Wnt/β-Catenin Signaling and Oral Cancer Metastasis



The Wnt/β-catenin signaling pathway participates in many physiologic events in embryogenesis and adult homeostasis, including cell fate specification, maintenance, and activation of stem cells. Dysregulation of Wnt/β-catenin signaling promotes uncontrolled cell growth, survival, and consequently results in epithelial-to-mesenchymal transition (EMT) and the development of familial and/or sporadic epithelial cancers in a range of tissues such as colon, skin, liver, and ovary cancers. In squamous cell carcinoma of the oral cavity, SCCOC, its roles, however, are largely undefined. Although it is evident that constitutive activation of the Wnt/β-catenin is frequently observed in oral cancer progression, only infrequent mutations have been found in genes encoding various components of this pathway that commonly mutated in other cancers. This suggests that Wnt/β-catenin signaling is probably activated by multiple mechanisms, including genetic and epigenetic alterations of the components in this signaling, and the alterations in other autocrine and/or paracrine factors that are involved in the regulation of this pathway. More importantly, the interaction between epithelial tumor cells and the different components of the surrounding microenvironment can locally affect the intracellular levels of Wnt/β-catenin signaling components and differentially trigger tumor cell stemness, cell proliferation, EMT, invasive behavior, and metastasis. The exact mechanisms by which this occurs still remain unclear. Therefore, further investigation is required for understanding the role of Wnt/β-catenin signaling in the tumorigenesis, tumor progression, and metastasis of SCCOC.


Hepatocyte Growth Factor Adenomatous Polyposis Coli Invasive Front Adenomatous Polyposis Coli Gene Oral Leukoplakia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aberle H, Bauer A, Stappert J, Kispert A, Kemler R (1997) Beta-catenin is a target for the ubiquitin-proteasome pathway. EMBO J 16:3797–3804PubMedCrossRefGoogle Scholar
  2. Andl T, Reddy ST, Gaddapara T, Millar SE (2002) WNT signals are required for the initiation of hair follicle development. Dev Cell 2:643–653PubMedCrossRefGoogle Scholar
  3. Bafico A, Liu G, Goldin L, Harris V, Aaronson SA (2004) An autocrine mechanism for constitutive Wnt pathway activation in human cancer cells. Cancer Cell 6:497–506PubMedCrossRefGoogle Scholar
  4. Bankfalvi A, Krassort M, Buchwalow IB, Vegh A, Felszeghy E, Piffko J (2002a) Gains and losses of adhesion molecules (CD44, E-cadherin, and beta-catenin) during oral carcinogenesis and tumour progression. J Pathol 198:343–351PubMedCrossRefGoogle Scholar
  5. Bankfalvi A, Krassort M, Vegh A, Felszeghy E, Piffko J (2002b) Deranged expression of the E-cadherin/beta-catenin complex and the epidermal growth factor receptor in the clinical evolution and progression of oral squamous cell carcinomas. J Oral Pathol Med 31:450–457PubMedCrossRefGoogle Scholar
  6. Bardelli A, Parsons DW, Silliman N, Ptak J, Szabo S, Saha S, Markowitz S, Willson JK, Parmigiani G, Kinzler KW et al (2003) Mutational analysis of the tyrosine kinome in colorectal cancers. Science 300:949PubMedCrossRefGoogle Scholar
  7. Barker N, Clevers H (2006) Mining the Wnt pathway for cancer therapeutics. Nat Rev Drug Discov 5:997–1014PubMedCrossRefGoogle Scholar
  8. Barker N, Huls G, Korinek V, Clevers H (1999) Restricted high level expression of Tcf-4 protein in intestinal and mammary gland epithelium. Am J Pathol 154:29–35PubMedGoogle Scholar
  9. Barker N, Hurlstone A, Musisi H, Miles A, Bienz M, Clevers H (2001) The chromatin remodelling factor Brg-1 interacts with beta-catenin to promote target gene activation. EMBO J 20:4935–4943PubMedCrossRefGoogle Scholar
  10. Batlle E, Henderson JT, Beghtel H, van den Born MM, Sancho E, Huls G, Meeldijk J, Robertson J, van de Wetering M, Pawson T, Clevers H (2002) Beta-catenin and TCF mediate cell positioning in the intestinal epithelium by controlling the expression of EphB/ephrinB. Cell 111:251–263PubMedCrossRefGoogle Scholar
  11. Behrens J, von Kries JP, Kuhl M, Bruhn L, Wedlich D, Grosschedl R, Birchmeier W (1996) Functional interaction of beta-catenin with the transcription factor LEF-1. Nature 382:638–642PubMedCrossRefGoogle Scholar
  12. Bell DA (2005) Origins and molecular pathology of ovarian cancer. Mod Pathol 18(Suppl 2):S19–S32PubMedCrossRefGoogle Scholar
  13. Birchmeier C, Birchmeier W, Brand-Saberi B (1996) Epithelial-mesenchymal transitions in cancer progression. Acta Anat (Basel) 156:217–226CrossRefGoogle Scholar
  14. Birchmeier C, Birchmeier W, Gherardi E, Vande Woude GF (2003) Met, metastasis, motility and more. Nat Rev Mol Cell Biol 4:915–925PubMedCrossRefGoogle Scholar
  15. Blache P, van de Wetering M, Duluc I, Domon C, Berta P, Freund JN, Clevers H, Jay P (2004) SOX9 is an intestine crypt transcription factor, is regulated by the Wnt pathway, and represses the CDX2 and MUC2 genes. J Cell Biol 166:37–47PubMedCrossRefGoogle Scholar
  16. Blanpain C, Horsley V, Fuchs E (2007) Epithelial stem cells: turning over new leaves. Cell 128:445–458PubMedCrossRefGoogle Scholar
  17. Brabletz T, Jung A, Hermann K, Gunther K, Hohenberger W, Kirchner T (1998) Nuclear overexpression of the oncoprotein beta-catenin in colorectal cancer is localized predominantly at the invasion front. Pathol Res Pract 194:701–704PubMedGoogle Scholar
  18. Brabletz T, Jung A, Reu S, Porzner M, Hlubek F, Kunz-Schughart LA, Knuechel R, Kirchner T (2001) Variable beta-catenin expression in colorectal cancers indicates tumor progression driven by the tumor environment. Proc Natl Acad Sci U S A 98:10356–10361PubMedCrossRefGoogle Scholar
  19. Brabletz T, Jung A, Spaderna S, Hlubek F, Kirchner T (2005) Opinion: migrating cancer stem cells – an integrated concept of malignant tumour progression. Nat Rev Cancer 5:744–749PubMedCrossRefGoogle Scholar
