Advertisement

Chemokines and Primary Brain Tumors

  • Shyam S. Rao
  • Mahil Rao
  • Nicole Warrington
  • Joshua B. Rubin
Chapter

Abstract

Normal development of the central nervous system (CNS) is critically dependent upon the coordinated expression of chemokines and their receptors in a spatially and temporally regulated fashion (reviewed in Klein and Rubin 2004; Li and Ransohoff 2008). During development, chemokines control progenitor cell migration (Bagri et al. 2002; Klein et al. 2001; Lu et al. 2002; Lu et al. 2001), proliferation (Klein et al. 2001), and survival (Chalasani et al. 2003a) as well as modulate differentiated cell functions such as axon pathfinding and fasciculation (Chalasani et al. 2003b; Chalasani et al. 2007). Thus, it should not be surprising to discover that chemokines and their receptors also contribute to the biology of CNS neoplasms. In this chapter we will primarily review studies that have defined the role that one chemokine, CXCL12, and its receptor, CXCR4, play in brain tumor biology and how this pathway is being targeted for brain tumor therapy. In addition, we will touch on the role that brain tumor-derived chemokines play in the recruitment of inflammatory cells to sites of brain tumor growth.

Keywords

Brain Tumor Neural Stem Cell CXCR4 Expression Vascular Endothelial Cell Growth Factor Tumor Stem Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aboody KS, Brown A, Rainov NG, Bower KA, Liu S, Yang W, Small JE, Herrlinger U, Ourednik V, Black PM et al (2000) Neural stem cells display extensive tropism for pathology in adult brain: evidence from intracranial gliomas. Proc Natl Acad Sci USA 97:12846–12851PubMedCrossRefGoogle Scholar
  2. Aboody KS, Najbauer J, Danks MK (2008) Stem and progenitor cell-mediated tumor selective gene therapy. Gene Ther 15:739–752PubMedCrossRefGoogle Scholar
  3. Aghi M, Cohen KS, Klein RJ, Scadden DT, Chiocca EA (2006) Tumor stromal-derived factor-1 recruits vascular progenitors to mitotic neovasculature, where microenvironment influences their differentiated phenotypes. Cancer Res 66:9054–9064PubMedCrossRefGoogle Scholar
  4. Bagri A, Gurney T, He X, Zou YR, Littman DR, Tessier-Lavigne M, Pleasure SJ (2002) The chemokine SDF1 regulates migration of dentate granule cells. Development 129:
4249–4260PubMedGoogle Scholar
  5. Bajetto A, Barbieri F, Dorcaratto A, Barbero S, Daga A, Porcile C, Ravetti JL, Zona G, Spaziante R, Corte G et al (2006) Expression of CXC chemokine receptors 1–5 and their ligands in human glioma tissues: role of CXCR4 and SDF1 in glioma cell proliferation and migration. Neurochem Int 49:423–432PubMedCrossRefGoogle Scholar
  6. Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, Dewhirst MW, Bigner DD, Rich JN (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444:756–760PubMedCrossRefGoogle Scholar
  7. Barbero S, Bajetto A, Bonavia R, Porcile C, Piccioli P, Pirani P, Ravetti JL, Zona G, Spaziante R, Florio T, Schettini G (2002) Expression of the chemokine receptor CXCR4 and its ligand stromal cell-derived factor 1 in human brain tumors and their involvement in glial proliferation in vitro. Ann NY Acad Sci 973:60–69PubMedCrossRefGoogle Scholar
  8. Bian XW, Yang SX, Chen JH, Ping YF, Zhou XD, Wang QL, Jiang XF, Gong W, Xiao HL, Du LL et al. (2007) Preferential expression of chemokine receptor CXCR4 by highly malignant human gliomas and its association with poor patient survival. Neurosurgery 61:570–578; discussion 578–579Google Scholar
