom D, Li J, Wendt E, Lin SN, Schwarcz R, Noonan C (1996) Study of receptor-mediated neurotoxins released by HIV-1-infected mononuclear phagocytes found in human brain. J Neurosci 16:3139–3153PubMedGoogle Scholar
  57. Giunti D, Borsellino G, Benelli R, Marchese M, Capello E, Valle MT, Pedemonte E, Noonan D, Albini A, Bernardi G, Mancardi GL, Battistini L, Uccelli A (2003) Phenotypic and functional analysis of T cells homing into the CSF of subjects with inflammatory diseases of the CNS. J Leukoc Biol 73:584–590PubMedCrossRefGoogle Scholar
  58. Glabinski AR, O’Bryant S, Selmaj K, Ransohoff RM (2000) CXC chemokine receptors expression during chronic relapsing experimental autoimmune encephalomyelitis. Ann N Y Acad Sci 917:135–144PubMedCrossRefGoogle Scholar
  59. Glabinski AR, Bielecki B, O’Bryant S, Selmaj K, Ransohoff RM (2002) Experimental autoimmune encephalomyelitis: CC chemokine receptor expression by trafficking cells. J Autoimmun 19:175–181PubMedCrossRefGoogle Scholar
  60. Glaser A (2004) West Nile virus and North America: an unfolding story. Rev Sci Tech 23:557–568PubMedGoogle Scholar
  61. Glass WG, Liu MT, Kuziel WA, Lane TE (2001) Reduced macrophage infiltration and demyelination in mice lacking the chemokine receptor CCR5 following infection with a neurotropic coronavirus. Virology 288(1):8–17Google Scholar
  62. Glass WG, Lane TE (2003) Functional expression of the chemokine receptor CCR5 on CD4(+) T cells during virus-induced central nervous system disease. J Virol 77(1):191–198Google Scholar
  63. Glass WG, Lane TE (2003a) Functional analysis of the CC chemokine receptor 5 (CCR5) on virus-specific CD8+ T cells following coronavirus infection of the central nervous system. Virology 312:407–414PubMedCrossRefGoogle Scholar
  64. Glass WG, Lane TE (2003b) Functional expression of chemokine receptor CCR5 on CD4(+) T cells during virus-induced central nervous system disease. J Virol 77:191–198PubMedCrossRefGoogle Scholar
  65. Glass WG, Lim JK, Cholera R, Pletnev AG, Gao JL, Murphy PM (2005) Chemokine receptor CCR5 promotes leukocyte trafficking to the brain and survival in West Nile virus infection. J Exp Med 202:1087–1098PubMedCrossRefGoogle Scholar
  66. Glass WG, McDermott DH, Lim JK, Lekhong S, Yu SF, Frank WA, Pape J, Cheshier RC, Murphy PM (2006) CCR5 deficiency increases risk of symptomatic West Nile virus infection. J Exp Med 203:35–40PubMedCrossRefGoogle Scholar
  67. Granelli-Piperno A, Moser B, Pope M, Chen D, Wei Y, Isdell F, O’Doherty U, Paxton W, Koup R, Mojsov S, Bhardwaj N, Clark-Lewis I, Baggiolini M, Steinman RM (1996) Efficient interaction of HIV-1 with purified dendritic cells via multiple chemokine coreceptors. J Exp Med 184:2433–2438PubMedCrossRefGoogle Scholar
  68. Granelli-Piperno A, Delgado E, Finkel V, Paxton W, Steinman RM (1998) Immature dendritic cells selectively replicate macrophagetropic (M-tropic) human immunodeficiency virus type 1, while mature cells efficiently transmit both M- and T-tropic virus to T cells. J Virol 72:2733–2737PubMedGoogle Scholar
  69. Hatse S, Princen K, Bridger G, De Clercq E, Schols D (2002) Chemokine receptor inhibition by AMD3100 is strictly confined to CXCR4. FEBS Lett 527:255–262PubMedCrossRefGoogle Scholar
  70. Hauser SL, Bhan AK, Gilles F, Kemp M, Kerr C, Weiner HL (1986) Immunohistochemical analysis of the cellular infiltrate in multiple sclerosis lesions. Ann Neurol 19:578–587PubMedCrossRefGoogle Scholar
  71. Hellings N, Gelin G, Medaer R, Bruckers L, Palmers Y, Raus J, Stinissen P (2002) Longitudinal study of antimyelin T-cell reactivity in relapsing-remitting multiple sclerosis: association with clinical and MRI activity. J Neuroimmunol 126:143–160PubMedCrossRefGoogle Scholar
  72. Hinks GL, Franklin RJ (1999) Distinctive patterns of PDGF-A, FGF-2, IGF-I, and TGF-beta1 gene expression during remyelination of experimentally-induced spinal cord demyelination. Mol Cell Neurosci 14:153–168PubMedCrossRefGoogle Scholar
  73. Holz A, Bielekova B, Martin R, Oldstone MB (2000) Myelin-associated oligodendrocytic basic protein: identification of an encephalitogenic epitope and association with multiple sclerosis. J Immunol 164:1103–1109PubMedGoogle Scholar