  20. Brantjes H, Barker N, van Es J, Clevers H (2002) TCF: Lady Justice casting the final verdict on the outcome of Wnt signalling. Biol Chem 383:255–261PubMedCrossRefGoogle Scholar
  21. Brembeck FH, Schwarz-Romond T, Bakkers J, Wilhelm S, Hammerschmidt M, Birchmeier W (2004) Essential role of BCL9-2 in the switch between beta-catenin’s adhesive and transcriptional functions. Genes Dev 18:2225–2230PubMedCrossRefGoogle Scholar
  22. Brennan K, Gonzalez-Sancho JM, Castelo-Soccio LA, Howe LR, Brown AM (2004) Truncated mutants of the putative Wnt receptor LRP6/Arrow can stabilize beta-catenin independently of Frizzled proteins. Oncogene 23:4873–4884PubMedCrossRefGoogle Scholar
  23. Brown JR, DuBois RN (2005) COX-2: a molecular target for colorectal cancer prevention. J Clin Oncol 23:2840–2855PubMedCrossRefGoogle Scholar
  24. Brunner E, Peter O, Schweizer L, Basler K (1997) pangolin encodes a Lef-1 homologue that acts downstream of Armadillo to transduce the Wingless signal in Drosophila. Nature 385:829–833PubMedCrossRefGoogle Scholar
  25. Caldwell GM, Jones C, Gensberg K, Jan S, Hardy RG, Byrd P, Chughtai S, Wallis Y, Matthews GM, Morton DG (2004) The Wnt antagonist sFRP1 in colorectal tumorigenesis. Cancer Res 64:883–888PubMedCrossRefGoogle Scholar
  26. Castellone MD, Teramoto H, Williams BO, Druey KM, Gutkind JS (2005) Prostaglandin E2 promotes colon cancer cell growth through a Gs-axin-beta-catenin signaling axis. Science 310:1504–1510PubMedCrossRefGoogle Scholar
  27. Cavallo RA, Cox RT, Moline MM, Roose J, Polevoy GA, Clevers H, Peifer M, Bejsovec A (1998) Drosophila Tcf and Groucho interact to repress Wingless signalling activity. Nature 395:604–608PubMedCrossRefGoogle Scholar
  28. Chamorro MN, Schwartz DR, Vonica A, Brivanlou AH, Cho KR, Varmus HE (2005) FGF-20 and DKK1 are transcriptional targets of beta-catenin and FGF-20 is implicated in cancer and development. EMBO J 24:73–84PubMedCrossRefGoogle Scholar
  29. Chang KW, Lin SC, Mangold KA, Jean MS, Yuan TC, Lin SN, Chang CS (2000) Alterations of adenomatous polyposis Coli (APC) gene in oral squamous cell carcinoma. Int J Oral Maxillofac Surg 29:223–226PubMedCrossRefGoogle Scholar
  30. Chen G, Fernandez J, Mische S, Courey AJ (1999) A functional interaction between the histone deacetylase Rpd3 and the corepressor groucho in Drosophila development. Genes Dev 13:2218–2230PubMedCrossRefGoogle Scholar
  31. Chen T, Yang I, Irby R, Shain KH, Wang HG, Quackenbush J, Coppola D, Cheng JQ, Yeatman TJ (2003a) Regulation of caspase expression and apoptosis by adenomatous polyposis coli. Cancer Res 63:4368–4374PubMedGoogle Scholar
  32. Chen W, ten Berge D, Brown J, Ahn S, Hu LA, Miller WE, Caron MG, Barak LS, Nusse R, Lefkowitz RJ (2003b) Dishevelled 2 recruits beta-arrestin 2 to mediate Wnt5A-stimulated endocytosis of Frizzled 4. Science 301:1391–1394PubMedCrossRefGoogle Scholar
  33. Chow V, Yuen AP, Lam KY, Tsao GS, Ho WK, Wei WI (2001) A comparative study of the clinicopathological significance of E-cadherin and catenins (alpha, beta, gamma) expression in the surgical management of oral tongue carcinoma. J Cancer Res Clin Oncol 127:59–63PubMedCrossRefGoogle Scholar
  34. Chu EY, Hens J, Andl T, Kairo A, Yamaguchi TP, Brisken C, Glick A, Wysolmerski JJ, Millar SE (2004) Canonical WNT signaling promotes mammary placode development and is essential for initiation of mammary gland morphogenesis. Development 131:4819–4829PubMedCrossRefGoogle Scholar
  35. Clarke MF, Dick JE, Dirks PB, Eaves CJ, Jamieson CH, Jones DL, Visvader J, Weissman IL, Wahl GM (2006) Cancer stem cells – perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res 66:9339–9344PubMedCrossRefGoogle Scholar
  36. Clevers H (2006) Wnt/beta-catenin signaling in development and disease. Cell 127:469–480PubMedCrossRefGoogle Scholar
  37. Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA (1995) Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378:785–789PubMedCrossRefGoogle Scholar
  38. Cuilliere-Dartigues P, El-Bchiri J, Krimi A, Buhard O, Fontanges P, Flejou JF, Hamelin R, Duval A (2006) TCF-4 isoforms absent in TCF-4 mutated MSI-H colorectal cancer cells colocalize with nuclear CtBP and repress TCF-4-mediated transcription. Oncogene 25:4441–4448PubMedCrossRefGoogle Scholar
  39. DasGupta R, Fuchs E (1999) Multiple roles for activated LEF/TCF transcription complexes during hair follicle development and differentiation. Development 126:4557–4568PubMedGoogle Scholar
  40. Davidson G, Wu W, Shen J, Bilic J, Fenger U, Stannek P, Glinka A, Niehrs C (2005) Casein kinase 1 gamma couples Wnt receptor activation to cytoplasmic signal transduction. Nature 438:867–872PubMedCrossRefGoogle Scholar
  41. Day TF, Guo X, Garrett-Beal L, Yang Y (2005) Wnt/beta-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Dev Cell 8:739–750PubMedCrossRefGoogle Scholar
  42. De Wever O, Nguyen QD, Van Hoorde L, Bracke M, Bruyneel E, Gespach C, Mareel M (2004) Tenascin-C and SF/HGF produced by myofibroblasts in vitro provide convergent pro-invasive signals to human colon cancer cells through RhoA and Rac. FASEB J 18:1016–1018PubMedGoogle Scholar
  43. Demunter A, Libbrecht L, Degreef H, De Wolf-Peeters C, van den Oord JJ (2002) Loss of membranous expression of beta-catenin is associated with tumor progression in cutaneous melanoma and rarely caused by exon 3 mutations. Mod Pathol 15:454–461PubMedCrossRefGoogle Scholar
  44. Duncan AW, Rattis FM, DiMascio LN, Congdon KL, Pazianos G, Zhao C, Yoon K, Cook JM, Willert K, Gaiano N, Reya T (2005) Integration of Notch and Wnt signaling in hematopoietic stem cell maintenance. Nat Immunol 6:314–322PubMedCrossRefGoogle Scholar
  45. Duval A, Gayet J, Zhou XP, Iacopetta B, Thomas G, Hamelin R (1999) Frequent frameshift mutations of the TCF-4 gene in colorectal cancers with microsatellite instability. Cancer Res 59:4213–4215PubMedGoogle Scholar
