HIV Co-receptors: The Brain Perspective

Chapter

Abstract

Chemokines and chemokine receptors are significant to the establishment and maintenance of HIV-1 infection, viral transmission, and AIDS pathogenesis. They also play an important role in the development of neurologic complications of AIDS, including HIV-1-associated dementia (HIVD), through several mechanisms. The contribution of chemokines to the development of AIDS and HIVD is complex; some chemokines appear to aid pathogenesis, while others appear to be protective. In the following chapter, we discuss the role of chemokines and chemokine receptors in HIV-1 infection and the pathogenesis of AIDS and HIVD. Potential therapeutic strategies are also briefly detailed.

Keywords

Permeability Migration Toxicity Arthritis Dementia 

References

  1. Adle-Biassette H, Chretien F, Wingertsmann L, Hery C, Ereau T, Scaravilli F, Tardieu M, Gray F (1999) Neuronal apoptosis does not correlate with dementia in HIV infection but is related to microglial activation and axonal damage. Neuropathol Appl Neurobiol 25:123–133PubMedGoogle Scholar
  2. Albini A, Ferrini S, Benelli R, Sforzini S, Giunciuglio D, Aluigi MG, Proudfoot AE, Alouani S, Wells TN, Mariani G, Rabin RL, Farber JM, Noonan DM (1998) HIV-1 Tat protein mimicry of chemokines. Proc Natl Acad Sci U S A 95:13153–13158PubMedGoogle Scholar
  3. Alonso-Villaverde C, Coll B, Parra S, Montero M, Calvo N, Tous M, Joven J, Masana L (2004) Atherosclerosis in patients infected with HIV is influenced by a mutant monocyte chemoattractant protein-1 allele. Circulation 110:2204–2209PubMedGoogle Scholar
  4. Ansari AW, Bhatnagar N, Dittrich-Breiholz O, Kracht M, Schmidt RE, Heiken H (2006) Host chemokine (C-C motif) ligand-2 (CCL2) is differentially regulated in HIV type 1 (HIV-1)-infected individuals. Int Immunol 18:1443–1451PubMedGoogle Scholar
  5. Asensio VC, Maier J, Milner R, Boztug K, Kincaid C, Moulard M, Phillipson C, Lindsley K, Krucker T, Fox HS, Campbell IL (2001) Interferon-independent, human immunodeficiency virus type 1 gp120-mediated induction of CXCL10/IP-10 gene expression by astrocytes in vivo and in vitro. J Virol 75:7067–7077PubMedGoogle Scholar
  6. Aylward EH, Brettschneider PD, McArthur JC, Harris GJ, Schlaepfer TE, Henderer JD, Barta PE, Tien AY, Pearlson GD (1995) Magnetic resonance imaging measurement of gray matter volume reductions in HIV dementia. Am J Psychiatry 152:987–994PubMedGoogle Scholar
  7. Aylward EH, Henderer JD, McArthur JC, Brettschneider PD, Harris GJ, Barta PE, Pearlson GD (1993) Reduced basal ganglia volume in HIV-1-associated dementia: results from quantitative neuroimaging. Neurology 43:2099–2104PubMedGoogle Scholar
  8. Bamshad MJ, Mummidi S, Gonzalez E, Ahuja SS, Dunn DM, Watkins WS, Wooding S, Stone AC, Jorde LB, Weiss RB, Ahuja SK (2002) A strong signature of balancing selection in the 5′ cis-regulatory region of CCR5. Proc Natl Acad Sci U S A 99:10539–10544PubMedGoogle Scholar
  9. Bezzi P, Domercq M, Brambilla L, Galli R, Schols D, De Clercq E, Vescovi A, Bagetta G, Kollias G, Meldolesi J, Volterra A (2001) CXCR4-activated astrocyte glutamate release via TNFalpha: amplification by microglia triggers neurotoxicity. Nat Neurosci 4:702–710PubMedGoogle Scholar
  10. Brandimarti R, Khan MZ, Fatatis A, Meucci O (2004) Regulation of cell cycle proteins by chemokine receptors: A novel pathway in human immunodeficiency virus neuropathogenesis? J Neurovirol 10(Suppl 1):108–112PubMedGoogle Scholar
  11. Brengel-Pesce K, Innocenti-Francillard P, Morand P, Chanzy B, Seigneurin JM (1997) Transient infection of astrocytes with HIV-1 primary isolates derived from patients with and without AIDS dementia complex. J Neurovirol 3:449–454PubMedGoogle Scholar