  9. Birnbaum T, Roider J, Schankin CJ, Padovan CS, Schichor C, Goldbrunner R, Straube A (2007) Malignant gliomas actively recruit bone marrow stromal cells by secreting angiogenic cytokines. J Neurooncol 83:241–247PubMedCrossRefGoogle Scholar
  10. Broxmeyer HE, Orschell CM, Clapp DW, Hangoc G, Cooper S, Plett PA, Liles WC, Li X, Graham-Evans B, Campbell TB et al (2005) Rapid mobilization of murine and human hematopoietic stem and progenitor cells with AMD3100, a CXCR4 antagonist. J Exp Med 201:1307–1318PubMedCrossRefGoogle Scholar
  11. Calabrese C, Poppleton H, Kocak M, Hogg TL, Fuller C, Hamner B, Oh EY, Gaber MW, Finklestein D, Allen M et al (2007) A perivascular niche for brain tumor stem cells. Cancer Cell 11:69–82PubMedCrossRefGoogle Scholar
  12. Calatozzolo C, Maderna E, Pollo B, Gelati M, Marras C, Silvani A, Croci D, Boiardi A, Salmaggi A (2006) Prognostic value of CXCL12 expression in 40 low-grade oligodendrogliomas and oligoastrocytomas. Cancer Biol Ther 5:827–832PubMedCrossRefGoogle Scholar
  13. Cavenee WK, Furnari FB, Nagane M, Huang H-JS, Newcomb EW, Bigner DD, Weller M, Berens ME, Plate KH, Israel MA, Noble MD, Kleihues P (2000) Astrocytic Tumours. In: Kleihues P, Cavenee WK (eds) World Health Organization classification of tumours: tumours of the central nervous system. IARC Press, Lyon, pp 9–54Google Scholar
  14. Chalasani SH, Baribaud F, Coughlan CM, Sunshine MJ, Lee VM, Doms RW, Littman DR, Raper JA (2003a) The chemokine stromal cell-derived factor-1 promotes the survival of embryonic retinal ganglion cells. J Neurosci 23:4601–4612PubMedGoogle Scholar
  15. Chalasani SH, Sabelko KA, Sunshine MJ, Littman DR, Raper JA (2003b) A chemokine, SDF-1, reduces the effectiveness of multiple axonal repellents and is required for normal axon pathfinding. J Neurosci 23:1360–1371PubMedGoogle Scholar
  16. Chalasani SH, Sabol A, Xu H, Gyda MA, Rasband K, Granato M, Chien CB, Raper JA (2007) Stromal cell-derived factor-1 antagonizes slit/robo signaling in vivo. J Neurosci 27:973–980PubMedCrossRefGoogle Scholar
  17. Desbaillets I, Tada M, de Tribolet N, Diserens AC, Hamou MF, Van Meir EG (1994) Human astrocytomas and glioblastomas express monocyte chemoattractant protein-1 (MCP-1) in vivo and in vitro. Int J Cancer 58:240–247PubMedCrossRefGoogle Scholar
  18. Du R, Lu KV, Petritsch C, Liu P, Ganss R, Passegue E, Song H, Vandenberg S, Johnson RS, Werb Z, Bergers G (2008) HIF1alpha induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion. Cancer Cell 13:206–220PubMedCrossRefGoogle Scholar
  19. Ehtesham M, Kabos P, Gutierrez MA, Chung NH, Griffith TS, Black KL, Yu JS (2002a) Induction of glioblastoma apoptosis using neural stem cell-mediated delivery of tumor necrosis factor-related apoptosis-inducing ligand. Cancer Res 62:7170–7174PubMedGoogle Scholar
  20. Ehtesham M, Kabos P, Kabosova A, Neuman T, Black KL, Yu JS (2002b) The use of interleukin 12-secreting neural stem cells for the treatment of intracranial glioma. Cancer Res 62:5657–5663PubMedGoogle Scholar
  21. Ehtesham M, Winston JA, Kabos P, Thompson RC (2006) CXCR4 expression mediates glioma cell invasiveness. Oncogene 25:2801–2806PubMedCrossRefGoogle Scholar
  22. Ehtesham M, Yuan X, Kabos P, Chung NH, Liu G, Akasaki Y, Black KL, Yu JS (2004) Glioma tropic neural stem cells consist of astrocytic precursors and their migratory capacity is mediated by CXCR4. Neoplasia 6:287–293PubMedCrossRefGoogle Scholar
  23. Flomenberg N, DiPersio J, Calandra G (2005) Role of CXCR4 chemokine receptor blockade using AMD3100 for mobilization of autologous hematopoietic progenitor cells. Acta Haematol 114:198–205PubMedCrossRefGoogle Scholar