  74. Hunsperger EA, Roehrig JT (2006) Temporal analyses of the neuropathogenesis of a West Nile virus infection in mice. J Neurovirol 12:129–139PubMedCrossRefGoogle Scholar
  75. Huseby ES, Liggitt D, Brabb T, Schnabel B, Ohlen C, Goverman J (2001) A pathogenic role for myelin-specific CD8(+) T cells in a model for multiple sclerosis. J Exp Med 194:669–676PubMedCrossRefGoogle Scholar
  76. Irony-Tur-Sinai M, Grigoriadis N, Lourbopoulos A, Pinto-Maaravi F, Abramsky O, Brenner T (2006) Amelioration of autoimmune neuroinflammation by recombinant human alpha-fetoprotein. Exp Neurol 198:136–144PubMedCrossRefGoogle Scholar
  77. Jalonen TO, Pulkkinen K, Ukkonen M, Saarela M, Elovaara I (2002) Differential intracellular expression of CCR5 and chemokines in multiple sclerosis subtypes. J Neurol 249:576–583PubMedCrossRefGoogle Scholar
  78. Jia Y, Li H, Chen W, Li M, Lv M, Feng P, Hu H, Zhang L (2006) Prevention of murine experimental autoimmune encephalomyelitis by in vivo expression of a novel recombinant immunotoxin DT390-RANTES. Gene Ther 13:1351–1359PubMedCrossRefGoogle Scholar
  79. Johnston B, Butcher EC (2002) Chemokines in rapid leukocyte adhesion triggering and migration. Semin Immunol 14:83–92PubMedCrossRefGoogle Scholar
  80. Kadi L, Selvaraju R, de Lys P, Proudfoot AE, Wells TN, Boschert U (2006) Differential effects of chemokines on oligodendrocyte precursor proliferation and myelin formation in vitro. J Neuroimmunol 174:133–146PubMedCrossRefGoogle Scholar
  81. Kaimen-Maciel DR, Reiche EM, Brum Souza DG, Frota Comini ER, Bobroff F, Morimoto HK, Ehara Watanabe MA, Carvalho De Oliveira J, Matsuo T, Lopes J, Donadi EA (2007) CCR5-Delta32 genetic polymorphism associated with benign clinical course and magnetic resonance imaging findings in Brazilian patients with multiple sclerosis. Int J Mol Med 20:337–344PubMedGoogle Scholar
  82. Kantarci OH, Morales Y, Ziemer PA, Hebrink DD, Mahad DJ, Atkinson EJ, Achenbach SJ, De Andrade M, Mack M, Ransohoff RM, Lassmann H, Bruck W, Weinshenker BG, Lucchinetti CF (2005) CCR5Delta32 polymorphism effects on CCR5 expression, patterns of immunopathology and disease course in multiple sclerosis. J Neuroimmunol 169:137–143PubMedCrossRefGoogle Scholar
  83. Kantor R, Bakhanashvili M, Achiron A (2003) A mutated CCR5 gene may have favorable prognostic implications in MS. Neurology 61:238–240PubMedCrossRefGoogle Scholar
  84. Karni A, Balashov K, Hancock WW, Bharanidharan P, Abraham M, Khoury SJ, Weiner HL (2004) Cyclophosphamide modulates CD4+ T cells into a T helper type 2 phenotype and reverses increased IFN-gamma production of CD8+ T cells in secondary progressive multiple sclerosis. J Neuroimmunol 146:189–198PubMedCrossRefGoogle Scholar
  85. Katz LM, Bianco C (2003) West Nile virus. N Engl J Med 349:1873–1874 author reply 1873–1874PubMedCrossRefGoogle Scholar
  86. Kim CH (2005) The greater chemotactic network for lymphocyte trafficking: chemokines and beyond. Curr Opin Hematol 12:298–304PubMedCrossRefGoogle Scholar
  87. Kindberg E, Mickiene A, Ax C, Akerlind B, Vene S, Lindquist L, Lundkvist A, Svensson L (2008) A deletion in the chemokine receptor 5 (CCR5) gene is associated with tickborne encephalitis. J Infect Dis 197:266–269PubMedCrossRefGoogle Scholar
  88. Klein RS, Rubin JB (2004) Immune and nervous system CXCL12 and CXCR4: parallel roles in patterning and plasticity. Trends Immunol 25:306–314PubMedCrossRefGoogle Scholar
  89. Klein RS, Lin E, Zhang B, Luster AD, Tollett J, Samuel MA, Engle M, Diamond MS (2005) Neuronal CXCL10 directs CD8+ T-cell recruitment and control of West Nile virus encephalitis. J Virol 79:11457–11466PubMedCrossRefGoogle Scholar
  90. Kleinschmidt-DeMasters BK, Marder BA, Levi ME, Laird SP, McNutt JT, Escott EJ, Everson GT, Tyler KL (2004) Naturally acquired West Nile virus encephalomyelitis in transplant recipients: clinical, laboratory, diagnostic, and neuropathological features. Arch Neurol 61:1210–1220PubMedCrossRefGoogle Scholar
  91. Kohler RE, Comerford I, Townley S, Haylock-Jacobs S, Clark-Lewis I, McColl SR (2008) Antagonism of the chemokine receptors CXCR3 and CXCR4 reduces the pathology of experimental autoimmune encephalomyelitis. Brain Pathol 18:504–516PubMedGoogle Scholar
  92. Kong KF, Wang X, Anderson JF, Fikrig E, Montgomery RR (2008) West nile virus attenuates activation of primary human macrophages. Viral Immunol 21:78–82PubMedCrossRefGoogle Scholar
