# Thermal and Power Delivery Challenges in 3D ICs

## Abstract

Compared to their 2D counterparts, 3D integrated circuits provide the potential for tremendously increased levels of integration per unit footprint. While this property is attractive for many applications, it also creates more stringent design bottlenecks in the areas of thermal management and power delivery. First, due to increased integration, the amount of heat per unit footprint increases, resulting in the potential for higher on-chip temperatures. The task of thermal management must necessarily be shared both by the heat sink, which transfers internally generated heat to the ambient, and by using thermally conscious design methods. Second, the power to be delivered to a 3D chip, per package pin, is tremendously increased, leading to significant complications in the task of reliable power delivery. This chapter presents an overview of both of these problems and outlines solution schemes to overcome the corresponding bottlenecks.

## Keywords

Power Grid Finite Difference Method Power Delivery Negative Bias Temperature Instability Middle Tier## References

- 1.HotSpot. available at http://lava.cs.virginia.edu/HotSpot/index.htm.
- 2.M. A. Alam, B. E. Weir, and P. J. Silverman. A study of soft and hard breakdown - part II: Principles of area, thickness, and voltage scaling.
*IEEE Transactions on Electron Devices*, 49(2):239–246, February 2002.CrossRefGoogle Scholar - 3.M. Armacost, A. Augustin, P. Felsner, Y. Feng, G. Friese, J. Heidenreich, G. Hueckel, O. Prigge, and K. Stein. A high reliability metal insulator metal capacitor for 0.18 μm copper technology. In
*Proceedings of the IEEE International Electronic Devices Meeting*, pp. 157–160, 2000.Google Scholar - 4.Semiconductor Industry Association. International technology roadmap for semiconductors (ITRS), 2007. http://public.itrs.net/.
- 5.J. A. Burns, B. F. Aull, C. K. Chen, C. L. Keast, J. M. Knecht, V. Suntharalingam, K. Warner, P. W. Wyatt, and D. Yost. A wafer-scale 3-D circuit integration technology.
*IEEE Transactions on Electron Devices*, 53(10):2507–2516, October 2006.CrossRefGoogle Scholar - 6.S. Chandrasekaran, J. Sun, and V. Mehrotra. Vertically packaged switched-mode power converter, 2006. US Patent #7012414.Google Scholar
- 7.L. O. Chua and P.-M. Lin.
*Computed-Aided Analysis of Electronic Circuits: Algorithms and Computational Techniques.*Prentice-Hall, Englewood Cliffs, NJ, 1975.Google Scholar - 8.C. M. Fiduccia and R. M. Mattheyses. A linear-time heuristic for improving network partitions. In
*Proceedings of the ACM/IEEE Design Automation Conference*, pp. 175–181, 1982.Google Scholar - 9.G. Golub and C. F. Van Loan.
*Matrix Computations.*John Hopkins University Press, Baltimore, MD, 3rd edition, 1996.Google Scholar - 10.B. Goplen.
*Advanced Placement Techniques for Future VLSI Circuits.*PhD thesis, University of Minnesota, Minneapolis, MN, 2006.Google Scholar - 11.B. Goplen and S. S. Sapatnekar. Efficient thermal placement of standard cells in 3D ICs using a force directed approach. In
*Proceedings of the IEEE/ACM International Conference on Computer-Aided Design*, pp. 86–89, 2003.Google Scholar - 12.J. Gu, H. Eom, and C. H. Kim. Sleep transistor sizing and control for resonant supply noise damping. In
*Proceedings of the ACM International Symposium on Low Power Electronics and Design*, pp. 80–85, 2007.Google Scholar - 13.J. Gu, H. Eom, and C. H. Kim. A switched decoupling capacitor circuit for on-chip supply resonance damping. In
*Proceedings of the IEEE International Symposium on VLSI Circuits*, pp. 126–127, 2007.Google Scholar - 14.J. Gu and C. H. Kim. Multi-story power delivery for supply noise reduction and low voltage operation. In
*Proceedings of the ACM International Symposium on Low Power Electronics and Design*, pp. 192–197, 2005.Google Scholar - 15.E. Hailu, D. Boerstler, K. Miki, J. Qi, M. Wang, and M. Riley. A circuit for reducing large transient current effects on processor power grids. In
*Proceedings of the IEEE International Solid-State Circuits Conference*, pp. 2238–2245, 2006.Google Scholar - 16.J. A. Harrison and E. R. Stanford. Z-axis processor power delivery system, 2003. US Patent #6523253.Google Scholar