  24. Florio T, Casagrande S, Diana F, Bajetto A, Porcile C, Zona G, Thellung S, Arena S, Pattarozzi A, Corsaro A et al (2006) Chemokine stromal cell-derived factor 1alpha induces proliferation and growth hormone release in GH4C1 rat pituitary adenoma cell line through multiple intracellular signals. Mol Pharmacol 69:539–546PubMedCrossRefGoogle Scholar
  25. Friedman J, Gutmann D, MacCollin M, Riccardi V (1999) Neurofibromatosis: phenotype, natural history and pathogenesis, vol 3rd edn. Johns Hopkins University Press, Baltimore, MAGoogle Scholar
  26. Gainetdinov RR, Premont RT, Bohn LM, Lefkowitz RJ, Caron MG (2004) Desensitization of G protein-coupled receptors and neuronal functions. Annu Rev Neurosci 27:107–144PubMedCrossRefGoogle Scholar
  27. Galli R, Binda E, Orfanelli U, Cipelletti B, Gritti A, De Vitis S, Fiocco R, Foroni C, Dimeco F, Vescovi A (2004) Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res 64:7011–7021PubMedCrossRefGoogle Scholar
  28. Giangaspero F, Bigner SH, Kleihues P, Pietsch T, Trojanowski JQ (2000) Medulloblastoma. In: Kleihues P, Cavenee WK (eds) World Health Organization Classification of tumours: pathology and genetics of tumours of the central nervous system. IARC Press, LyonGoogle Scholar
  29. Gutmann DH, Donahoe J, Brown T, James CD, Perry A (2000) Loss of neurofibromatosis 1 (NF1) gene expression in NF1-associated pilocytic astrocytomas. Neuropathol Appl Neurobiol 26:361–367PubMedCrossRefGoogle Scholar
  30. Gutmann DH, James CD, Poyhonen M, Louis DN, Ferner R, Guha A, Hariharan S, Viskochil D, Perry A (2003) Molecular analysis of astrocytomas presenting after age 10 in individuals with NF1. Neurology 61:1397–1400PubMedCrossRefGoogle Scholar
  31. Herrlinger U, Woiciechowski C, Sena-Esteves M, Aboody KS, Jacobs AH, Rainov NG, Snyder EY, Breakefield XO (2000) Neural precursor cells for delivery of replication-conditional HSV-1 vectors to intracerebral gliomas. Mol Ther 1:347–357PubMedCrossRefGoogle Scholar
  32. Hong X, Jiang F, Kalkanis SN, Zhang ZG, Zhang XP, DeCarvalho AC, Katakowski M, Bobbitt K, Mikkelsen T, Chopp M (2006) SDF-1 and CXCR4 are up-regulated by VEGF and contribute to glioma cell invasion. Cancer Lett 236:39–45PubMedCrossRefGoogle Scholar
  33. Jordan JT, Sun W, Hussain SF, DeAngulo G, Prabhu SS, Heimberger AB (2008) Preferential migration of regulatory T cells mediated by glioma-secreted chemokines can be blocked with chemotherapy. Cancer Immunol Immunother 57:123–131PubMedCrossRefGoogle Scholar
  34. Khan MZ, Brandimarti R, Musser BJ, Resue DM, Fatatis A, Meucci O (2003) The chemokine receptor CXCR4 regulates cell-cycle proteins in neurons. J Neurovirol 9:300–314PubMedGoogle Scholar
  35. Kielian T, van Rooijen N, Hickey WF (2002) MCP-1 expression in CNS-1 astrocytoma cells: implications for macrophage infiltration into tumors in vivo. J Neurooncol 56:1–12PubMedCrossRefGoogle Scholar
  36. Klein RS, Rubin JB (2004) Immune and nervous system CXCL12 and CXCR4: parallel roles in patterning and plasticity. Trends Immunol 25:306–314PubMedCrossRefGoogle Scholar
  37. Klein RS, Rubin JB, Gibson HD, DeHaan EN, Alvarez-Hernandez X, Segal RA, Luster AD (2001) SDF-1 alpha induces chemotaxis and enhances Sonic hedgehog-induced proliferation of cerebellar granule cells. Development 128:1971–1981PubMedGoogle Scholar
  38. Kluwe L, Hagel C, Tatagiba M, Thomas S, Stavrou D, Ostertag H, von Deimling A, Mautner VF (2001) Loss of NF1 alleles distinguish sporadic from NF1-associated pilocytic astrocytomas. J Neuropathol Exp Neurol 60:917–920PubMedGoogle Scholar