  93. Kortesidis A, Zannettino A, Isenmann S, Shi S, Lapidot T, Gronthos S (2005) Stromal-derived factor-1 promotes the growth, survival, and development of human bone marrow stromal stem cells. Blood 105:3793–3801PubMedCrossRefGoogle Scholar
  94. Krumbholz M, Theil D, Cepok S, Hemmer B, Kivisakk P, Ransohoff RM, Hofbauer M, Farina C, Derfuss T, Hartle C, Newcombe J, Hohlfeld R, Meinl E (2006) Chemokines in multiple sclerosis: CXCL12 and CXCL13 up-regulation is differentially linked to CNS immune cell recruitment. Brain 129:200–211PubMedCrossRefGoogle Scholar
  95. Langford D, Sanders VJ, Mallory M, Kaul M, Masliah E (2002) Expression of stromal cell-derived factor 1alpha protein in HIV encephalitis. J Neuroimmunol 127:115–126PubMedCrossRefGoogle Scholar
  96. Laschinger M, Engelhardt B (2000) Interaction of alpha4-integrin with VCAM-1 is involved in adhesion of encephalitogenic T cell blasts to brain endothelium but not in their transendothelial migration in vitro. J Neuroimmunol 102:32–43PubMedCrossRefGoogle Scholar
  97. Lataillade JJ, Clay D, Dupuy C, Rigal S, Jasmin C, Bourin P, Le Bousse-Kerdiles MC (2000) Chemokine SDF-1 enhances circulating CD34(+) cell proliferation in synergy with cytokines: possible role in progenitor survival. Blood 95:756–768PubMedGoogle Scholar
  98. Lees JR, Iwakura Y, Russell JH (2008) Host T cells are the main producers of IL-17 within the central nervous system during initiation of experimental autoimmune encephalomyelitis induced by adoptive transfer of Th1 cell lines. J Immunol 180:8066–8072PubMedGoogle Scholar
  99. Lim JK, Louie CY, Glaser C, Jean C, Johnson B, Johnson H, McDermott DH, Murphy PM (2008) Genetic deficiency of chemokine receptor CCR5 is a strong risk factor for symptomatic West Nile virus infection: a meta-analysis of 4 cohorts in the US epidemic. J Infect Dis 197:262–265PubMedCrossRefGoogle Scholar
  100. Lu M, Grove EA, Miller RJ (2002) Abnormal development of the hippocampal dentate gyrus in mice lacking the CXCR4 chemokine receptor. Proc Natl Acad Sci USA 99:7090–7095PubMedCrossRefGoogle Scholar
  101. Lucas SM, Rothwell NJ, Gibson RM (2006) The role of inflammation in CNS injury and disease. Br J Pharmacol 147(Suppl. 1):S232–S240PubMedGoogle Scholar
  102. Lukacs NW, Berlin A, Schols D, Skerlj RT, Bridger GJ (2002) AMD3100, a CxCR4 antagonist, attenuates allergic lung inflammation and airway hyperreactivity. Am J Pathol 160:1353–1360PubMedCrossRefGoogle Scholar
  103. Lunemann JD, Ruckert S, Kern F, Wendling U, van der Zee R, Volk HD, Zipp F (2004) Cross-sectional and longitudinal analysis of myelin-reactive T cells in patients with multiple sclerosis. J Neurol 251:1111–1120PubMedGoogle Scholar
  104. Ma Q, Jones D, Borghesani PR, Segal RA, Nagasawa T, Kishimoto T, Bronson RT, Springer TA (1998) Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4- and SDF-1-deficient mice. Proc Natl Acad Sci USA 95:9448–9453PubMedCrossRefGoogle Scholar
  105. Mahad DJ, Trebst C, Kivisakk P, Staugaitis SM, Tucky B, Wei T, Lucchinetti CF, Lassmann H, Ransohoff RM (2004) Expression of chemokine receptors CCR1 and CCR5 reflects differential activation of mononuclear phagocytes in pattern II and pattern III multiple sclerosis lesions. J Neuropathol Exp Neurol 63:262–273PubMedGoogle Scholar
  106. Manczak M, Jiang S, Orzechowska B, Adamus G (2002) Crucial role of CCL3/MIP-1alpha in the recurrence of autoimmune anterior uveitis induced with myelin basic protein in Lewis rats. J Autoimmun 18:259–270PubMedCrossRefGoogle Scholar
  107. Marcondes MC, Lanigan CM, Burdo TH, Watry DD, Fox HS (2008) Increased expression of monocyte CD44v6 correlates with the development of encephalitis in rhesus macaques infected with simian immunodeficiency virus. J Infect Dis 197:1567–1576PubMedCrossRefGoogle Scholar
  108. Marechal V, Arenzana-Seisdedos F, Heard JM, Schwartz O (1999) Opposite effects of SDF-1 on human immunodeficiency virus type 1 replication. J Virol 73:3608–3615PubMedGoogle Scholar
  109. Martinez-Caceres EM, Barrau MA, Brieva L, Espejo C, Barbera N, Montalban X (2002a) Treatment with methylprednisolone in relapses of multiple sclerosis patients: immunological evidence of immediate and short-term but not long-lasting effects. Clin Exp Immunol 127:165–171PubMedCrossRefGoogle Scholar