  46. Eger A, Stockinger A, Schaffhauser B, Beug H, Foisner R (2000) Epithelial mesenchymal transition by c-Fos estrogen receptor activation involves nuclear translocation of beta-catenin and upregulation of beta-catenin/lymphoid enhancer binding factor-1 transcriptional activity. J Cell Biol 148:173–188PubMedCrossRefGoogle Scholar
  47. Esteller M, Sparks A, Toyota M, Sanchez-Cespedes M, Capella G, Peinado MA, Gonzalez S, Tarafa G, Sidransky D, Meltzer SJ et al (2000) Analysis of adenomatous polyposis coli promoter hypermethylation in human cancer. Cancer Res 60:4366–4371PubMedGoogle Scholar
  48. Fearnhead NS, Wilding JL, Winney B, Tonks S, Bartlett S, Bicknell DC, Tomlinson IP, Mortensen NJ, Bodmer WF (2004) Multiple rare variants in different genes account for multifactorial inherited susceptibility to colorectal adenomas. Proc Natl Acad Sci U S A 101:15992–15997PubMedCrossRefGoogle Scholar
  49. Fillies T, Buerger H, Gaertner C, August C, Brandt B, Joos U, Werkmeister R (2005) Catenin expression in T1/2 carcinomas of the floor of the mouth. Int J Oral Maxillofac Surg 34:907–911PubMedCrossRefGoogle Scholar
  50. Fodde R, Brabletz T (2007) Wnt/beta-catenin signaling in cancer stemness and malignant behavior. Curr Opin Cell Biol 19:150–158PubMedCrossRefGoogle Scholar
  51. Fukushima H, Yamamoto H, Itoh F, Horiuchi S, Min Y, Iku S, Imai K (2001) Frequent alterations of the beta-catenin and TCF-4 genes, but not of the APC gene, in colon cancers with high-frequency microsatellite instability. J Exp Clin Cancer Res 20:553–559PubMedGoogle Scholar
  52. Furuuchi K, Tada M, Yamada H, Kataoka A, Furuuchi N, Hamada J, Takahashi M, Todo S, Moriuchi T (2000) Somatic mutations of the APC gene in primary breast cancers. Am J Pathol 156:1997–2005PubMedGoogle Scholar
  53. Gao S, Eiberg H, Krogdahl A, Liu CJ, Sorensen JA (2005) Cytoplasmic expression of E-cadherin and beta-Catenin correlated with LOH and hypermethylation of the APC gene in oral squamous cell carcinomas. J Oral Pathol Med 34:116–119PubMedCrossRefGoogle Scholar
  54. Gasparoni A, Chaves A, Fonzi L, Johnson GK, Schneider GB, Squier CA (2002) Subcellular localization of beta-catenin in malignant cell lines and squamous cell carcinomas of the oral cavity. J Oral Pathol Med 31:385–394PubMedCrossRefGoogle Scholar
  55. Gat U, DasGupta R, Degenstein L, Fuchs E (1998) De Novo hair follicle morphogenesis and hair tumors in mice expressing a truncated beta-catenin in skin. Cell 95:605–614PubMedCrossRefGoogle Scholar
  56. Giles RH, van Es JH, Clevers H (2003) Caught up in a Wnt storm: Wnt signaling in cancer. Biochim Biophys Acta 1653:1–24PubMedGoogle Scholar
  57. Gordon MD, Nusse R (2006) Wnt signaling: multiple pathways, multiple receptors, and multiple transcription factors. J Biol Chem 281:22429–22433PubMedCrossRefGoogle Scholar
  58. Gregorieff A, Pinto D, Begthel H, Destree O, Kielman M, Clevers H (2005) Expression pattern of Wnt signaling components in the adult intestine. Gastroenterology 129:626–638PubMedGoogle Scholar
  59. Grille SJ, Bellacosa A, Upson J, Klein-Szanto AJ, van Roy F, Lee-Kwon W, Donowitz M, Tsichlis PN, Larue L (2003) The protein kinase Akt induces epithelial mesenchymal transition and promotes enhanced motility and invasiveness of squamous cell carcinoma lines. Cancer Res 63:2172–2178PubMedGoogle Scholar
  60. Groden J, Thliveris A, Samowitz W, Carlson M, Gelbert L, Albertsen H, Joslyn G, Stevens J, Spirio L, Robertson M et al (1991) Identification and characterization of the familial adenomatous polyposis coli gene. Cell 66:589–600PubMedCrossRefGoogle Scholar
  61. Hart M, Concordet JP, Lassot I, Albert I, del los Santos R, Durand H, Perret C, Rubinfeld B, Margottin F, Benarous R, Polakis P (1999) The F-box protein beta-TrCP associates with phosphorylated beta-catenin and regulates its activity in the cell. Curr Biol 9:207–210PubMedCrossRefGoogle Scholar
  62. He TC, Sparks AB, Rago C, Hermeking H, Zawel L, da Costa LT, Morin PJ, Vogelstein B, Kinzler KW (1998) Identification of c-MYC as a target of the APC pathway. Science 281:1509–1512PubMedCrossRefGoogle Scholar
  63. He X (2006) Unwinding a path to nuclear beta-catenin. Cell 127:40–42PubMedCrossRefGoogle Scholar
  64. Hecht A, Kemler R (2000) Curbing the nuclear activities of beta-catenin. Control over Wnt target gene expression. EMBO Rep 1:24–28PubMedCrossRefGoogle Scholar
  65. Heldin CH, Westermark B (1999) Mechanism of action and in vivo role of platelet-derived growth factor. Physiol Rev 79:1283–1316PubMedGoogle Scholar
  66. Hirohashi S (1998) Inactivation of the E-cadherin-mediated cell adhesion system in human cancers. Am J Pathol 153:333–339PubMedGoogle Scholar
  67. Huang JS, Chiang CP, Kok SH, Kuo YS, Kuo MY (1997) Loss of heterozygosity of APC and MCC genes in oral squamous cell carcinomas in Taiwan. J Oral Pathol Med 26:322–326PubMedCrossRefGoogle Scholar
  68. Huber MA, Kraut N, Beug H (2005) Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr Opin Cell Biol 17:548–558PubMedCrossRefGoogle Scholar
  69. Huelsken J, Vogel R, Erdmann B, Cotsarelis G, Birchmeier W (2001) beta-Catenin controls hair follicle morphogenesis and stem cell differentiation in the skin. Cell 105:533–545PubMedCrossRefGoogle Scholar
  70. Ilyas M, Tomlinson IP, Rowan A, Pignatelli M, Bodmer WF (1997) Beta-catenin mutations in cell lines established from human colorectal cancers. Proc Natl Acad Sci U S A 94:10330–10334PubMedCrossRefGoogle Scholar
  71. Irving JA, Catasus L, Gallardo A, Bussaglia E, Romero M, Matias-Guiu X, Prat J (2005) Synchronous endometrioid carcinomas of the uterine corpus and ovary: alterations in the beta-catenin (CTNNB1) pathway are associated with independent primary tumors and favorable prognosis. Hum Pathol 36:605–619PubMedCrossRefGoogle Scholar