  12. Budka H, Costanzi G, Cristina S, Lechi A, Parravicini C, Trabattoni R, Vago L (1987) Brain pathology induced by infection with the human immunodeficiency virus (HIV). A histological, immunocytochemical, and electron microscopical study of 100 autopsy cases. Acta Neuropathol (Berl) 75:185–198Google Scholar
  13. Burns JC, Shimizu C, Gonzalez E, Kulkarni H, Patel S, Shike H, Sundel RS, Newburger JW, Ahuja SK (2005) Genetic variations in the receptor-ligand pair CCR5 and CCL3L1 are important determinants of susceptibility to Kawasaki disease. J Infect Dis 192:344–349PubMedGoogle Scholar
  14. Castelletti E, Lo Caputo S, Kuhn L, Borelli M, Gajardo J, Sinkala M, Trabattoni D, Kankasa C, Lauri E, Clivio A, Piacentini L, Bray DH, Aldrovandi GM, Thea DM, Veas F, Nebuloni M, Mazzotta F, Clerici M (2007) The mucosae-associated epithelial chemokine (MEC/CCL28) modulates immunity in HIV infection. PLoS ONE 2:e969PubMedGoogle Scholar
  15. Choe W, Volsky DJ, Potash MJ (2001) Induction of rapid and extensive beta-chemokine synthesis in macrophages by human immunodeficiency virus type 1 and gp120, independently of their coreceptor phenotype. J Virol 75:10738–10745PubMedGoogle Scholar
  16. Clegg AO, Ashton LJ, Biti RA, Badhwar P, Williamson P, Kaldor JM, Stewart GJ (2000) CCR5 promoter polymorphisms, CCR5 59029A and CCR5 59353C, are under represented in HIV-1-infected long-term non-progressors. The Australian Long-Term Non-Progressor Study Group. Aids 14:103–108PubMedGoogle Scholar
  17. Cocchi F, DeVico AL, Garzino-Demo A, Arya SK, Gallo RC, Lusso P (1995) Identification of RANTES, MIP-1 alpha, and MIP-1 beta as the major HIV-suppressive factors produced by CD8+ T cells. Science 270:1811–1815PubMedGoogle Scholar
  18. Conant K, Garzino-Demo A, Nath A, McArthur JC, Halliday W, Power C, Gallo RC, Major EO (1998) Induction of monocyte chemoattractant protein-1 in HIV-1 Tat-stimulated astrocytes and elevation in AIDS dementia. Proc Natl Acad Sci U S A 95:3117–3121PubMedGoogle Scholar
  19. Cordonnier A, Montagnier L, Emerman M (1989) Single amino-acid changes in HIV envelope affect viral tropism and receptor binding. Nature 340:571–574PubMedGoogle Scholar
  20. D’Souza MP, Harden VA (1996) Chemokines and HIV-1 second receptors. Confluence of two fields generates optimism in AIDS research. Nat Med 2:1293–1300PubMedGoogle Scholar
  21. Dalgleish AG, Beverley PC, Clapham PR, Crawford DH, Greaves MF, Weiss RA (1984) The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus. Nature 312:763–767PubMedGoogle Scholar
  22. Dean M, Carrington M, Winkler C, Huttley GA, Smith MW, Allikmets R, Goedert JJ, Buchbinder SP, Vittinghoff E, Gomperts E, Donfield S, Vlahov D, Kaslow R, Saah A, Rinaldo C, Detels R, O’Brien SJ (1996) Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Hemophilia Growth and Development Study, Multicenter AIDS Cohort Study, Multicenter Hemophilia Cohort Study, San Francisco City Cohort, ALIVE Study. Science 273:1856–1862PubMedGoogle Scholar
  23. Di Rienzo AM, Aloisi F, Santarcangelo AC, Palladino C, Olivetta E, Genovese D, Verani P, Levi G (1998) Virological and molecular parameters of HIV-1 infection of human embryonic astrocytes. Arch Virol 143:1599–1615PubMedGoogle Scholar
  24. Dittmar MT, McKnight A, Simmons G, Clapham PR, Weiss RA, Simmonds P (1997) HIV-1 tropism and co-receptor use. Nature 385:495–496PubMedGoogle Scholar
  25. Eugen-Olsen J, Iversen AK, Garred P, Koppelhus U, Pedersen C, Benfield TL, Sorensen AM, Katzenstein T, Dickmeiss E, Gerstoft J, Skinhoj P, Svejgaard A, Nielsen JO, Hofmann B (1997) Heterozygosity for a deletion in the CKR-5 gene leads to prolonged AIDS-free survival and slower CD4 T-cell decline in a cohort of HIV-seropositive individuals. Aids 11:305–310PubMedGoogle Scholar