  110. Martinez-Caceres EM, Espejo C, Brieva L, Pericot I, Tintore M, Saez-Torres I, Montalban X (2002b) Expression of chemokine receptors in the different clinical forms of multiple sclerosis. Mult Scler 8:390–395PubMedCrossRefGoogle Scholar
  111. Matsuki T, Nakae S, Sudo K, Horai R, Iwakura Y (2006) Abnormal T cell activation caused by the imbalance of the IL-1/IL-1R antagonist system is responsible for the development of experimental autoimmune encephalomyelitis. Int Immunol 18:399–407PubMedCrossRefGoogle Scholar
  112. Matthys P, Hatse S, Vermeire K, Wuyts A, Bridger G, Henson GW, De Clercq E, Billiau A, Schols D (2001) AMD3100, a potent and specific antagonist of the stromal cell-derived factor-1 chemokine receptor CXCR4, inhibits autoimmune joint inflammation in IFN-gamma receptor-deficient mice. J Immunol 167:4686–4692PubMedGoogle Scholar
  113. McCandless EE, Wang Q, Woerner BM, Harper JM, Klein RS (2006) CXCL12 limits inflammation by localizing mononuclear infiltrates to the perivascular space during experimental autoimmune encephalomyelitis. J Immunol 177:8053–8064PubMedGoogle Scholar
  114. McCandless EE, Piccio L, Woerner BM, Schmidt RE, Rubin JB, Cross AH, Klein RS (2008a) Pathologic expression of CXCL12 at the blood brain barrier correlates with severity of multiple sclerosis. Am J PatholGoogle Scholar
  115. McCandless EE, Zhang B, Diamond MS, Klein RS (2008b) CXCR4 antagonism increases T cell trafficking in the central nervous system and improves survival from West Nile virus encephalitis. Proc Natl Acad Sci USAGoogle Scholar
  116. McCandless EE, Budde M, Lees JR, Dorsey D, Lyng E, Klein RS (2009) IL-1R signaling within the central nervous system regulates CXCL12 expression at the blood-brain barrier and disease severity during experimental autoimmune encephalomyelitis. J Immunol 183(1):613–620Google Scholar
  117. McFarland HF, Martin R (2007) Multiple sclerosis: a complicated picture of autoimmunity. Nat Immunol 8:913–919PubMedCrossRefGoogle Scholar
  118. McManus C, Berman JW, Brett FM, Staunton H, Farrell M, Brosnan CF (1998) MCP-1, MCP-2 and MCP-3 expression in multiple sclerosis lesions: an immunohistochemical and in situ hybridization study. J Neuroimmunol 86:20–29PubMedCrossRefGoogle Scholar
  119. McManus CM, Weidenheim K, Woodman SE, Nunez J, Hesselgesser J, Nath A, Berman JW (2000) Chemokine and chemokine-receptor expression in human glial elements: induction by the HIV protein, Tat, and chemokine autoregulation. Am J Pathol 156:1441–1453PubMedCrossRefGoogle Scholar
  120. McNicholl JM, Smith DK, Qari SH, Hodge T (1997) Host genes and HIV: the role of the chemokine receptor gene CCR5 and its allele. Emerg Infect Dis 3:261–271PubMedCrossRefGoogle Scholar
  121. Mildner A, Schmidt H, Nitsche M, Merkler D, Hanisch UK, Mack M, Heikenwalder M, Bruck W, Priller J, Prinz M (2007) Microglia in the adult brain arise from Ly-6ChiCCR2+ monocytes only under defined host conditions. Nat Neurosci 10:1544–1553PubMedCrossRefGoogle Scholar
  122. Misu T, Onodera H, Fujihara K, Matsushima K, Yoshie O, Okita N, Takase S, Itoyama Y (2001) Chemokine receptor expression on T cells in blood and cerebrospinal fluid at relapse and remission of multiple sclerosis: imbalance of Th1/Th2-associated chemokine signaling. J Neuroimmunol 114:207–212PubMedCrossRefGoogle Scholar
  123. Mohle R, Bautz F, Rafii S, Moore MA, Brugger W, Kanz L (1998) The chemokine receptor CXCR-4 is expressed on CD34+ hematopoietic progenitors and leukemic cells and mediates transendothelial migration induced by stromal cell-derived factor-1. Blood 91:4523–4530PubMedGoogle Scholar
  124. Mosier DE, Picchio GR, Gulizia RJ, Sabbe R, Poignard P, Picard L, Offord RE, Thompson DA, Wilken J (1999) Highly potent RANTES analogues either prevent CCR5-using human immunodeficiency virus type 1 infection in vivo or rapidly select for CXCR4-using variants. J Virol 73:3544–3550PubMedGoogle Scholar
  125. Mueller YM, Do DH, Altork SR, Artlett CM, Gracely EJ, Katsetos CD, Legido A, Villinger F, Altman JD, Brown CR, Lewis MG, Katsikis PD (2008) IL-15 treatment during acute simian immunodeficiency virus (SIV) infection increases viral set point and accelerates disease progression despite the induction of stronger SIV-specific CD8+ T cell responses. J Immunol 180:350–360PubMedGoogle Scholar