  72. Ishida K, Ito S, Wada N, Deguchi H, Hata T, Hosoda M, Nohno T (2007) Nuclear localization of beta-catenin involved in precancerous change in oral leukoplakia. Mol Cancer 6:62PubMedCrossRefGoogle Scholar
  73. Ishitani T, Kishida S, Hyodo-Miura J, Ueno N, Yasuda J, Waterman M, Shibuya H, Moon RT, Ninomiya-Tsuji J, Matsumoto K (2003a) The TAK1-NLK mitogen-activated protein kinase cascade functions in the Wnt-5a/Ca(2+) pathway to antagonize Wnt/beta-catenin signaling. Mol Cell Biol 23:131–139PubMedCrossRefGoogle Scholar
  74. Ishitani T, Ninomiya-Tsuji J, Matsumoto K (2003b) Regulation of lymphoid enhancer factor 1/T-cell factor by mitogen-activated protein kinase-related Nemo-like kinase-dependent phosphorylation in Wnt/beta-catenin signaling. Mol Cell Biol 23:1379–1389PubMedCrossRefGoogle Scholar
  75. Iwai S, Katagiri W, Kong C, Amekawa S, Nakazawa M, Yura Y (2005) Mutations of the APC, beta-catenin, and axin 1 genes and cytoplasmic accumulation of beta-catenin in oral squamous cell carcinoma. J Cancer Res Clin Oncol 131:773–782PubMedCrossRefGoogle Scholar
  76. Janssen KP, Alberici P, Fsihi H, Gaspar C, Breukel C, Franken P, Rosty C, Abal M, El Marjou F, Smits R et al (2006) APC and oncogenic KRAS are synergistic in enhancing Wnt signaling in intestinal tumor formation and progression. Gastroenterology 131:1096–1109PubMedCrossRefGoogle Scholar
  77. Johnson V, Volikos E, Halford SE, Eftekhar Sadat ET, Popat S, Talbot I, Truninger K, Martin J, Jass J, Houlston R et al (2005) Exon 3 beta-catenin mutations are specifically associated with colorectal carcinomas in hereditary non-polyposis colorectal cancer syndrome. Gut 54:264–267PubMedCrossRefGoogle Scholar
  78. Katoh M, Katoh M (2006) Notch ligand, JAG1, is evolutionarily conserved target of canonical WNT signaling pathway in progenitor cells. Int J Mol Med 17:681–685PubMedGoogle Scholar
  79. Kawano Y, Kypta R (2003) Secreted antagonists of the Wnt signalling pathway. J Cell Sci 116:2627–2634PubMedCrossRefGoogle Scholar
  80. Kim JH, Kim B, Cai L, Choi HJ, Ohgi KA, Tran C, Chen C, Chung CH, Huber O, Rose DW et al (2005) Transcriptional regulation of a metastasis suppressor gene by Tip60 and beta-catenin complexes. Nature 434:921–926PubMedCrossRefGoogle Scholar
  81. Kinch MS, Clark GJ, Der CJ, Burridge K (1995) Tyrosine phosphorylation regulates the adhesions of ras-transformed breast epithelia. J Cell Biol 130:461–471PubMedCrossRefGoogle Scholar
  82. Kinzler KW, Nilbert MC, Su LK, Vogelstein B, Bryan TM, Levy DB, Smith KJ, Preisinger AC, Hedge P, McKechnie D et al (1991) Identification of FAP locus genes from chromosome 5q21. Science 253:661–665PubMedCrossRefGoogle Scholar
  83. Kinzler KW, Vogelstein B (1996) Lessons from hereditary colorectal cancer. Cell 87:159–170PubMedCrossRefGoogle Scholar
  84. Kioussi C, Briata P, Baek SH, Rose DW, Hamblet NS, Herman T, Ohgi KA, Lin C, Gleiberman A, Wang J et al (2002) Identification of a Wnt/Dvl/beta-Catenin → Pitx2 pathway mediating cell-type-specific proliferation during development. Cell 111:673–685PubMedCrossRefGoogle Scholar
  85. Kirchner T, Brabletz T (2000) Patterning and nuclear beta-catenin expression in the colonic adenoma-carcinoma sequence. Analogies with embryonic gastrulation. Am J Pathol 157:1113–1121PubMedGoogle Scholar
  86. Kishida M, Hino S, Michiue T, Yamamoto H, Kishida S, Fukui A, Asashima M, Kikuchi A (2001) Synergistic activation of the Wnt signaling pathway by Dvl and casein kinase Iepsilon. J Biol Chem 276:33147–33155PubMedCrossRefGoogle Scholar
  87. Koesters R, Niggli F, von Knebel Doeberitz M, Stallmach T (2003) Nuclear accumulation of beta-catenin protein in Wilms’ tumours. J Pathol 199:68–76PubMedCrossRefGoogle Scholar
  88. Koesters R, Ridder R, Kopp-Schneider A, Betts D, Adams V, Niggli F, Briner J, von Knebel Doeberitz M (1999) Mutational activation of the beta-catenin proto-oncogene is a common event in the development of Wilms’ tumors. Cancer Res 59:3880–3882PubMedGoogle Scholar
  89. Kok SH, Lee JJ, Hsu HC, Chiang CP, Kuo YS, Kuo MY (2002) Mutations of the adenomatous polyposis coli gene in areca quid and tobacco-associated oral squamous cell carcinomas in Taiwan. J Oral Pathol Med 31:395–401PubMedCrossRefGoogle Scholar
  90. Korinek V, Barker N, Morin PJ, van Wichen D, de Weger R, Kinzler KW, Vogelstein B, Clevers H (1997) Constitutive transcriptional activation by a beta-catenin-Tcf complex in APC–/– colon carcinoma. Science 275:1784–1787PubMedCrossRefGoogle Scholar
  91. Kramps T, Peter O, Brunner E, Nellen D, Froesch B, Chatterjee S, Murone M, Zullig S, Basler K (2002) Wnt/wingless signaling requires BCL9/legless-mediated recruitment of pygopus to the nuclear beta-catenin-TCF complex. Cell 109:47–60PubMedCrossRefGoogle Scholar
  92. Kudo Y, Kitajima S, Ogawa I, Hiraoka M, Sargolzaei S, Keikhaee MR, Sato S, Miyauchi M, Takata T (2004) Invasion and metastasis of oral cancer cells require methylation of E-cadherin and/or degradation of membranous beta-catenin. Clin Cancer Res 10:5455–5463PubMedCrossRefGoogle Scholar
  93. Largey JS, Meltzer SJ, Sauk JJ, Hebert CA, Archibald DW (1994) Loss of heterozygosity involving the APC gene in oral squamous cell carcinomas. Oral Surg Oral Med Oral Pathol 77:260–263PubMedCrossRefGoogle Scholar
  94. Latres E, Chiaur DS, Pagano M (1999) The human F box protein beta-Trcp associates with the Cul1/Skp1 complex and regulates the stability of beta-catenin. Oncogene 18:849–854PubMedCrossRefGoogle Scholar
  95. Lee HY, Kleber M, Hari L, Brault V, Suter U, Taketo MM, Kemler R, Sommer L (2004) Instructive role of Wnt/beta-catenin in sensory fate specification in neural crest stem cells. Science 303:1020–1023PubMedCrossRefGoogle Scholar
  96. Leethanakul C, Patel V, Gillespie J, Pallente M, Ensley JF, Koontongkaew S, Liotta LA, Emmert-Buck M, Gutkind JS (2000) Distinct pattern of expression of differentiation and growth-related genes in squamous cell carcinomas of the head and neck revealed by the use of laser capture microdissection and cDNA arrays. Oncogene 19:3220–3224PubMedCrossRefGoogle Scholar