  26. Faure S, Meyer L, Costagliola D, Vaneensberghe C, Genin E, Autran B, Delfraissy JF, McDermott DH, Murphy PM, Debre P, Theodorou I, Combadiere C (2000) Rapid progression to AIDS in HIV + individuals with a structural variant of the chemokine receptor CX3CR1. Science 287:2274–2277PubMedGoogle Scholar
  27. Feng Y, Broder CC, Kennedy PE, Berger EA (1996) HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science 272:872–877PubMedGoogle Scholar
  28. Fine SM, Angel RA, Perry SW, Epstein LG, Rothstein JD, Dewhurst S, Gelbard HA (1996) Tumor necrosis factor alpha inhibits glutamate uptake by primary human astrocytes. Implications for pathogenesis of HIV-1 dementia. J Biol Chem 271:15303–15306PubMedGoogle Scholar
  29. Fischer-Smith T, Croul S, Sverstiuk AE, Capini C, L’Heureux D, Regulier EG, Richardson MW, Amini S, Morgello S, Khalili K, Rappaport J (2001) CNS invasion by CD14+/CD16+ peripheral blood-derived monocytes in HIV dementia: perivascular accumulation and reservoir of HIV infection. J Neurovirol 7:528–541PubMedGoogle Scholar
  30. Gerli G, Vanelli C, Turri O, Erario M, Gardellini A, Pugliano M, Biondi ML (2005) SDF1–3′A gene polymorphism is associated with chronic myeloproliferative disease and thrombotic events. Clin Chem 51:2411–2414PubMedGoogle Scholar
  31. Gonzalez E, Rovin BH, Sen L, Cooke G, Dhanda R, Mummidi S, Kulkarni H, Bamshad MJ, Telles V, Anderson SA, Walter EA, Stephan KT, Deucher M, Mangano A, Bologna R, Ahuja SS, Dolan MJ, Ahuja SK (2002) HIV-1 infection and AIDS dementia are influenced by a mutant MCP-1 allele linked to increased monocyte infiltration of tissues and MCP-1 levels. Proc Natl Acad Sci U S A 99:13795–13800PubMedGoogle Scholar
  32. Gorry PR, Howard JL, Churchill MJ, Anderson JL, Cunningham A, Adrian D, McPhee DA, Purcell DF (1999) Diminished production of human immunodeficiency virus type 1 in astrocytes results from inefficient translation of gag, env, and nef mRNAs despite efficient expression of Tat and Rev. J Virol 73:352–361PubMedGoogle Scholar
  33. Guerini FR, Delbue S, Zanzottera M, Agliardi C, Saresella M, Mancuso R, Maserati R, Marchioni E, Gori A, Ferrante P (2008) Analysis of CCR5, CCR2, SDF1 and RANTES gene polymorphisms in subjects with HIV-related PML and not determined leukoencephalopathy. Biomed Pharmacother 62:26–30PubMedGoogle Scholar
  34. Hammer SM, Eron JJ Jr, Reiss P, Schooley RT, Thompson MA, Walmsley S, Cahn P, Fischl MA, Gatell JM, Hirsch MS, Jacobsen DM, Montaner JS, Richman DD, Yeni PG, Volberding PA (2008) Antiretroviral treatment of adult HIV infection: 2008 recommendations of the International AIDS Society-USA panel. JAMA 300:555–570PubMedGoogle Scholar
  35. Henderson LA, Qureshi MN (1993) A peptide inhibitor of human immunodeficiency virus infection binds to novel human cell surface polypeptides. J Biol Chem 268:15291–15297PubMedGoogle Scholar
  36. Hesselgesser J, Taub D, Baskar P, Greenberg M, Hoxie J, Kolson DL, Horuk R (1998) Neuronal apoptosis induced by HIV-1 gp120 and the chemokine SDF-1 alpha is mediated by the chemokine receptor CXCR4. Curr Biol 8:595–598PubMedGoogle Scholar
  37. Huang Y, Paxton WA, Wolinsky SM, Neumann AU, Zhang L, He T, Kang S, Ceradini D, Jin Z, Yazdanbakhsh K, Kunstman K, Erickson D, Dragon E, Landau NR, Phair J, Ho DD, Koup RA (1996) The role of a mutant CCR5 allele in HIV-1 transmission and disease progression. Nat Med 2:1240–1243PubMedGoogle Scholar
  38. Joven J, Coll B, Tous M, Ferre N, Alonso-Villaverde C, Parra S, Camps J (2006) The influence of HIV infection on the correlation between plasma concentrations of monocyte chemoattractant protein-1 and carotid atherosclerosis. Clin Chim Acta 368:114–119PubMedGoogle Scholar