  39. Kouno J, Nagai H, Nagahata T, Onda M, Yamaguchi H, Adachi K, Takahashi H, Teramoto A, Emi M (2004) Up-regulation of CC chemokine, CCL3L1, and receptors, CCR3, CCR5 in human glioblastoma that promotes cell growth. J Neurooncol 70:301–307PubMedCrossRefGoogle Scholar
  40. Lee A, Kessler JD, Read TA, Kaiser C, Corbeil D, Huttner WB, Johnson JE, Wechsler-Reya RJ (2005) Isolation of neural stem cells from the postnatal cerebellum. Nat Neurosci 8:723–729PubMedCrossRefGoogle Scholar
  41. Leung SY, Wong MP, Chung LP, Chan AS, Yuen ST (1997) Monocyte chemoattractant protein-1 expression and macrophage infiltration in gliomas. Acta Neuropathol 93:518–527PubMedCrossRefGoogle Scholar
  42. Li M, Ransohoff RM (2008) Multiple roles of chemokine CXCL12 in the central nervous system: a migration from immunology to neurobiology. Prog Neurobiol 84:116–131PubMedCrossRefGoogle Scholar
  43. Liang Y, Bollen AW, Gupta N (2008) CC chemokine receptor-2A is frequently overexpressed in glioblastoma. J Neurooncol 86:153–163PubMedCrossRefGoogle Scholar
  44. Listernick R, Louis DN, Packer RJ, Gutmann DH (1997) Optic pathway gliomas in children with neurofibromatosis 1: consensus statement from the NF1 Optic Pathway Glioma Task Force. Ann Neurol 41:143–149PubMedCrossRefGoogle Scholar
  45. Lu M, Grove EA, Miller RJ (2002) Abnormal development of the hippocampal dentate gyrus in mice lacking the CXCR4 chemokine receptor. Proc Natl Acad Sci USA 99:7090–7095PubMedCrossRefGoogle Scholar
  46. Lu Q, Sun EE, Klein RS, Flanagan JG (2001) Ephrin-B reverse signaling is mediated by a novel PDZ-RGS protein and selectively inhibits G protein-coupled chemoattraction. Cell 105:69–79PubMedCrossRefGoogle Scholar
  47. Ma Q, Jones D, Borghesani PR, Segal RA, Nagasawa T, Kishimoto T, Bronson RT, Springer TA (1998) Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4- and SDF-1-deficient mice. Proc Natl Acad Sci USA 95:9448–9453PubMedCrossRefGoogle Scholar
  48. Ma YH, Mentlein R, Knerlich F, Kruse ML, Mehdorn HM, Held-Feindt J (2008) Expression of stem cell markers in human astrocytomas of different WHO grades. J Neurooncol 86:31–45PubMedCrossRefGoogle Scholar
  49. Maroni P, Bendinelli P, Matteucci E, Desiderio MA (2007) HGF induces CXCR4 and CXCL12-mediated tumor invasion through Ets1 and NF-kappaB. Carcinogenesis 28:267–279PubMedCrossRefGoogle Scholar
  50. Muller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME, McClanahan T, Murphy E, Yuan W, Wagner SN et al (2001) Involvement of chemokine receptors in breast cancer metastasis. Nature 410:50–56PubMedCrossRefGoogle Scholar
  51. Nervi B, Link DC, DiPersio JF (2006) Cytokines and hematopoietic stem cell mobilization. J Cell Biochem 99:690–705PubMedCrossRefGoogle Scholar
  52. Nie Y, Han YC, Zou YR (2008) CXCR4 is required for the quiescence of primitive hematopoietic cells. J Exp Med 205:777–783PubMedCrossRefGoogle Scholar
  53. Ping YF, Yao XH, Chen JH, Liu H, Chen DL, Zhou XD, Wang JM, Bian XW (2007) The anti-cancer compound Nordy inhibits CXCR4-mediated production of IL-8 and VEGF by malignant human glioma cells. J Neurooncol 84:21–29PubMedCrossRefGoogle Scholar
  54. Pitcher JA, Freedman NJ, Lefkowitz RJ (1998) G protein-coupled receptor kinases. Annu Rev Biochem 67:653–692PubMedCrossRefGoogle Scholar
  55. Platten M, Kretz A, Naumann U, Aulwurm S, Egashira K, Isenmann S, Weller M (2003) Monocyte chemoattractant protein-1 increases microglial infiltration and aggressiveness of gliomas. Ann Neurol 54:388–392PubMedCrossRefGoogle Scholar