  97. Li J, Sutter C, Parker DS, Blauwkamp T, Fang M, Cadigan KM (2007) CBP/p300 are bimodal regulators of Wnt signaling. Embo J 26:2284–2294PubMedCrossRefGoogle Scholar
  98. Lilien J, Balsamo J (2005) The regulation of cadherin-mediated adhesion by tyrosine phosphorylation/dephosphorylation of beta-catenin. Curr Opin Cell Biol 17:459–465PubMedCrossRefGoogle Scholar
  99. Liu C, Li Y, Semenov M, Han C, Baeg GH, Tan Y, Zhang Z, Lin X, He X (2002) Control of beta-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell 108:837–847PubMedCrossRefGoogle Scholar
  100. Lo Celso C, Prowse DM, Watt FM (2004) Transient activation of beta-catenin signalling in adult mouse epidermis is sufficient to induce new hair follicles but continuous activation is required to maintain hair follicle tumours. Development 131:1787–1799PubMedCrossRefGoogle Scholar
  101. Lo Muzio L (2001) A possible role for the WNT-1 pathway in oral carcinogenesis. Crit Rev Oral Biol Med 12:152–165PubMedCrossRefGoogle Scholar
  102. Lo Muzio L, Goteri G, Capretti R, Rubini C, Vinella A, Fumarolo R, Bianchi F, Mastrangelo F, Porfiri E, Mariggio MA (2005) Beta-catenin gene analysis in oral squamous cell carcinoma. Int J Immunopathol Pharmacol 18:33–38PubMedGoogle Scholar
  103. Lo Muzio L, Staibano S, Pannone G, Grieco M, Mignogna MD, Cerrato A, Testa NF, De Rosa G (1999) Beta- and gamma-catenin expression in oral squamous cell carcinomas. Anticancer Res 19:3817–3826PubMedGoogle Scholar
  104. Lowry WE, Blanpain C, Nowak JA, Guasch G, Lewis L, Fuchs E (2005) Defining the impact of beta-catenin/Tcf transactivation on epithelial stem cells. Genes Dev 19:1596–1611PubMedCrossRefGoogle Scholar
  105. Luchtenborg M, Weijenberg MP, Wark PA, Saritas AM, Roemen GM, van Muijen GN, de Bruine AP, van den Brandt PA, de Goeij AF (2005) Mutations in APC, CTNNB1 and K-ras genes and expression of hMLH1 in sporadic colorectal carcinomas from the Netherlands Cohort Study. BMC Cancer 5:160PubMedCrossRefGoogle Scholar
  106. Mahomed F, Altini M, Meer S (2007) Altered E-cadherin/beta-catenin expression in oral squamous carcinoma with and without nodal metastasis. Oral Dis 13:386–392PubMedCrossRefGoogle Scholar
  107. Major MB, Camp ND, Berndt JD, Yi X, Goldenberg SJ, Hubbert C, Biechele TL, Gingras AC, Zheng N, Maccoss MJ et al (2007) Wilms tumor suppressor WTX negatively regulates WNT/beta-catenin signaling. Science 316:1043–1046PubMedCrossRefGoogle Scholar
  108. Mann B, Gelos M, Siedow A, Hanski ML, Gratchev A, Ilyas M, Bodmer WF, Moyer MP, Riecken EO, Buhr HJ, Hanski C (1999) Target genes of beta-catenin-T cell-factor/lymphoid-enhancer-factor signaling in human colorectal carcinomas. Proc Natl Acad Sci U S A 96:1603–1608PubMedCrossRefGoogle Scholar
  109. Mao J, Wang J, Liu B, Pan W, Farr GH III, Flynn C, Yuan H, Takada S, Kimelman D, Li L, Wu D (2001) Low-density lipoprotein receptor-related protein-5 binds to Axin and regulates the canonical Wnt signaling pathway. Mol Cell 7:801–809PubMedCrossRefGoogle Scholar
  110. Marsit CJ, McClean MD, Furniss CS, Kelsey KT (2006) Epigenetic inactivation of the SFRP genes is associated with drinking, smoking and HPV in head and neck squamous cell carcinoma. Int J Cancer 119:1761–1766PubMedCrossRefGoogle Scholar
  111. McDonald SA, Preston SL, Lovell MJ, Wright NA, Jankowski JA (2006) Mechanisms of disease: from stem cells to colorectal cancer. Nat Clin Pract Gastroenterol Hepatol 3:267–274PubMedCrossRefGoogle Scholar
  112. Merrill BJ, Gat U, DasGupta R, Fuchs E (2001) Tcf3 and Lef1 regulate lineage differentiation of multipotent stem cells in skin. Genes Dev 15:1688–1705PubMedCrossRefGoogle Scholar
  113. Moon RT, Kohn AD, De Ferrari GV, Kaykas A (2004) WNT and beta-catenin signalling: diseases and therapies. Nat Rev Genet 5:691–701PubMedCrossRefGoogle Scholar
  114. Morin PJ, Sparks AB, Korinek V, Barker N, Clevers H, Vogelstein B, Kinzler KW (1997) Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science 275:1787–1790PubMedCrossRefGoogle Scholar
  115. Morin PJ, Weeraratna AT (2003) Wnt signaling in human cancer. Cancer Treat Res 115:169–187PubMedCrossRefGoogle Scholar
  116. Munemitsu S, Albert I, Souza B, Rubinfeld B, Polakis P (1995) Regulation of intracellular beta-catenin levels by the adenomatous polyposis coli (APC) tumor-suppressor protein. Proc Natl Acad Sci U S A 92:3046–3050PubMedCrossRefGoogle Scholar
  117. Nakayama H, Ikebe T, Beppu M, Shirasuna K (2001) High expression levels of nuclear factor kappaB, IkappaB kinase alpha and Akt kinase in squamous cell carcinoma of the oral cavity. Cancer 92:3037–3044PubMedCrossRefGoogle Scholar
  118. Nam JS, Turcotte TJ, Smith PF, Choi S, Yoon JK (2006) Mouse cristin/R-spondin family proteins are novel ligands for the Frizzled 8 and LRP6 receptors and activate beta-catenin-dependent gene expression. J Biol Chem 281:13247–13257PubMedCrossRefGoogle Scholar
  119. Nelson WJ, Nusse R (2004) Convergence of Wnt, beta-catenin, and cadherin pathways. Science 303:1483–1487PubMedCrossRefGoogle Scholar
  120. Neufeld KL, Zhang F, Cullen BR, White RL (2000) APC-mediated downregulation of beta-catenin activity involves nuclear sequestration and nuclear export. EMBO Rep 1:519–523PubMedGoogle Scholar
  121. Nguyen H, Rendl M, Fuchs E (2006) Tcf3 governs stem cell features and represses cell fate determination in skin. Cell 127:171–183PubMedCrossRefGoogle Scholar
  122. Niemann C (2006) Controlling the stem cell niche: right time, right place, right strength. Bioessays 28:1–5PubMedCrossRefGoogle Scholar
  123. Odajima T, Sasaki Y, Tanaka N, Kato-Mori Y, Asanuma H, Ikeda T, Satoh M, Hiratsuka H, Tokino T, Sawada N (2005) Abnormal beta-catenin expression in oral cancer with no gene mutation: correlation with expression of cyclin D1 and epidermal growth factor receptor, Ki-67 labeling index, and clinicopathological features. Hum Pathol 36:234–241PubMedCrossRefGoogle Scholar