  126. Muraro PA, Bonanni L, Mazzanti B, Pantalone A, Traggiai E, Massacesi L, Vergelli M, Gambi D (2002) Short-term dynamics of circulating T cell receptor V beta repertoire in relapsing-remitting MS. J Neuroimmunol 127:149–159PubMedCrossRefGoogle Scholar
  127. Murzenok PP, Matusevicius D, Freedman MS (2002) Gamma/delta T cells in multiple sclerosis: chemokine and chemokine receptor expression. Clin Immunol 103:309–316PubMedCrossRefGoogle Scholar
  128. Nagasawa T, Nakajima T, Tachibana K, Iizasa H, Bleul CC, Yoshie O, Matsushima K, Yoshida N, Springer TA, Kishimoto T (1996) Molecular cloning and characterization of a murine pre-B-cell growth-stimulating factor/stromal cell-derived factor 1 receptor, a murine homolog of the human immunodeficiency virus 1 entry coreceptor fusin. Proc Natl Acad Sci USA 93:14726–14729PubMedCrossRefGoogle Scholar
  129. Nagase H, Kudo K, Izumi S, Ohta K, Kobayashi N, Yamaguchi M, Matsushima K, Morita Y, Yamamoto K, Hirai K (2001) Chemokine receptor expression profile of eosinophils at inflamed tissue sites: decreased CCR3 and increased CXCR4 expression by lung eosinophils. J Allergy Clin Immunol 108:563–569PubMedCrossRefGoogle Scholar
  130. Nanki T, Lipsky PE (2000) Cutting edge: stromal cell-derived factor-1 is a costimulator for CD4+ T cell activation. J Immunol 164:5010–5014PubMedGoogle Scholar
  131. Nansen A, Marker O, Bartholdy C, Thomsen AR (2000) CCR2+ and CCR5+ CD8+ T cells increase during viral infection and migrate to sites of infection. Eur J Immunol 30:1797–1806PubMedCrossRefGoogle Scholar
  132. Nottet HS, Jett M, Flanagan CR, Zhai QH, Persidsky Y, Rizzino A, Bernton EW, Genis P, Baldwin T, Schwartz J et al (1995) A regulatory role for astrocytes in HIV-1 encephalitis. An overexpression of eicosanoids, platelet-activating factor, and tumor necrosis factor-alpha by activated HIV-1-infected monocytes is attenuated by primary human astrocytes. J Immunol 154:3567–3581PubMedGoogle Scholar
  133. Oberlin E, Amara A, Bachelerie F, Bessia C, Virelizier JL, Arenzana-Seisdedos F, Schwartz O, Heard JM, Clark-Lewis I, Legler DF, Loetscher M, Baggiolini M, Moser B (1996) The CXC chemokine SDF-1 is the ligand for LESTR/fusin and prevents infection by T-cell-line-adapted HIV-1. Nature 382:833–835PubMedCrossRefGoogle Scholar
  134. Odyniec A, Szczepanik M, Mycko MP, Stasiolek M, Raine CS, Selmaj KW (2004) Gammadelta T cells enhance the expression of experimental autoimmune encephalomyelitis by promoting antigen presentation and IL-12 production. J Immunol 173:682–694PubMedGoogle Scholar
  135. Omari KM, John GR, Sealfon SC, Raine CS (2005) CXC chemokine receptors on human oligodendrocytes: implications for multiple sclerosis. Brain 128:1003–1015PubMedCrossRefGoogle Scholar
  136. Omari KM, John G, Lango R, Raine CS (2006) Role for CXCR2 and CXCL1 on glia in multiple sclerosis. Glia 53:24–31PubMedCrossRefGoogle Scholar
  137. Otaegui D, Ruiz-Martinez J, Olaskoaga J, Emparanza JI, de Munain AL (2007) Influence of CCR5-Delta32 genotype in Spanish population with multiple sclerosis. Neurogenetics 8:201–205PubMedCrossRefGoogle Scholar
  138. Pashenkov M, Teleshova N, Kouwenhoven M, Smirnova T, Jin YP, Kostulas V, Huang YM, Pinegin B, Boiko A, Link H (2002) Recruitment of dendritic cells to the cerebrospinal fluid in bacterial neuroinfections. J Neuroimmunol 122:106–116PubMedCrossRefGoogle Scholar
  139. Peng H, Erdmann N, Whitney N, Dou H, Gorantla S, Gendelman HE, Ghorpade A, Zheng J (2006) HIV-1-infected and/or immune activated macrophages regulate astrocyte SDF-1 production through IL-1beta. Glia 54:619–629PubMedCrossRefGoogle Scholar
  140. Persidsky Y, Zheng J, Miller D, Gendelman HE (2000) Mononuclear phagocytes mediate blood–brain barrier compromise and neuronal injury during HIV-1-associated dementia. J Leukoc Biol 68:413–422PubMedGoogle Scholar
  141. Piccio L, Rossi B, Scarpini E, Laudanna C, Giagulli C, Issekutz AC, Vestweber D, Butcher EC, Constantin G (2002) Molecular mechanisms involved in lymphocyte recruitment in inflamed brain microvessels: critical roles for P-selectin glycoprotein ligand-1 and heterotrimeric G(i)-linked receptors. J Immunol 168:1940–1949PubMedGoogle Scholar