  39. Kaul M, Lipton SA (1999) Chemokines and activated macrophages in HIV gp120-induced neuronal apoptosis. Proc Natl Acad Sci U S A 96:8212–8216PubMedGoogle Scholar
  40. Kawamura T, Bruse SE, Abraha A, Sugaya M, Hartley O, Offord RE, Arts EJ, Zimmerman PA, Blauvelt A (2004) PSC-RANTES blocks R5 human immunodeficiency virus infection of Langerhans cells isolated from individuals with a variety of CCR5 diplotypes. J Virol 78:7602–7609PubMedGoogle Scholar
  41. Khan MZ, Brandimarti R, Shimizu S, Nicolai J, Crowe E, Meucci O (2008) The chemokine CXCL12 promotes survival of postmitotic neurons by regulating Rb protein. Cell Death Differ 15:1663–1672Google Scholar
  42. Kish-Catalone T, Pal R, Parrish J, Rose N, Hocker L, Hudacik L, Reitz M, Gallo R, Devico A (2007) Evaluation of -2 RANTES vaginal microbicide formulations in a nonhuman primate simian/human immunodeficiency virus (SHIV) challenge model. AIDS Res Hum Retroviruses 23:33–42PubMedGoogle Scholar
  43. Klatzmann D, Champagne E, Chamaret S, Gruest J, Guetard D, Hercend T, Gluckman JC, Montagnier L (1984) T-lymphocyte T4 molecule behaves as the receptor for human retrovirus LAV. Nature 312:767–768PubMedGoogle Scholar
  44. Koizumi Y, Kageyama S, Fujiyama Y, Miyashita M, Lwembe R, Ogino K, Shioda T, Ichimura H (2007) RANTES – 28G delays and DC-SIGN – 139C enhances AIDS progression in HIV type 1-infected Japanese hemophiliacs. AIDS Res Hum Retroviruses 23:713–719PubMedGoogle Scholar
  45. Kostrikis LG, Neumann AU, Thomson B, Korber BT, McHardy P, Karanicolas R, Deutsch L, Huang Y, Lew JF, McIntosh K, Pollack H, Borkowsky W, Spiegel HM, Palumbo P, Oleske J, Bardeguez A, Luzuriaga K, Sullivan J, Wolinsky SM, Koup RA, Ho DD, Moore JP (1999) A polymorphism in the regulatory region of the CC-chemokine receptor 5 gene influences perinatal transmission of human immunodeficiency virus type 1 to African-American infants. J Virol 73:10264–10271PubMedGoogle Scholar
  46. Kutsch O, Oh J, Nath A, Benveniste EN (2000) Induction of the chemokines interleukin-8 and IP-10 by human immunodeficiency virus type 1 tat in astrocytes. J Virol 74:9214–9221PubMedGoogle Scholar
  47. Lederman MM, Veazey RS, Offord R, Mosier DE, Dufour J, Mefford M, Piatak M Jr, Lifson JD, Salkowitz JR, Rodriguez B, Blauvelt A, Hartley O (2004) Prevention of vaginal SHIV transmission in rhesus macaques through inhibition of CCR5. Science 306:485–487PubMedGoogle Scholar
  48. Lee B, Doranz BJ, Rana S, Yi Y, Mellado M, Frade JM, Martinez AC, O’Brien SJ, Dean M, Collman RG, Doms RW (1998) Influence of the CCR2–V64I polymorphism on human immunodeficiency virus type 1 coreceptor activity and on chemokine receptor function of CCR2b, CCR3, CCR5, and CXCR4. J Virol 72:7450–7458PubMedGoogle Scholar
  49. Letendre S, Marquie-Beck J, Singh KK, de Almeida S, Zimmerman J, Spector SA, Grant I, Ellis R (2004) The monocyte chemotactic protein-1–2578G allele is associated with elevated MCP-1 concentrations in cerebrospinal fluid. J Neuroimmunol 157:193–196PubMedGoogle Scholar
  50. Letendre SL, Lanier ER, McCutchan JA (1999) Cerebrospinal fluid beta chemokine concentrations in neurocognitively impaired individuals infected with human immunodeficiency virus type 1. J Infect Dis 180:310–319PubMedGoogle Scholar
  51. Li M, Song R, Masciotra S, Soriano V, Spira TJ, Lal RB, Yang C (2005) Association of CCR5 human haplogroup E with rapid HIV type 1 disease progression. AIDS Res Hum Retroviruses 21:111–115PubMedGoogle Scholar
  52. Liu R, Paxton WA, Choe S, Ceradini D, Martin SR, Horuk R, MacDonald ME, Stuhlmann H, Koup RA, Landau NR (1996) Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell 86:367–377PubMedGoogle Scholar
  53. Liu Y, Liu H, Kim BO, Gattone VH, Li J, Nath A, Blum J, He JJ (2004) CD4-independent infection of astrocytes by human immunodeficiency virus type 1: requirement for the human mannose receptor. J Virol 78:4120–4133PubMedGoogle Scholar