  124. Ohgaki H, Kros JM, Okamoto Y, Gaspert A, Huang H, Kurrer MO (2004) APC mutations are infrequent but present in human lung cancer. Cancer Lett 207:197–203PubMedCrossRefGoogle Scholar
  125. Oliva E, Sarrio D, Brachtel EF, Sanchez-Estevez C, Soslow RA, Moreno-Bueno G, Palacios J (2006) High frequency of beta-catenin mutations in borderline endometrioid tumours of the ovary. J Pathol 208:708–713PubMedCrossRefGoogle Scholar
  126. Olson LE, Tollkuhn J, Scafoglio C, Krones A, Zhang J, Ohgi KA, Wu W, Taketo MM, Kemler R, Grosschedl R et al (2006) Homeodomain-mediated beta-catenin-dependent switching events dictate cell-lineage determination. Cell 125:593–605PubMedCrossRefGoogle Scholar
  127. Ormestad M, Astorga J, Landgren H, Wang T, Johansson BR, Miura N, Carlsson P (2006) Foxf1 and Foxf2 control murine gut development by limiting mesenchymal Wnt signaling and promoting extracellular matrix production. Development 133:833–843PubMedCrossRefGoogle Scholar
  128. Paoni NF, Feldman MW, Gutierrez LS, Ploplis VA, Castellino FJ (2003) Transcriptional profiling of the transition from normal intestinal epithelia to adenomas and carcinomas in the APCMin/+ mouse. Physiol Genomics 15:228–235PubMedGoogle Scholar
  129. Parker DS, Jemison J, Cadigan KM (2002) Pygopus, a nuclear PHD-finger protein required for Wingless signaling in Drosophila. Development 129:2565–2576PubMedGoogle Scholar
  130. Perreault N, Katz JP, Sackett SD, Kaestner KH (2001) Foxl1 controls the Wnt/beta-catenin pathway by modulating the expression of proteoglycans in the gut. J Biol Chem 276:43328–43333PubMedCrossRefGoogle Scholar
  131. Perreault N, Sackett SD, Katz JP, Furth EE, Kaestner KH (2005) Foxl1 is a mesenchymal Modifier of Min in carcinogenesis of stomach and colon. Genes Dev 19:311–315PubMedCrossRefGoogle Scholar
  132. Piccolo S, Agius E, Leyns L, Bhattacharyya S, Grunz H, Bouwmeester T, De Robertis EM (1999) The head inducer Cerberus is a multifunctional antagonist of Nodal, BMP and Wnt signals. Nature 397:707–710PubMedCrossRefGoogle Scholar
  133. Piedra J, Martinez D, Castano J, Miravet S, Dunach M, de Herreros AG (2001) Regulation of beta-catenin structure and activity by tyrosine phosphorylation. J Biol Chem 276:20436–20443PubMedCrossRefGoogle Scholar
  134. Pinson KI, Brennan J, Monkley S, Avery BJ, Skarnes WC (2000) An LDL-receptor-related protein mediates Wnt signalling in mice. Nature 407:535–538PubMedCrossRefGoogle Scholar
  135. Polakis P (2007) The many ways of Wnt in cancer. Curr Opin Genet Dev 17:45–51PubMedCrossRefGoogle Scholar
  136. Radtke F, Clevers H (2005) Self-renewal and cancer of the gut: two sides of a coin. Science 307:1904–1909PubMedCrossRefGoogle Scholar
  137. Radtke F, Clevers H, Riccio O (2006) From gut homeostasis to cancer. Curr Mol Med 6:275–289PubMedCrossRefGoogle Scholar
  138. Rajagopalan H, Bardelli A, Lengauer C, Kinzler KW, Vogelstein B, Velculescu VE (2002) Tumorigenesis: RAF/RAS oncogenes and mismatch-repair status. Nature 418:934PubMedCrossRefGoogle Scholar
  139. Rasola A, Fassetta M, De Bacco F, D’Alessandro L, Gramaglia D, Di Renzo MF, Comoglio PM (2007) A positive feedback loop between hepatocyte growth factor receptor and beta-catenin sustains colorectal cancer cell invasive growth. Oncogene 26:1078–1087PubMedCrossRefGoogle Scholar
  140. Reya T, Clevers H (2005) Wnt signalling in stem cells and cancer. Nature 434:843–850PubMedCrossRefGoogle Scholar
  141. Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414:105–111PubMedCrossRefGoogle Scholar
  142. Rhee CS, Sen M, Lu D, Wu C, Leoni L, Rubin J, Corr M, Carson DA (2002) Wnt and frizzled receptors as potential targets for immunotherapy in head and neck squamous cell carcinomas. Oncogene 21:6598–6605PubMedCrossRefGoogle Scholar
  143. Rivera MN, Kim WJ, Wells J, Driscoll DR, Brannigan BW, Han M, Kim JC, Feinberg AP, Gerald WL, Vargas SO et al (2007) An X chromosome gene, WTX, is commonly inactivated in Wilms tumor. Science 315:642–645PubMedCrossRefGoogle Scholar
  144. Rodriguez-Pinilla M, Rodriguez-Peralto JL, Hitt R, Sanchez JJ, Sanchez-Verde L, Alameda F, Ballestin C, Sanchez-Cespedes M (2005) beta-Catenin, Nf-kappaB and FAS protein expression are independent events in head and neck cancer: study of their association with clinical parameters. Cancer Lett 230:141–148PubMedCrossRefGoogle Scholar
  145. Rosin-Arbesfeld R, Townsley F, Bienz M (2000) The APC tumour suppressor has a nuclear export function. Nature 406:1009–1012PubMedCrossRefGoogle Scholar
  146. Rubinfeld B, Albert I, Porfiri E, Fiol C, Munemitsu S, Polakis P (1996) Binding of GSK3beta to the APC-beta-catenin complex and regulation of complex assembly. Science 272:1023–1026PubMedCrossRefGoogle Scholar
  147. Rubinfeld B, Robbins P, El-Gamil M, Albert I, Porfiri E, Polakis P (1997) Stabilization of beta-catenin by genetic defects in melanoma cell lines. Science 275:1790–1792PubMedCrossRefGoogle Scholar
  148. Sakanaka C, Weiss JB, Williams LT (1998) Bridging of beta-catenin and glycogen synthase kinase-3beta by axin and inhibition of beta-catenin-mediated transcription. Proc Natl Acad Sci U S A 95:3020–3023PubMedCrossRefGoogle Scholar
  149. Salahshor S, Woodgett JR (2005) The links between axin and carcinogenesis. J Clin Pathol 58:225–236PubMedCrossRefGoogle Scholar
  150. Sansom OJ, Reed KR, Hayes AJ, Ireland H, Brinkmann H, Newton IP, Batlle E, Simon-Assmann P, Clevers H, Nathke IS et al (2004) Loss of Apc in vivo immediately perturbs Wnt signaling, differentiation, and migration. Genes Dev 18:1385–1390PubMedCrossRefGoogle Scholar
  151. Sato K, Okazaki Y, Tonogi M, Tanaka Y, Yamane GY (2002) Expression of beta-catenin in rat oral epithelial dysplasia induced by 4-nitroquinoline 1-oxide. Oral Oncol 38:772–778PubMedCrossRefGoogle Scholar