  142. Prat A, Antel J (2005) Pathogenesis of multiple sclerosis. Curr Opin Neurol 18:225–230PubMedCrossRefGoogle Scholar
  143. Pujol F, Kitabgi P, Boudin H (2005) The chemokine SDF-1 differentially regulates axonal elongation and branching in hippocampal neurons. J Cell Sci 118:1071–1080PubMedCrossRefGoogle Scholar
  144. Pulkkinen K, Luomala M, Kuusisto H, Lehtimaki T, Saarela M, Jalonen TO, Elovaara I (2004) Increase in CCR5 Delta32/Delta32 genotype in multiple sclerosis. Acta Neurol Scand 109:342–347PubMedCrossRefGoogle Scholar
  145. Qin S, Rottman JB, Myers P, Kassam N, Weinblatt M, Loetscher M, Koch AE, Moser B, Mackay CR (1998) The chemokine receptors CXCR3 and CCR5 mark subsets of T cells associated with certain inflammatory reactions. J Clin Invest 101:746–754PubMedCrossRefGoogle Scholar
  146. Ransohoff RM, Kivisakk P, Kidd G (2003) Three or more routes for leukocyte migration into the central nervous system. Nat Rev Immunol 3:569–581PubMedCrossRefGoogle Scholar
  147. Redwine JM, Armstrong RC (1998) In vivo proliferation of oligodendrocyte progenitors expressing PDGFalphaR during early remyelination. J Neurobiol 37:413–428PubMedCrossRefGoogle Scholar
  148. Rinaldi L, Gallo P, Calabrese M, Ranzato F, Luise D, Colavito D, Motta M, Guglielmo A, Del Giudice E, Romualdi C, Ragazzi E, D’Arrigo A, Dalle Carbonare M, Leontino B, Leon A (2006) Longitudinal analysis of immune cell phenotypes in early stage multiple sclerosis: distinctive patterns characterize MRI-active patients. Brain 129:1993–2007PubMedCrossRefGoogle Scholar
  149. Ristic S, Lovrecic L, Starcevic-Cizmarevic N, Brajenovic-Milic B, Jazbec SS, Barac-Latas V, Vejnovic D, Sepcic J, Kapovic M, Peterlin B (2006) No association of CCR5delta32 gene mutation with multiple sclerosis in Croatian and Slovenian patients. Mult Scler 12:360–362PubMedCrossRefGoogle Scholar
  150. Samuel MA, Morrey JD, Diamond MS (2006) Caspase-3 dependent cell death of neurons contributes to the pathogenesis of West Nile virus encephalitis. J Virol 81(6):2614–2623Google Scholar
  151. Sanders VJ, Pittman CA, White MG, Wang G, Wiley CA, Achim CL (1998) Chemokines and receptors in HIV encephalitis. AIDS 12:1021–1026PubMedCrossRefGoogle Scholar
  152. Sanders VJ, Everall IP, Johnson RW, Masliah E (2000) Fibroblast growth factor modulates HIV coreceptor CXCR4 expression by neural cells. HNRC Group. J Neurosci Res 59:671–679PubMedCrossRefGoogle Scholar
  153. Schols D (2006) HIV co-receptor inhibitors as novel class of anti-HIV drugs. Antiviral Res 71:216–226PubMedCrossRefGoogle Scholar
  154. Schreiber K, Otura AB, Ryder LP, Madsen HO, Jorgensen OS, Svejgaard A, Sorensen PS (2002) Disease severity in Danish multiple sclerosis patients evaluated by MRI and three genetic markers (HLA-DRB1*1501, CCR5 deletion mutation, apolipoprotein E). Mult Scler 8:295–298PubMedCrossRefGoogle Scholar
  155. Sellebjerg F, Madsen HO, Jensen CV, Jensen J, Garred P (2000) CCR5 delta32, matrix metalloproteinase-9 and disease activity in multiple sclerosis. J Neuroimmunol 102:98–106PubMedCrossRefGoogle Scholar
  156. Sellebjerg F, Kristiansen TB, Wittenhagen P, Garred P, Eugen-Olsen J, Frederiksen JL, Sorensen TL (2007) Chemokine receptor CCR5 in interferon-treated multiple sclerosis. Acta Neurol Scand 115:413–418PubMedCrossRefGoogle Scholar
  157. Shacklett BL, Cox CA, Wilkens DT, Karl Karlsson R, Nilsson A, Nixon DF, Price RW (2004) Increased adhesion molecule and chemokine receptor expression on CD8+ T cells trafficking to cerebrospinal fluid in HIV-1 infection. J Infect Dis 189:2202–2212PubMedCrossRefGoogle Scholar
  158. Shirato K, Kimura T, Mizutani T, Kariwa H, Takashima I (2004) Different chemokine expression in lethal and non-lethal murine west nile virus infection. J Med Virol 74:507PubMedCrossRefGoogle Scholar
  159. Shrestha B, Gottlieb D, Diamond MS (2003) Infection and injury of neurons by West Nile encephalitis virus. J Virol 77:13203–13213PubMedCrossRefGoogle Scholar
  160. Shrestha B, Wang T, Samuel MA, Whitby K, Craft J, Fikrig E, Diamond MS (2006) Gamma interferon plays a crucial early antiviral role in protection against West Nile virus infection. J Virol 80:5338–5348PubMedCrossRefGoogle Scholar