  54. Lores P, Boucher V, Mackay C, Pla M, Von Boehmer H, Jami J, Barre-Sinoussi F, Weill JC (1992) Expression of human CD4 in transgenic mice does not confer sensitivity to human immunodeficiency virus infection. AIDS Res Hum Retroviruses 8:2063–2071PubMedGoogle Scholar
  55. Maddon PJ, Dalgleish AG, McDougal JS, Clapham PR, Weiss RA, Axel R (1986) The T4 gene encodes the AIDS virus receptor and is expressed in the immune system and the brain. Cell 47:333–348PubMedGoogle Scholar
  56. Malik M, Chen YY, Kienzle MF, Tomkowicz BE, Collman RG, Ptasznik A (2008) Monocyte migration and LFA-1-mediated attachment to brain microvascular endothelia is regulated by SDF-1alpha through Lyn kinase. J Immunol 181:4632–4637PubMedGoogle Scholar
  57. Mamtani M, Rovin B, Brey R, Camargo JF, Kulkarni H, Herrera M, Correa P, Holliday S, Anaya JM, Ahuja SK (2008) CCL3L1 gene-containing segmental duplications and polymorphisms in CCR5 affect risk of systemic lupus erythaematosus. Ann Rheum Dis 67:1076–1083PubMedGoogle Scholar
  58. Mangano A, Kopka J, Batalla M, Bologna R, Sen L (2000) Protective effect of CCR2–64I and not of CCR5-delta32 and SDF1–3′A in pediatric HIV-1 infection. J Acquir Immune Defic Syndr 23:52–57PubMedGoogle Scholar
  59. McDermott DH, Zimmerman PA, Guignard F, Kleeberger CA, Leitman SF, Murphy PM (1998) CCR5 promoter polymorphism and HIV-1 disease progression. Multicenter AIDS Cohort Study (MACS). Lancet 352:866–870PubMedGoogle Scholar
  60. McQuibban GA, Butler GS, Gong JH, Bendall L, Power C, Clark-Lewis I, Overall CM (2001) Matrix metalloproteinase activity inactivates the CXC chemokine stromal cell-derived factor-1. J Biol Chem 276:43503–43508PubMedGoogle Scholar
  61. Meddows-Taylor S, Donninger SL, Paximadis M, Schramm DB, Anthony FS, Gray GE, Kuhn L, Tiemessen CT (2006) Reduced ability of newborns to produce CCL3 is associated with increased susceptibility to perinatal human immunodeficiency virus 1 transmission. J Gen Virol 87:2055–2065PubMedGoogle Scholar
  62. Mefford ME, Gorry PR, Kunstman K, Wolinsky SM, Gabuzda D (2008) Bioinformatic prediction programs underestimate the frequency of CXCR4 usage by R5X4 HIV type 1 in brain and other tissues. AIDS Res Hum Retroviruses 24:1215–1220PubMedGoogle Scholar
  63. Meucci O, Fatatis A, Simen AA, Bushell TJ, Gray PW, Miller RJ (1998) Chemokines regulate hippocampal neuronal signaling and gp120 neurotoxicity. Proc Natl Acad Sci U S A 95:14500–14505PubMedGoogle Scholar
  64. Modi WS, Goedert JJ, Strathdee S, Buchbinder S, Detels R, Donfield S, O’Brien SJ, Winkler C (2003) MCP-1-MCP-3-Eotaxin gene cluster influences HIV-1 transmission. Aids 17:2357–2365PubMedGoogle Scholar
  65. Mummidi S, Bamshad M, Ahuja SS, Gonzalez E, Feuillet PM, Begum K, Galvis MC, Kostecki V, Valente AJ, Murthy KK, Haro L, Dolan MJ, Allan JS, Ahuja SK (2000) Evolution of human and non-human primate CC chemokine receptor 5 gene and mRNA. Potential roles for haplotype and mRNA diversity, differential haplotype-specific transcriptional activity, and altered transcription factor binding to polymorphic nucleotides in the pathogenesis of HIV-1 and simian immunodeficiency virus. J Biol Chem 275:18946–18961PubMedGoogle Scholar
  66. Munerato P, Azevedo ML, Sucupira MC, Pardini R, Pinto GH, Catroxo M, Souza IE, Diaz RS (2003) Frequency of polymorphisms of genes coding for HIV-1 co-receptors CCR5 and CCR2 in a Brazilian population. Braz J Infect Dis 7:236–240PubMedGoogle Scholar
  67. Neuenburg JK, Brodt HR, Herndier BG, Bickel M, Bacchetti P, Price RW, Grant RM, Schlote W (2002) HIV-related neuropathology, 1985 to 1999: rising prevalence of HIV encephalopathy in the era of highly active antiretroviral therapy. J Acquir Immune Defic Syndr 31:171–177PubMedGoogle Scholar