  152. Seeling JM, Miller JR, Gil R, Moon RT, White R, Virshup DM (1999) Regulation of beta-catenin signaling by the B56 subunit of protein phosphatase 2A. Science 283:2089–2091PubMedCrossRefGoogle Scholar
  153. Segditsas S, Tomlinson I (2006) Colorectal cancer and genetic alterations in the Wnt pathway. Oncogene 25:7531–7537PubMedCrossRefGoogle Scholar
  154. Seidensticker MJ, Behrens J (2000) Biochemical interactions in the wnt pathway. Biochim Biophys Acta 1495:168–182PubMedCrossRefGoogle Scholar
  155. Shackleton M, Vaillant F, Simpson KJ, Stingl J, Smyth GK, Asselin-Labat ML, Wu L, Lindeman GJ, Visvader JE (2006) Generation of a functional mammary gland from a single stem cell. Nature 439:84–88PubMedCrossRefGoogle Scholar
  156. Sieber O, Lipton L, Heinimann K, Tomlinson I (2003) Colorectal tumourigenesis in carriers of the APC I1307K variant: lone gunman or conspiracy? J Pathol 199:137–139PubMedCrossRefGoogle Scholar
  157. Silva-Vargas V, Lo Celso C, Giangreco A, Ofstad T, Prowse DM, Braun KM, Watt FM (2005) Beta-catenin and Hedgehog signal strength can specify number and location of hair follicles in adult epidermis without recruitment of bulge stem cells. Dev Cell 9:121–131PubMedCrossRefGoogle Scholar
  158. Sjoblom T, Jones S, Wood LD, Parsons DW, Lin J, Barber TD, Mandelker D, Leary RJ, Ptak J, Silliman N et al (2006) The consensus coding sequences of human breast and colorectal cancers. Science 314:268–274PubMedCrossRefGoogle Scholar
  159. Smith K, Bui TD, Poulsom R, Kaklamanis L, Williams G, Harris AL (1999) Up-regulation of macrophage wnt gene expression in adenoma-carcinoma progression of human colorectal cancer. Br J Cancer 81:496–502PubMedCrossRefGoogle Scholar
  160. Sparks AB, Morin PJ, Vogelstein B, Kinzler KW (1998) Mutational analysis of the APC/beta-catenin/Tcf pathway in colorectal cancer. Cancer Res 58:1130–1134PubMedGoogle Scholar
  161. Suzuki H, Watkins DN, Jair KW, Schuebel KE, Markowitz SD, Chen WD, Pretlow TP, Yang B, Akiyama Y, Van Engeland M et al (2004) Epigenetic inactivation of SFRP genes allows constitutive WNT signaling in colorectal cancer. Nat Genet 36:417–422PubMedCrossRefGoogle Scholar
  162. Taipale J, Beachy PA (2001) The Hedgehog and Wnt signalling pathways in cancer. Nature 411:349–354PubMedCrossRefGoogle Scholar
  163. Takemaru KI, Moon RT (2000) The transcriptional coactivator CBP interacts with beta-catenin to activate gene expression. J Cell Biol 149:249–254PubMedCrossRefGoogle Scholar
  164. Taketo MM (2004) Shutting down Wnt signal-activated cancer. Nat Genet 36:320–322PubMedCrossRefGoogle Scholar
  165. Tamura I, Sakaki T, Chaqour B, Howard PS, Ikeo T, Macarak EJ (2003) Correlation of P-cadherin and beta-catenin expression and phosphorylation with carcinogenesis in rat tongue cancer induced with 4-nitroquinoline 1-oxide. Oral Oncol 39:506–514PubMedCrossRefGoogle Scholar
  166. Tanaka N, Odajima T, Ogi K, Ikeda T, Satoh M (2003) Expression of E-cadherin, alpha-catenin, and beta-catenin in the process of lymph node metastasis in oral squamous cell carcinoma. Br J Cancer 89:557–563PubMedCrossRefGoogle Scholar
  167. Testa JR, Bellacosa A (2001) AKT plays a central role in tumorigenesis. Proc Natl Acad Sci U S A 98:10983–10985PubMedCrossRefGoogle Scholar
  168. Teuliere J, Faraldo MM, Deugnier MA, Shtutman M, Ben-Ze’ev A, Thiery JP, Glukhova MA (2005) Targeted activation of beta-catenin signaling in basal mammary epithelial cells affects mammary development and leads to hyperplasia. Development 132:267–277PubMedCrossRefGoogle Scholar
  169. Thiery JP (2003) Epithelial-mesenchymal transitions in development and pathologies. Curr Opin Cell Biol 15:740–746PubMedCrossRefGoogle Scholar
  170. Thompson B, Townsley F, Rosin-Arbesfeld R, Musisi H, Bienz M (2002) A new nuclear component of the Wnt signalling pathway. Nat Cell Biol 4:367–373PubMedCrossRefGoogle Scholar
  171. Thorstensen L, Lind GE, Lovig T, Diep CB, Meling GI, Rognum TO, Lothe RA (2005) Genetic and epigenetic changes of components affecting the WNT pathway in colorectal carcinomas stratified by microsatellite instability. Neoplasia 7:99–108PubMedCrossRefGoogle Scholar
  172. Townsley FM, Cliffe A, Bienz M (2004a) Pygopus and Legless target Armadillo/beta-catenin to the nucleus to enable its transcriptional co-activator function. Nat Cell Biol 6:626–633PubMedCrossRefGoogle Scholar
  173. Townsley FM, Thompson B, Bienz M (2004b) Pygopus residues required for its binding to Legless are critical for transcription and development. J Biol Chem 279:5177–5183PubMedCrossRefGoogle Scholar
  174. Tsuchiya R, Yamamoto G, Nagoshi Y, Aida T, Irie T, Tachikawa T (2004) Expression of adenomatous polyposis coli (APC) in tumorigenesis of human oral squamous cell carcinoma. Oral Oncol 40:932–940PubMedCrossRefGoogle Scholar
  175. Tsukamoto AS, Grosschedl R, Guzman RC, Parslow T, Varmus HE (1988) Expression of the int-1 gene in transgenic mice is associated with mammary gland hyperplasia and adenocarcinomas in male and female mice. Cell 55:619–625PubMedCrossRefGoogle Scholar
  176. Ueda G, Sunakawa H, Nakamori K, Shinya T, Tsuhako W, Tamura Y, Kosugi T, Sato N, Ogi K, Hiratsuka H (2006) Aberrant expression of beta- and gamma-catenin is an independent prognostic marker in oral squamous cell carcinoma. Int J Oral Maxillofac Surg 35:356–361PubMedCrossRefGoogle Scholar
  177. Uesugi H, Uzawa K, Kawasaki K, Shimada K, Moriya T, Tada A, Shiiba M, Tanzawa H (2005) Status of reduced expression and hypermethylation of the APC tumor suppressor gene in human oral squamous cell carcinoma. Int J Mol Med 15:597–602PubMedGoogle Scholar
  178. Uraguchi M, Morikawa M, Shirakawa M, Sanada K, Imai K (2004) Activation of WNT family expression and signaling in squamous cell carcinomas of the oral cavity. J Dent Res 83:327–332PubMedCrossRefGoogle Scholar