- 17.P. Hazucha, G. Schrom, J. Hahn, B. A. Bloechel, P. Hack, G. E. Dermer, S. Narendra, D. Gardner, T. Karnik, V. De, and S. Borkar. A 233-MHz 80%–87% efficient four-phase DC-DC converter utilizing air-core inductors on package.
*IEEE Journal of Solid-State Circuits*, 40(4):838–845, April 2005.CrossRefGoogle Scholar - 18.H. Hu, S.-J. Ding, H. F. Lim, C. Zhu, M. F. Li, S. J. Kim, X. F. Yu, J. H. Chen, Y. F. Yong, B. J. Cho, D.S.H. Chan, S. C. Rustagi, M. B. Yu, C. H. Tung, A. Du, D. My, P. D. Foot, A. Chin, and D.-L. Kwong. High performance ALD HfO
_{2}-Al_{2}O_{3}laminate MIM capacitors for RF and mixed signal IC applications. In*Proceedings of the IEEE International Electronic Devices Meeting*, pp. 15.6.1–15.6.4, 2003.Google Scholar - 19.G. Huang, M. Bakir, A. Naeemi, H. Chen, and J. D. Meindl. Power delivery for 3D chip stacks: Physical modeling and design implication. In
*Proceedings of the IEEE Electrical Performance of Electronic Packaging Meeting*, pp. 205–208, 2007.Google Scholar - 20.P. Jain, T. Kim, J. Keane, and C. H. Kim. A multi-story power delivery technique for 3D integrated circuits. In
*Proceedings of the ACM International Symposium on Low Power Electronics and Design*, pp. 57–62, 2008.Google Scholar - 21.C. Keast, B. Aull, J. Burns, N. Checka, C.-L. Chen, C. Chen, M. Fritze, J. Kedzierski, J. Knecht, B. Tyrrell, K. Warner, B. Wheeler, D. Shaver, V. Suntharlingam, and D. Yost. 3D integration for integrated circuits and advanced focal planes, 2007. Available at http://vmsstreamer1.fnal.gov/VMS_Site_03/Lectures/Colloquium/070228Keast/index.htm .
- 22.K. H. Kim, J. Kim, H. J. Kim, S. H. Han, and H. J. Kim. A megahertz switching DC/DC converter using FeBN thin film inductor.
*IEEE Transactions on Magnetics*, 38(5):3162–3164, September 2002.CrossRefMathSciNetGoogle Scholar - 23.P. Li, L. T. Pileggi, M. Asheghi, and R. Chandra. Efficient full-chip thermal modeling and analysis. In
*Proceedings of the IEEE/ACM International Conference on Computer-Aided Design*, pp. 319–326, 2004.Google Scholar - 24.P. Li, L. T. Pileggi, M. Asheghi, and R. Chandra. IC thermal simulation and modeling via efficient multigrid-based approaches.
*IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems*, 25(9):1763–1776, September 2006.CrossRefGoogle Scholar - 25.D. L. Logan.
*A First Course in the Finite Element Method*. Brooks/Cole Publishing Company, Pacific Grove, CA, 3rd edition, 2002.Google Scholar - 26.R. Mahajan, R. Nair, V. Wakharkar, J. Swan, J. Tang, and G. Vandentop. Emerging directions for packaging technologies.
*Intel Technology Journal*, 6(2):62–75, May 2002.Google Scholar - 27.J. R. Minz, S. K. Lim, and C.-K. Koh. 3D module placement for congestion and power noise reduction. In
*Proceedings of the Great Lakes Symposium on VLSI*, pp. 458–461, 2005.Google Scholar - 28.N. Na, T. Budell, C. Chiu, E. Tremble, and I. Wernple. The effects of on-chip and package decoupling capacitors and an efficient ASIC decoupling methodology. In
*Proceedings of the IEEE Electronic Components and Technology Conference*, pp. 556–567, 2004.Google Scholar - 29.M. N. Özişik.
*Heat Transfer: A Basic Approach*. McGraw-Hill, New York, NY, 1985.Google Scholar - 30.H. Qian, S. R. Nassif, and S. S. Sapatnekar. Random walks in a supply network. In
*Proceedings of the ACM/IEEE Design Automation Conference*, pp. 93–98, 2003.Google Scholar - 31.H. Qian and S. S. Sapatnekar. Hierarchical random-walk algorithms for power grid analysis. In
*Proceedings of the Asia-South Pacific Design Automation Conference*, pp. 499–504, 2004.Google Scholar - 32.S. Rajapandian, K. Shepard, P. Hazucha, and T. Karnik. High-tension power delivery: Operating 0.18 μm CMOS digital logic at 5.4 V.
*Proceedings of the IEEE International Solid-State Circuits Conference*, pp. 298–599, February 2005.Google Scholar - 33.V. Reddy, A. T. Krishnan, A. Marshall, J. Rodriguez, S. Natarajan, T. Rost, and S. Krishnan. Impact of negative bias temperature instability on digital circuit reliability. In
*Proceedings of the IEEE International Reliability Physics Symposium*, pp. 248–254, 2002.Google Scholar - 34.D. Roberts, W. Johnstone, H. Sanchez, O. Mandhana, D. Spilo, J. Hayden, E. Travis, B. Melnick, M. Celik, B. W. Min, J. Edgerton, M. Raymond, E. Luckowski, C. Happ, A. Martinez, B. Wilson, P. Leung, T. Garnett, D. Goedeke, T. Remmel, K. Ramakrishna, and B.E. Jr. White. Application of on-chip MIM decoupling capacitor for 90 nm SOI microprocessor. In