  68. Neumann M, Felber BK, Kleinschmidt A, Froese B, Erfle V, Pavlakis GN, Brack-Werner R (1995) Restriction of human immunodeficiency virus type 1 production in a human astrocytoma cell line is associated with a cellular block in Rev function. J Virol 69:2159–2167PubMedGoogle Scholar
  69. Noble W, Olm V, Takata K, Casey L, Meyerson J, Gaynor K, LaFrancois J, Wang L, Kondo T, Davies P, Burns M, Veeranna NR, Dickson D, Matsuoka Y, Ahlijanian M, Lau L-F, Duff K (2003) Cdk5 is a key factor in tau aggregation and tangle formation. Neuron 38:555–565PubMedGoogle Scholar
  70. Passam AM, Sourvinos G, Krambovitis E, Miyakis S, Stavrianeas N, Zagoreos I, Spandidos DA (2007) Polymorphisms of Cx(3)CR1 and CXCR6 receptors in relation to HAART therapy of HIV type 1 patients. AIDS Res Hum Retroviruses 23:1026–1032PubMedGoogle Scholar
  71. Petersen DC, Glashoff RH, Shrestha S, Bergeron J, Laten A, Gold B, van Rensburg EJ, Dean M, Hayes VM (2005) Risk for HIV-1 infection associated with a common CXCL12 (SDF1) polymorphism and CXCR4 variation in an African population. J Acquir Immune Defic Syndr 40:521–526PubMedGoogle Scholar
  72. Piacentini L, Fenizia C, Naddeo V, Clerici M (2008) Not just sheer luck! Immune correlates of protection against HIV-1 infection. Vaccine 26:3002–3007PubMedGoogle Scholar
  73. Poluektova L, Moran T, Zelivyanskaya M, Swindells S, Gendelman HE, Persidsky Y (2001) The regulation of alpha chemokines during HIV-1 infection and leukocyte activation: relevance for HIV-1-associated dementia. J Neuroimmunol 120:112–128PubMedGoogle Scholar
  74. Prahalad S (2006) Negative association between the chemokine receptor CCR5-Delta32 polymorphism and rheumatoid arthritis: a meta-analysis. Genes Immun 7:264–268PubMedGoogle Scholar
  75. Puissant B, Roubinet F, Massip P, Sandres-Saune K, Apoil PA, Abbal M, Pasquier C, Izopet J, Blancher A (2006) Analysis of CCR5, CCR2, CX3CR1, and SDF1 polymorphisms in HIV-positive treated patients: impact on response to HAART and on peripheral T lymphocyte counts. AIDS Res Hum Retroviruses 22:153–162PubMedGoogle Scholar
  76. Ranga U, Shankarappa R, Siddappa NB, Ramakrishna L, Nagendran R, Mahalingam M, Mahadevan A, Jayasuryan N, Satishchandra P, Shankar SK, Prasad VR (2004) Tat protein of human immunodeficiency virus type 1 subtype C strains is a defective chemokine. J Virol 78:2586–2590PubMedGoogle Scholar
  77. Ranki A, Nyberg M, Ovod V, Haltia M, Elovaara I, Raininko R, Haapasalo H, Krohn K (1995) Abundant expression of HIV Nef and Rev proteins in brain astrocytes in vivo is associated with dementia. Aids 9:1001–1008PubMedGoogle Scholar
  78. Rao VR, Sas AR, Eugenin EA, Siddappa NB, Bimonte-Nelson H, Berman JW, Ranga U, Tyor WR, Prasad VR (2008) HIV-1 clade-specific differences in the induction of neuropatho-genesis. J Neurosci 28(40):10010–10016Google Scholar
  79. Rappaport J, Cho YY, Hendel H, Schwartz EJ, Schachter F, Zagury JF (1997) 32 bp CCR-5 gene deletion and resistance to fast progression in HIV-1 infected heterozygotes. Lancet 349:922–923PubMedGoogle Scholar
  80. Rappaport J, Joseph J, Croul S, Alexander G, Del Valle L, Amini S, Khalili K (1999) Molecular pathway involved in HIV-1-induced CNS pathology: role of viral regulatory protein, Tat. J Leukoc Biol 65:458–465PubMedGoogle Scholar
  81. Rathore A, Chatterjee A, Sivarama P, Yamamoto N, Singhal PK, Dhole TN (2008) Association of RANTES -403 G/A, -28 C/G and In1.1 T/C polymorphism with HIV-1 transmission and progression among North Indians. J Med Virol 80:1133–1141PubMedGoogle Scholar
  82. Ribeiro S, Horuk R (2005) The clinical potential of chemokine receptor antagonists. Pharmacol Ther 107:44–58PubMedGoogle Scholar