  161. Silversides JA, Heggarty SV, McDonnell GV, Hawkins SA, Graham CA (2004) Influence of CCR5 delta32 polymorphism on multiple sclerosis susceptibility and disease course. Mult Scler 10:149–152PubMedCrossRefGoogle Scholar
  162. Simpson JE, Newcombe J, Cuzner ML, Woodroofe MN (1998) Expression of monocyte chemoattractant protein-1 and other beta-chemokines by resident glia and inflammatory cells in multiple sclerosis lesions. J Neuroimmunol 84:238–249PubMedCrossRefGoogle Scholar
  163. Simpson J, Rezaie P, Newcombe J, Cuzner ML, Male D, Woodroofe MN (2000) Expression of the beta-chemokine receptors CCR2, CCR3 and CCR5 in multiple sclerosis central nervous system tissue. J Neuroimmunol 108:192–200PubMedCrossRefGoogle Scholar
  164. Smith SS, Barnum SR (2008) Differential expression of beta 2-integrins and cytokine production between gammadelta and alphabeta T cells in experimental autoimmune encephalomyelitis. J Leukoc Biol 83:71–79PubMedCrossRefGoogle Scholar
  165. Sorensen TL, Sellebjerg F (2001) Distinct chemokine receptor and cytokine expression profile in secondary progressive MS. Neurology 57:1371–1376PubMedCrossRefGoogle Scholar
  166. Sorensen TL, Tani M, Jensen J, Pierce V, Lucchinetti C, Folcik VA, Qin S, Rottman J, Sellebjerg F, Strieter RM, Frederiksen JL, Ransohoff RM (1999) Expression of specific chemokines and chemokine receptors in the central nervous system of multiple sclerosis patients. J Clin Invest 103:807–815PubMedCrossRefGoogle Scholar
  167. Sorensen TL, Trebst C, Kivisakk P, Klaege KL, Majmudar A, Ravid R, Lassmann H, Olsen DB, Strieter RM, Ransohoff RM, Sellebjerg F (2002) Multiple sclerosis: a study of CXCL10 and CXCR3 co-localization in the inflamed central nervous system. J Neuroimmunol 127:59–68PubMedCrossRefGoogle Scholar
  168. Sozzani S, Luini W, Borsatti A, Polentarutti N, Zhou D, Piemonti L, D’Amico G, Power CA, Wells TN, Gobbi M, Allavena P, Mantovani A (1997) Receptor expression and responsiveness of human dendritic cells to a defined set of CC and CXC chemokines. J Immunol 159:1993–2000PubMedGoogle Scholar
  169. Springer TA (1994) Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 76:301–314PubMedCrossRefGoogle Scholar
  170. Stumm RK, Rummel J, Junker V, Culmsee C, Pfeiffer M, Krieglstein J, Hollt V, Schulz S (2002) A dual role for the SDF-1/CXCR4 chemokine receptor system in adult brain: isoform-selective regulation of SDF-1 expression modulates CXCR4-dependent neuronal plasticity and cerebral leukocyte recruitment after focal ischemia. J Neurosci 22:5865–5878PubMedGoogle Scholar
  171. Stumm RK, Zhou C, Ara T, Lazarini F, Dubois-Dalcq M, Nagasawa T, Hollt V, Schulz S (2003) CXCR4 regulates interneuron migration in the developing neocortex. J Neurosci 23:5123–5130PubMedGoogle Scholar
  172. Szalai AJ, Barnum SR (2004) Fc receptors and the common gamma-chain in experimental autoimmune encephalomyelitis. J Neurosci Res 75:597–602PubMedCrossRefGoogle Scholar
  173. Szalai AJ, Hu X, Raman C, Barnum SR (2005) Requirement of the Fc receptor common gamma-chain for gamma delta T cell-mediated promotion of murine experimental autoimmune encephalomyelitis. Eur J Immunol 35:3487–3492PubMedCrossRefGoogle Scholar
  174. Teleshova N, Pashenkov M, Huang YM, Soderstrom M, Kivisakk P, Kostulas V, Haglund M, Link H (2002) Multiple sclerosis and optic neuritis: CCR5 and CXCR3 expressing T cells are augmented in blood and cerebrospinal fluid. J Neurol 249:723–729PubMedCrossRefGoogle Scholar
  175. Trabattoni D, Piconi S, Biasin M, Rizzardini G, Migliorino M, Seminari E, Boasso A, Piacentini L, Villa ML, Maserati R, Clerici M (2004) Granule-dependent mechanisms of lysis are defective in CD8 T cells of HIV-infected, antiretroviral therapy-treated individuals. Aids 18:859–869PubMedCrossRefGoogle Scholar
  176. Tran EH, Kuziel WA, Owens T (2000) Induction of experimental autoimmune encephalomyelitis in C57BL/6 mice deficient in either the chemokine macrophage inflammatory protein-1alpha or its CCR5 receptor. Eur J Immunol 30:1410–1415PubMedCrossRefGoogle Scholar
  177. Trebst C, Staugaitis SM, Tucky B, Wei T, Suzuki K, Aldape KD, Pardo CA, Troncoso J, Lassmann H, Ransohoff RM (2003) Chemokine receptors on infiltrating leucocytes in inflammatory pathologies of the central nervous system (CNS). Neuropathol Appl Neurobiol 29:584–595PubMedCrossRefGoogle Scholar