*Proceedings of the IEEE International Electronic Devices Meeting*, pp. 72–75, 2005.Google Scholar - 35.H. Sanchez, B. Johnstone, D. Roberts, O. Mandhana, B. Melnick, M.Celik, M. Baker, J. Hayden, B. Min, J. Edgerton, and B. White. Increasing microprocessor speed by massive application of on-die high-k MIM decoupling capacitors. In
*Proceedings of the IEEE International Solid-State Circuits Conference*, pp. 2190–2199, 2006.Google Scholar - 36.S. S. Sapatnekar and H. Su. Analysis and optimization of power grids.
*IEEE Design & Test*, 20(3):7–15, 2003.CrossRefGoogle Scholar - 37.G. Schrom, P. Hazucha, J. Hahn, V. Kursun, D. Gardner, S. Narendra, T. Karnik, and V. De. Feasibility of monolithic and 3D-stacked DC-DC converters for microprocessors in 90
*nm*technology generation. In*Proceedings of the ACM International Symposium on Low Power Electronics and Design*, pp. 263–268, 2004.Google Scholar - 38.K. Skadron, M. R. Stan, W. Huang, S. Velusamy, K. Sankaranarayan, and D. Tarjan. Temperature-aware microarchitecture. In
*Proceedings of the ACM International Symposium on Computer Architecture*, pp. 2–13, 2003.Google Scholar - 39.J. Sun, J. Lu, D. Giuliano, T. P. Chow, and R. J. Gutmann. 3D power delivery for microprocessors and high-performance ASICs. In
*Proceedings of IEEE Applied Power Electronics Conference*, pp. 127–133, 2007.Google Scholar - 40.Y. L. Tu, H. L. Lin, L. L. Chao, D. Wu, C. S. Tsai, C. Wang, C. F. Huang, C. H. Lin, and J. Sun. Characterization and comparison of high-k metal-insulator-metal (MiM) capacitors in 0.13 μm cu BEOL for mixed-mode and RF applications. In
*Proceedings of the IEEE International Symposium on VLSI Circuits*, pp. 79–80, 2003.Google Scholar - 41.A. Waizman. CPU power supply impedance profile measurement using FFT and clock gating. In
*Proceedings of the IEEE Electrical Performance of Electronic Packaging Meeting*, pp. 29–32, 2003.Google Scholar - 42.J. Wibben and R. Harjani. A high efficiency DC-DC converter using 2 nH on-chip inductors. In
*Proceedings of the IEEE International Symposium on VLSI Circuits*, pp. 22–23, 2007.Google Scholar - 43.E. Wong, J. Minz, and S. K. Lim. Decoupling capacitor planning and sizing for noise and leakage reduction. In
*Proceedings of the IEEE/ACM International Conference on Computer-Aided Design*, pp. 395–400, 2006.Google Scholar - 44.P. Wong, P. Xu, P. Yang, and F. C. Lee. Performance improvements of interleaving VRMs with coupling inductors.
*IEEE Transactions on Power Electronics*, 16(4):499–507, July 2001.CrossRefGoogle Scholar - 45.J. H. Wu.
*Through-Substrate Interconnects for 3-D Integration and RF Systems*. PhD thesis, Department. of EECS, Massachusetts Institute of Technology, October 2006.Google Scholar - 46.J. Xu, P. Hazucha, M. Huang, P. Aseron, F. Paillet, G. Schrom, J. Tschanz, and C. Zhao. On-die supply-resonance suppression using band-limited active damping. In
*Proceedings of the IEEE International Solid-State Circuits Conference*, pp. 286–603, 2007.Google Scholar - 47.Y. Zhan and S. S. Sapatnekar. Automated module assignment in stacked-Vdd designs for high-efficiency power delivery.
*ACM Journal on Emerging Technologies in Computing Systems*, 4(4):1–20, 2008.CrossRefGoogle Scholar - 48.Y. Zhan, T. Zhang, and S. S. Sapatnekar. Module assignment for pin-limited designs under the stacked-Vdd paradigm. In
*Proceedings of the IEEE/ACM International Conference on Computer-Aided Design*, pp. 656–659, 2007.Google Scholar - 49.P. Zhou, K. Sridharan, and S. S. Sapatnekar. Congestion-aware power grid optimization for 3D circuits using MIM and CMOS decoupling capacitors. In
*Proceedings of the Asia-South Pacific Design Automation Conference*, pp. 179–184, 2009.Google Scholar - 50.P. Zurcher, P. Alluri, P. Chu, A. Duvallet, C. Happ, R. Henderson, J. Mendonca, M. Kim, M. Petras, M. Raymond, T. Remmel, D. Roberts, B. Steimle, J. Stipanuk, S. Straub, T. Sparks, M. Tarabbia, H. Thibieroz, and M. Miller. Integration of thin film MIM capacitors and resistors into copper metallization based RF-CMOS and Bi-CMOS technologies. In
*Proceedings of the IEEE International Electronic Devices Meeting*, pp. 153–156, 2000.Google Scholar