  83. Rostasy K, Egles C, Chauhan A, Kneissl M, Bahrani P, Yiannoutsos C, Hunter DD, Nath A, Hedreen JC, Navia BA (2003) SDF-1alpha is expressed in astrocytes and neurons in the AIDS dementia complex: an in vivo and in vitro study. J Neuropathol Exp Neurol 62:617–626PubMedGoogle Scholar
  84. Rovin BH, Lu L, Saxena R (1999) A novel polymorphism in the MCP-1 gene regulatory region that influences MCP-1 expression. Biochem Biophys Res Commun 259:344–348PubMedGoogle Scholar
  85. Ryan LA, Cotter RL, Zink WE II, Gendelman HE, Zheng J (2002) Macrophages, chemokines and neuronal injury in HIV-1-associated dementia. Cell Mol Biol (Noisy-le-grand) 48:137–150.Google Scholar
  86. Sacktor N, Lyles RH, Skolasky R, Kleeberger C, Selnes OA, Miller EN, Becker JT, Cohen B, McArthur JC (2001) HIV-associated neurologic disease incidence changes: multicenter AIDS Cohort Study, 1990–1998. Neurology 56:257–260PubMedGoogle Scholar
  87. Samson M, Labbe O, Mollereau C, Vassart G, Parmentier M (1996) Molecular cloning and functional expression of a new human CC-chemokine receptor gene. Biochemistry 35:3362–3367PubMedGoogle Scholar
  88. Scheibel I, Veit T, Neves AG, Souza L, Prezzi S, Machado S, Kohem C, Icarelli M, Xavier R, Brenol JC, Chies JA (2008) Differential CCR5Delta32 allelic frequencies in juvenile idiopathic arthritis subtypes: evidence for different regulatory roles of CCR5 in rheumatological diseases. Scand J Rheumatol 37:13–17PubMedGoogle Scholar
  89. Shioda T, Levy JA, Cheng-Mayer C (1991) Macrophage and T cell-line tropisms of HIV-1 are determined by specific regions of the envelope gp120 gene. Nature 349:167–169PubMedGoogle Scholar
  90. Singh KK, Ellis RJ, Marquie-Beck J, Letendre S, Heaton RK, Grant I, Spector SA (2004) CCR2 polymorphisms affect neuropsychological impairment in HIV-1-infected adults. J Neuroimmunol 157:185–192PubMedGoogle Scholar
  91. Singh KK, Hughes MD, Chen J, Spector SA (2005) Genetic polymorphisms in CX3CR1 predict HIV-1 disease progression in children independently of CD4+ lymphocyte count and HIV-1 RNA load. J Infect Dis 191:1971–1980PubMedGoogle Scholar
  92. Smith MW, Dean M, Carrington M, Winkler C, Huttley GA, Lomb DA, Goedert JJ, O’Brien TR, Jacobson LP, Kaslow R, Buchbinder S, Vittinghoff E, Vlahov D, Hoots K, Hilgartner MW, O’Brien SJ (1997) Contrasting genetic influence of CCR2 and CCR5 variants on HIV-1 infection and disease progression. Hemophilia Growth and Development Study (HGDS), Multicenter AIDS Cohort Study (MACS), Multicenter Hemophilia Cohort Study (MHCS), San Francisco City Cohort (SFCC), ALIVE Study. Science 277:959–965PubMedGoogle Scholar
  93. Stamatatos L, Zolla-Pazner S, Gorny MK, Cheng-Mayer C (1997) Binding of antibodies to virion-associated gp120 molecules of primary-like human immunodeficiency virus type 1 (HIV-1) isolates: effect on HIV-1 infection of macrophages and peripheral blood mononuclear cells. Virology 229:360–369PubMedGoogle Scholar
  94. Stewart GJ, Ashton LJ, Biti RA, Ffrench RA, Bennetts BH, Newcombe NR, Benson EM, Carr A, Cooper DA, Kaldor JM (1997) Increased frequency of CCR-5 delta 32 heterozygotes among long-term non-progressors with HIV-1 infection. The Australian Long-Term Non-Progressor Study Group. Aids 11:1833–1838PubMedGoogle Scholar
  95. Sui Y, Potula R, Dhillon N, Pinson D, Li S, Nath A, Anderson C, Turchan J, Kolson D, Narayan O, Buch S (2004) Neuronal apoptosis is mediated by CXCL10 overexpression in simian human immunodeficiency virus encephalitis. Am J Pathol 164:1557–1566PubMedGoogle Scholar