  179. Uzawa K, Yoshida H, Suzuki H, Tanzawa H, Shimazaki J, Seino S, Sato K (1994) Abnormalities of the adenomatous polyposis coli gene in human oral squamous-cell carcinoma. Int J Cancer 58:814–817PubMedCrossRefGoogle Scholar
  180. van de Wetering M, Cavallo R, Dooijes D, van Beest M, van Es J, Loureiro J, Ypma A, Hursh D, Jones T, Bejsovec A et al (1997) Armadillo coactivates transcription driven by the product of the Drosophila segment polarity gene dTCF. Cell 88:789–799PubMedCrossRefGoogle Scholar
  181. van de Wetering M, Sancho E, Verweij C, de Lau W, Oving I, Hurlstone A, van der Horn K, Batlle E, Coudreuse D, Haramis AP et al (2002) The beta-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell 111:241–250PubMedCrossRefGoogle Scholar
  182. van Es JH, Jay P, Gregorieff A, van Gijn ME, Jonkheer S, Hatzis P, Thiele A, van den Born M, Begthel H, Brabletz T et al (2005) Wnt signalling induces maturation of Paneth cells in intestinal crypts. Nat Cell Biol 7:381–386PubMedCrossRefGoogle Scholar
  183. van Genderen C, Okamura RM, Farinas I, Quo RG, Parslow TG, Bruhn L, Grosschedl R (1994) Development of several organs that require inductive epithelial-mesenchymal interactions is impaired in LEF-1-deficient mice. Genes Dev 8:2691–2703PubMedCrossRefGoogle Scholar
  184. Van Mater D, Kolligs FT, Dlugosz AA, Fearon ER (2003) Transient activation of beta -catenin signaling in cutaneous keratinocytes is sufficient to trigger the active growth phase of the hair cycle in mice. Genes Dev 17:1219–1224PubMedCrossRefGoogle Scholar
  185. Veeman MT, Axelrod JD, Moon RT (2003) A second canon. Functions and mechanisms of beta-catenin-independent Wnt signaling. Dev Cell 5:367–377PubMedCrossRefGoogle Scholar
  186. Vogelstein B, Fearon ER, Hamilton SR, Kern SE, Preisinger AC, Leppert M, Nakamura Y, White R, Smits AM, Bos JL (1988) Genetic alterations during colorectal-tumor development. N Engl J Med 319:525–532PubMedCrossRefGoogle Scholar
  187. Wallis YL, Morton DG, McKeown CM, Macdonald F (1999) Molecular analysis of the APC gene in 205 families: extended genotype-phenotype correlations in FAP and evidence for the role of APC amino acid changes in colorectal cancer predisposition. J Med Genet 36:14–20PubMedGoogle Scholar
  188. Wang L, Liu T, Wang Y, Cao L, Nishioka M, Aguirre RL, Ishikawa A, Geng L, Okada N (2007) Altered expression of desmocollin 3, desmoglein 3, and beta-catenin in oral squamous cell carcinoma: correlation with lymph node metastasis and cell proliferation. Virchows Arch 451:959–966PubMedCrossRefGoogle Scholar
  189. Wang Z, Shen D, Parsons DW, Bardelli A, Sager J, Szabo S, Ptak J, Silliman N, Peters BA, van der Heijden MS et al (2004) Mutational analysis of the tyrosine phosphatome in colorectal cancers. Science 304:1164–1166PubMedCrossRefGoogle Scholar
  190. Webster MT, Rozycka M, Sara E, Davis E, Smalley M, Young N, Dale TC, Wooster R (2000) Sequence variants of the axin gene in breast, colon, and other cancers: an analysis of mutations that interfere with GSK3 binding. Genes Chromosomes Cancer 28:443–453PubMedCrossRefGoogle Scholar
  191. Wielenga VJ, van der Voort R, Taher TE, Smit L, Beuling EA, van Krimpen C, Spaargaren M, Pals ST (2000) Expression of c-Met and heparan-sulfate proteoglycan forms of CD44 in colorectal cancer. Am J Pathol 157:1563–1573PubMedGoogle Scholar
  192. Williams HK, Sanders DS, Jankowski JA, Landini G, Brown AM (1998) Expression of cadherins and catenins in oral epithelial dysplasia and squamous cell carcinoma. J Oral Pathol Med 27:308–317PubMedCrossRefGoogle Scholar
  193. Wong HC, Bourdelas A, Krauss A, Lee HJ, Shao Y, Wu D, Mlodzik M, Shi DL, Zheng J (2003) Direct binding of the PDZ domain of Dishevelled to a conserved internal sequence in the C-terminal region of Frizzled. Mol Cell 12:1251–1260PubMedCrossRefGoogle Scholar
  194. Wu R, Zhai Y, Fearon ER, Cho KR (2001) Diverse mechanisms of beta-catenin deregulation in ovarian endometrioid adenocarcinomas. Cancer Res 61:8247–8255PubMedGoogle Scholar
  195. Xu Q, Wang Y, Dabdoub A, Smallwood PM, Williams J, Woods C, Kelley MW, Jiang L, Tasman W, Zhang K, Nathans J (2004) Vascular development in the retina and inner ear: control by Norrin and Frizzled-4, a high-affinity ligand-receptor pair. Cell 116:883–895PubMedCrossRefGoogle Scholar
  196. Yang F, Zeng Q, Yu G, Li S, Wang CY (2006a) Wnt/beta-catenin signaling inhibits death receptor-mediated apoptosis and promotes invasive growth of HNSCC. Cell Signal 18:679–687PubMedCrossRefGoogle Scholar
  197. Yang L, Lin C, Liu ZR (2006b) P68 RNA helicase mediates PDGF-induced epithelial mesenchymal transition by displacing Axin from beta-catenin. Cell 127:139–155PubMedCrossRefGoogle Scholar
  198. Yeh KT, Chang JG, Lin TH, Wang YF, Chang JY, Shih MC, Lin CC (2003) Correlation between protein expression and epigenetic and mutation changes of Wnt pathway-related genes in oral cancer. Int J Oncol 23:1001–1007PubMedGoogle Scholar
  199. Yu Z, Weinberger PM, Provost E, Haffty BG, Sasaki C, Joe J, Camp RL, Rimm DL, Psyrri A (2005) beta-Catenin functions mainly as an adhesion molecule in patients with squamous cell cancer of the head and neck. Clin Cancer Res 11:2471–2477PubMedCrossRefGoogle Scholar
  200. Zeng X, Tamai K, Doble B, Li S, Huang H, Habas R, Okamura H, Woodgett J, He X (2005) A dual-kinase mechanism for Wnt co-receptor phosphorylation and activation. Nature 438:873–877PubMedCrossRefGoogle Scholar
  201. Zhang B, Ougolkov A, Yamashita K, Takahashi Y, Mai M, Minamoto T (2003) beta-Catenin and ras oncogenes detect most human colorectal cancer. Clin Cancer Res 9:3073–3079PubMedGoogle Scholar
  202. Zhou CX, Gao Y (2007) Frequent genetic alterations and reduced expression of the Axin1 gene in oral squamous cell carcinoma: involvement in tumor progression and metastasis. Oncol Rep 17:73–79PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Head and Neck SurgeryThe University of Texas, M. D. Anderson Cancer CenterHoustonUSA

Personalised recommendations