  56. Pomeroy SL, Tamayo P, Gaasenbeek M, Sturla LM, Angelo M, McLaughlin ME, Kim JY, Goumnerova LC, Black PM, Lau C et al (2002) Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature 415:436–442PubMedCrossRefGoogle Scholar
  57. Redjal N, Chan JA, Segal RA, Kung AL (2006) CXCR4 inhibition synergizes with cytotoxic chemotherapy in gliomas. Clin Cancer Res 12:6765–6771PubMedCrossRefGoogle Scholar
  58. Reiss K, Mentlein R, Sievers J, Hartmann D (2002) Stromal cell-derived factor 1 is secreted by meningeal cells and acts as chemotactic factor on neuronal stem cells of the cerebellar external granular layer. Neuroscience 115:295–305PubMedCrossRefGoogle Scholar
  59. Rempel SA, Dudas S, Ge S, Gutierrez JA (2000) Identification and localization of the cytokine SDF1 and its receptor, CXC chemokine receptor 4, to regions of necrosis and angiogenesis in human glioblastoma. Clin Cancer Res 6:102–111PubMedGoogle Scholar
  60. Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414:105–111PubMedCrossRefGoogle Scholar
  61. Rubin JB, Gutmann DH (2005) Neurofibromatosis type I - a model for nervous system tumour formation? Nat Rev Cancer 5:557–564PubMedCrossRefGoogle Scholar
  62. Rubin JB, Kung AL, Klein RS, Chan JA, Sun Y, Schmidt K, Kieran MW, Luster AD, Segal RA (2003) A small-molecule antagonist of CXCR4 inhibits intracranial growth of primary brain tumors. Proc Natl Acad Sci USA 100:13513–13518PubMedCrossRefGoogle Scholar
  63. Salmaggi A, Boiardi A, Gelati M, Russo A, Calatozzolo C, Ciusani E, Sciacca FL, Ottolina A, Parati EA, La Porta C et al (2006) Glioblastoma-derived tumorospheres identify a population of tumor stem-like cells with angiogenic potential and enhanced multidrug resistance phenotype. Glia 54:850–860PubMedCrossRefGoogle Scholar
  64. Salmaggi A, Gelati M, Pollo B, Frigerio S, Eoli M, Silvani A, Broggi G, Ciusani E, Croci D, Boiardi A, De Rossi M (2004) CXCL12 in malignant glial tumors: a possible role in angiogenesis and cross-talk between endothelial and tumoral cells. J Neurooncol 67:305–317PubMedCrossRefGoogle Scholar
  65. Salmaggi A, Gelati M, Pollo B, Marras C, Silvani A, Balestrini MR, Eoli M, Fariselli L, Broggi G, Boiardi A (2005) CXCL12 expression is predictive of a shorter time to tumor progression in low-grade glioma: a single-institution study in 50 patients. J Neurooncol 74:287–293PubMedCrossRefGoogle Scholar
  66. Sauvageot CM, Kesari S, Stiles CD (2007) Molecular pathogenesis of adult brain tumors and the role of stem cells. Neurol Clin 25:891–924, viiGoogle Scholar
  67. Schuller U, Kho AT, Zhao Q, Ma Q, Rowitch DH (2006) Cerebellar ‘transcriptome’ reveals cell-type and stage-specific expression during postnatal development and tumorigenesis. Mol Cell Neurosci 33:247–259PubMedCrossRefGoogle Scholar
  68. Schuller U, Koch A, Hartmann W, Garre ML, Goodyer CG, Cama A, Sorensen N, Wiestler OD, Pietsch T (2005) Subtype-specific expression and genetic alterations of the chemokinereceptor gene CXCR4 in medulloblastomas. Int J Cancer 117:82–89PubMedCrossRefGoogle Scholar
  69. Sehgal A, Keener C, Boynton AL, Warrick J, Murphy GP (1998) CXCR-4, a chemokine receptor, is overexpressed in and required for proliferation of glioblastoma tumor cells. J Surg Oncol 69:99–104PubMedCrossRefGoogle Scholar
  70. Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63:5821–5828PubMedGoogle Scholar
  71. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB (2004) Identification of human brain tumour initiating cells. Nature 432:396–401PubMedCrossRefGoogle Scholar