  96. Tersmette M, de Goede RE, Al BJ, Winkel IN, Gruters RA, Cuypers HT, Huisman HG, Miedema F (1988) Differential syncytium-inducing capacity of human immunodeficiency virus isolates: frequent detection of syncytium-inducing isolates in patients with acquired immunodeficiency syndrome (AIDS) and AIDS-related complex. J Virol 62:2026–2032PubMedGoogle Scholar
  97. Torres-Munoz J, Stockton P, Tacoronte N, Roberts B, Maronpot RR, Petito CK (2001) Detection of HIV-1 gene sequences in hippocampal neurons isolated from postmortem AIDS brains by laser capture microdissection. J Neuropathol Exp Neurol 60:885–892PubMedGoogle Scholar
  98. Tsibris AM, Kuritzkes DR (2007) Chemokine antagonists as therapeutics: focus on HIV-1. Annu Rev Med 58:445–459PubMedGoogle Scholar
  99. Tyner JW, Uchida O, Kajiwara N, Kim EY, Patel AC, O’Sullivan MP, Walter MJ, Schwendener RA, Cook DN, Danoff TM, Holtzman MJ (2005) CCL5-CCR5 interaction provides antiapoptotic signals for macrophage survival during viral infection. Nat Med 11:1180–1187PubMedGoogle Scholar
  100. Weiner DB, Huebner K, Williams WV, Greene MI (1991) Human genes other than CD4 facilitate HIV-1 infection of murine cells. Pathobiology 59:361–371PubMedGoogle Scholar
  101. Weiss JM, Nath A, Major EO, Berman JW (1999) HIV-1 Tat induces monocyte chemoattractant protein-1-mediated monocyte transmigration across a model of the human blood-brain barrier and up-regulates CCR5 expression on human monocytes. J Immunol 163:2953–2959PubMedGoogle Scholar
  102. Wells TN, Power CA, Shaw JP, Proudfoot AE (2006) Chemokine blockers–therapeutics in the making? Trends Pharmacol Sci 27:41–47PubMedGoogle Scholar
  103. Westby M, Lewis M, Whitcomb J, Youle M, Pozniak AL, James IT, Jenkins TM, Perros M, van der Ryst E (2006) Emergence of CXCR4-using human immunodeficiency virus type 1 (HIV-1) variants in a minority of HIV-1-infected patients following treatment with the CCR5 antagonist maraviroc is from a pretreatment CXCR4-using virus reservoir. J Virol 80:4909–4920PubMedGoogle Scholar
  104. Winkler CA, Hendel H, Carrington M, Smith MW, Nelson GW, O’Brien SJ, Phair J, Vlahov D, Jacobson LP, Rappaport J, Vasilescu A, Bertin-Maghit S, An P, Lu W, Andrieu JM, Schachter F, Therwath A, Zagury JF (2004) Dominant effects of CCR2-CCR5 haplotypes in HIV-1 disease progression. J Acquir Immune Defic Syndr 37:1534–1538PubMedGoogle Scholar
  105. Yi Y, Lee C, Liu QH, Freedman BD, Collman RG (2004) Chemokine receptor utilization and macrophage signaling by human immunodeficiency virus type 1 gp120: implications for neuropathogenesis. J Neurovirol 10(Suppl 1):91–96PubMedGoogle Scholar
  106. Zagury D, Lachgar A, Chams V, Fall LS, Bernard J, Zagury JF, Bizzini B, Gringeri A, Santagostino E, Rappaport J, Feldman M, O’Brien SJ, Burny A, Gallo RC (1998) C-C chemokines, pivotal in protection against HIV type 1 infection. Proc Natl Acad Sci U S A 95:3857–3861PubMedGoogle Scholar
  107. Zhang K, McQuibban GA, Silva C, Butler GS, Johnston JB, Holden J, Clark-Lewis I, Overall CM, Power C (2003) HIV-induced metalloproteinase processing of the chemokine stromal cell derived factor-1 causes neurodegeneration. Nat Neurosci 6:1064–1071PubMedGoogle Scholar
  108. Zheng JC, Huang Y, Tang K, Cui M, Niemann D, Lopez A, Morgello S, Chen S (2008) HIV-1-infected and/or immune-activated macrophages regulate astrocyte CXCL8 production through IL-1beta and TNF-alpha: involvement of mitogen-activated protein kinases and protein kinase R. J Neuroimmunol 200:100–110PubMedGoogle Scholar
  109. Zink MC, Coleman GD, Mankowski JL, Adams RJ, Tarwater PM, Fox K, Clements JE (2001) Increased macrophage chemoattractant protein-1 in cerebrospinal fluid precedes and predicts simian immunodeficiency virus encephalitis. J Infect Dis 184:1015–1021PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of NeuroscienceTemple University School of MedicinePhiladelphiaUSA

Personalised recommendations