  178. Tsai HH, Frost E, To V, Robinson S, Ffrench-Constant C, Geertman R, Ransohoff RM, Miller RH (2002) The chemokine receptor CXCR2 controls positioning of oligodendrocyte precursors in developing spinal cord by arresting their migration. Cell 110:373–383PubMedCrossRefGoogle Scholar
  179. Ubogu EE, Cossoy MB, Ransohoff RM (2006) The expression and function of chemokines involved in CNS inflammation. Trends Pharmacol Sci 27:48–55PubMedCrossRefGoogle Scholar
  180. Vallat AV, De Girolami U, He J, Mhashilkar A, Marasco W, Shi B, Gray F, Bell J, Keohane C, Smith TW, Gabuzda D (1998) Localization of HIV-1 co-receptors CCR5 and CXCR4 in the brain of children with AIDS. Am J Pathol 152:167–178PubMedGoogle Scholar
  181. Van Der Voorn P, Tekstra J, Beelen RH, Tensen CP, Van Der Valk P, De Groot CJ (1999) Expression of MCP-1 by reactive astrocytes in demyelinating multiple sclerosis lesions. Am J Pathol 154:45–51CrossRefGoogle Scholar
  182. van Veen T, Nielsen J, Berkhof J, Barkhof F, Kamphorst W, Bo L, Ravid R, Verweij CL, Huitinga I, Polman CH, Uitdehaag BM (2007) CCL5 and CCR5 genotypes modify clinical, radiological and pathological features of multiple sclerosis. J Neuroimmunol 190:157–164PubMedCrossRefGoogle Scholar
  183. Wahl SM, Greenwell-Wild T, Peng G, Hale-Donze H, Orenstein JM (1999) Co-infection with opportunistic pathogens promotes human immunodeficiency virus type 1 infection in macrophages. J Infect Dis 179(Suppl. 3):S457–S460PubMedCrossRefGoogle Scholar
  184. Wang T, Scully E, Yin Z, Kim JH, Wang S, Yan J, Mamula M, Anderson JF, Craft J, Fikrig E (2003a) IFN-gamma-producing gamma delta T cells help control murine West Nile virus infection. J Immunol 171:2524–2531PubMedGoogle Scholar
  185. Wang Y, Lobigs M, Lee E, Mullbacher A (2003b) CD8+ T cells mediate recovery and immunopathology in West Nile virus encephalitis. J Virol 77:13323–13334PubMedCrossRefGoogle Scholar
  186. Wang T, Gao Y, Scully E, Davis CT, Anderson JF, Welte T, Ledizet M, Koski R, Madri JA, Barrett A, Yin Z, Craft J, Fikrig E (2006) Gamma delta T cells facilitate adaptive immunity against West Nile virus infection in mice. J Immunol 177:1825–1832PubMedGoogle Scholar
  187. Weiss JM, Nath A, Major EO, Berman JW (1999) HIV-1 Tat induces monocyte chemoattractant protein-1-mediated monocyte transmigration across a model of the human blood-brain barrier and up-regulates CCR5 expression on human monocytes. J Immunol 163:2953–2959PubMedGoogle Scholar
  188. Westmoreland SV, Rottman JB, Williams KC, Lackner AA, Sasseville VG (1998) Chemokine receptor expression on resident and inflammatory cells in the brain of macaques with simian immunodeficiency virus encephalitis. Am J Pathol 152:659–665PubMedGoogle Scholar
  189. Williams K (2004) Modes of transmission for West Nile virus. Clin Lab Sci 17:56PubMedGoogle Scholar
  190. Wu L, Paxton WA, Kassam N, Ruffing N, Rottman JB, Sullivan N, Choe H, Sodroski J, Newman W, Koup RA, Mackay CR (1997) CCR5 levels and expression pattern correlate with infectability by macrophage-tropic HIV-1, in vitro. J Exp Med 185:1681–1691PubMedCrossRefGoogle Scholar
  191. Wu DT, Woodman SE, Weiss JM, McManus CM, D’Aversa TG, Hesselgesser J, Major EO, Nath A, Berman JW (2000) Mechanisms of leukocyte trafficking into the CNS. J Neurovirol 6(Suppl. 1):S82–S85PubMedGoogle Scholar
  192. Zang YC, Samanta AK, Halder JB, Hong J, Tejada-Simon MV, Rivera VM, Zhang JZ (2000) Aberrant T cell migration toward RANTES and MIP-1 alpha in patients with multiple sclerosis. Overexpression of chemokine receptor CCR5. Brain 123(Pt 9):1874–1882PubMedCrossRefGoogle Scholar
  193. Zheng J, Thylin MR, Ghorpade A, Xiong H, Persidsky Y, Cotter R, Niemann D, Che M, Zeng YC, Gelbard HA, Shepard RB, Swartz JM, Gendelman HE (1999) Intracellular CXCR4 signaling, neuronal apoptosis and neuropathogenic mechanisms of HIV-1-associated dementia. J Neuroimmunol 98:185–200PubMedCrossRefGoogle Scholar
  194. Zou YR, Kottmann AH, Kuroda M, Taniuchi I, Littman DR (1998) Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature 393:595–599PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Internal Medicine, Division of Infectious DiseasesWashington University School of MedicineSt. LouisUSA

Personalised recommendations