  72. Staller P, Sulitkova J, Lisztwan J, Moch H, Oakeley EJ, Krek W (2003) Chemokine receptor CXCR4 downregulated by von Hippel-Lindau tumour suppressor pVHL. Nature 425:307–311PubMedCrossRefGoogle Scholar
  73. Tabatabai G, Frank B, Mohle R, Weller M, Wick W (2006) Irradiation and hypoxia promote homing of haematopoietic progenitor cells towards gliomas by TGF-beta-dependent HIF-1alpha-mediated induction of CXCL12. Brain 129:2426–2435PubMedCrossRefGoogle Scholar
  74. Tang Y, Shah K, Messerli SM, Snyder E, Breakefield X, Weissleder R (2003) In vivo tracking of neural progenitor cell migration to glioblastomas. Hum Gene Ther 14:1247–1254PubMedCrossRefGoogle Scholar
  75. Vlahakis SR, Villasis-Keever A, Gomez T, Vanegas M, Vlahakis N, Paya CV (2002) G protein-coupled chemokine receptors induce both survival and apoptotic signaling pathways. J Immunol 169:5546–5554PubMedGoogle Scholar
  76. Wang X, Li C, Chen Y, Hao Y, Zhou W, Chen C, Yu Z (2008) Hypoxia enhances CXCR4 expression favoring microglia migration via HIF-1alpha activation. Biochem Biophys Res Commun 371:283–288PubMedCrossRefGoogle Scholar
  77. Warrington NM, Woerner BM, Daginakatte GC, Dasgupta B, Perry A, Gutmann DH, Rubin JB (2007) Spatiotemporal differences in CXCL12 expression and cyclic AMP underlie the unique pattern of optic glioma growth in neurofibromatosis type 1. Cancer Res 67:8588–8595PubMedCrossRefGoogle Scholar
  78. Woerner BM, Warrington NM, Kung AL, Perry A, Rubin JB (2005) Widespread CXCR4 activation in astrocytomas revealed by phospho-CXCR4-specific antibodies. Cancer Res 65:11392–11399PubMedCrossRefGoogle Scholar
  79. Wu M, Chen Q, Li D, Li X, Li X, Huang C, Tang Y, Zhou Y, Wang D, Tang K et al (2008) LRRC4 inhibits human glioblastoma cells proliferation, invasion, and proMMP-2 activation by reducing SDF-1 alpha/CXCR4-mediated ERK1/2 and Akt signaling pathways. J Cell Biochem 103:245–255PubMedCrossRefGoogle Scholar
  80. Yang L, Jackson E, Woerner BM, Perry A, Piwnica-Worms D, Rubin JB (2007) Blocking CXCR4-mediated cyclic AMP suppression inhibits brain tumor growth in vivo. Cancer Res 67:651–658PubMedCrossRefGoogle Scholar
  81. Yu JJ, Sun X, Yuan X, Lee JW, Snyder EY, Yu JS (2006) Immunomodulatory neural stem cells for brain tumour therapy. Expert Opin Biol Ther 6:1255–1262PubMedCrossRefGoogle Scholar
  82. Zagzag D, Lukyanov Y, Lan L, Ali MA, Esencay M, Mendez O, Yee H, Voura EB, Newcomb EW (2006) Hypoxia-inducible factor 1 and VEGF upregulate CXCR4 in glioblastoma: implications for angiogenesis and glioma cell invasion. Lab Invest 86:1221–1232PubMedCrossRefGoogle Scholar
  83. Zhang J, Sarkar S, Yong VW (2005) The chemokine stromal cell derived factor-1 (CXCL12) promotes glioma invasiveness through MT2-matrix metalloproteinase. Carcinogenesis 26:2069–2077PubMedCrossRefGoogle Scholar
  84. Zhou Y, Zhang J, Liu Q, Bell R, Muruve DA, Forsyth P, Arcellana-Panlilio M, Robbins S, Yong VW (2005) The chemokine GRO-alpha (CXCL1) confers increased tumorigenicity to glioma cells. Carcinogenesis 26:2058–2068PubMedCrossRefGoogle Scholar
  85. Zou YR, Kottmann AH, Kuroda M, Taniuchi I, Littman DR (1998) Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature 393:595–599PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Shyam S. Rao
    • 1
  • Mahil Rao
    • 1
  • Nicole Warrington
    • 1
  • Joshua B. Rubin
    • 1
  1. 1.Department of Pediatrics, St. Louis Children’s HospitalWashington University School of MedicineSt. LouisUSA

Personalised recommendations