Chemokines in Lung Cancer Metastasis

  • Borna Mehrad
  • Ellen C. Keeley
  • Robert M. Strieter


Chemokines were first described for their ability to recruit inflammatory leukocytes, but their biological role has now been recognized in many other biological processes, including control of cancer angiogenesis and mediating homing of metastatic cells. In this chapter, we review the role of chemokines in angiogenesis and angiostasis and metastasis in the context of lung cancer.


SCID Mouse Lewis Lung Carcinoma NSCLC Cell Line Vascular Endothelial Cell Growth Factor Chick Chorioallantoic Membrane 



This work was supported by NIH grant HL73848 and an American Lung Association Career Investigator Award (Mehrad) and CA87879 and HL66027 (Strieter).


  1. 1.
    Luster, A.D. Chemokines–chemotactic cytokines that mediate inflammation. N Engl J Med 338: 436–45, 1998.PubMedGoogle Scholar
  2. 2.
    Belperio, J.A., M.P. Keane, D.A. Arenberg, C.L. Addison, J.E. Ehlert, M.D. Burdick, and R.M. Strieter. CXC chemokines in angiogenesis. J Leukoc Biol 68: 1–8, 2000.PubMedGoogle Scholar
  3. 3.
    Strieter, R.M., P.J. Polverini, S.L. Kunkel, D.A. Arenberg, M.D. Burdick, J. Kasper, J. Dzuiba, J.V. Damme, A. Walz, D. Marriott, S.Y. Chan, S. Roczniak, and A.B. Shanafelt. The functional role of the 'ELR' motif in CXC chemokine-mediated angiogenesis. J Biol Chem 270: 27348–57, 1995.PubMedGoogle Scholar
  4. 4.
    Heidemann, J., H. Ogawa, M.B. Dwinell, P. Rafiee, C. Maaser, H.R. Gockel, M.F. Otterson, D.M. Ota, N. Lugering, W. Domschke, and D.G. Binion. Angiogenic effects of interleukin 8 (CXCL8) in human intestinal microvascular endothelial cells are mediated by CXCR2. J Biol Chem 278: 8508–15, 2003.PubMedGoogle Scholar
  5. 5.
    Schruefer, R., N. Lutze, J. Schymeinsky, and B. Walzog. Human neutrophils promote angiogenesis by a paracrine feedforward mechanism involving endothelial interleukin-8. Am J Physiol Heart Circ Physiol 288: H1186–92, 2005.Google Scholar
  6. 6.
    Nor, J.E., J. Christensen, J. Liu, M. Peters, D.J. Mooney, R.M. Strieter, and P.J. Polverini. Up-Regulation of Bcl-2 in microvascular endothelial cells enhances intratumoral angiogenesis and accelerates tumor growth. Cancer Res 61: 2183–8, 2001.PubMedGoogle Scholar
  7. 7.
    Dong, G., Z. Chen, Z.Y. Li, N.T. Yeh, C.C. Bancroft, and C. Van Waes. Hepatocyte growth factor/scatter factor-induced activation of MEK and PI3K signal pathways contributes to expression of proangiogenic cytokines interleukin-8 and vascular endothelial growth factor in head and neck squamous cell carcinoma. Cancer Res 61: 5911–8, 2001.PubMedGoogle Scholar
  8. 8.
    Hirata, A., S. Ogawa, T. Kometani, T. Kuwano, S. Naito, M. Kuwano, and M. Ono. ZD1839 (Iressa) induces antiangiogenic effects through inhibition of epidermal growth factor receptor tyrosine kinase. Cancer Res 62: 2554–60, 2002.PubMedGoogle Scholar
  9. 9.
    Levine, L., J.A. Lucci, 3rd, B. Pazdrak, J.Z. Cheng, Y.S. Guo, C.M. Townsend, Jr., andM.R. Hellmich. Bombesin stimulates nuclear factor kappa B activation and expression of proangiogenic factors in prostate cancer cells. Cancer Res 63: 3495–502, 2003.Google Scholar
  10. 10.
    Richmond, A. Nf-kappa B, chemokine gene transcription and tumour growth. Nat Rev Immunol 2: 664–74, 2002.PubMedGoogle Scholar
  11. 11.
    Addison, C.L., T.O. Daniel, M.D. Burdick, H. Liu, J.E. Ehlert, Y.Y. Xue, L. Buechi, A. Walz, A. Richmond, and R.M. Strieter. The CXC chemokine receptor 2, CXCR2, is the putative receptor for ELR(+) CXC chemokine-induced angiogenic activity. J Immunol 165: 5269–77, 2000.PubMedGoogle Scholar
  12. 12.
    Murdoch, C., P.N. Monk, and A. Finn. Cxc chemokine receptor expression on human endothelial cells. Cytokine 11: 704–712, 1999.PubMedGoogle Scholar
  13. 13.
    Salcedo, R., J.H. Resau, D. Halverson, E.A. Hudson, M. Dambach, D. Powell, K. Wasserman, and J.J. Oppenheim. Differential expression and responsiveness of chemokine receptors (CXCR1-3) by human microvascular endothelial cells and umbilical vein endothelial cells. Faseb J 14: 2055–64, 2000.PubMedGoogle Scholar
  14. 14.
    Richmond, A., G.H. Fan, P. Dhawan, and J. Yang. How do chemokine/chemokine receptor activations affect tumorigenesis? Novartis Found Symp 256: 74–89; discussion 89–91, 106–11, 266–9, 2004.Google Scholar
  15. 15.
    White, E.S., K.R. Flaherty, S. Carskadon, A. Brant, M.D. Iannettoni, J. Yee, M.B. Orringer, and D.A. Arenberg. Macrophage migration inhibitory factor and CXC chemokine expression in non-small cell lung cancer: role in angiogenesis and prognosis. Clin Cancer Res 9: 853–60, 2003.PubMedGoogle Scholar
  16. 16.
    Chen, J.J., P.L. Yao, A. Yuan, T.M. Hong, C.T. Shun, M.L. Kuo, Y.C. Lee, and P.C. Yang. Up-regulation of tumor interleukin-8 expression by infiltrating macrophages: its correlation with tumor angiogenesis and patient survival in non-small cell lung cancer. Clin Cancer Res 9: 729–37, 2003.PubMedGoogle Scholar
  17. 17.
    Keane, M.P., J.A. Belperio, Y.Y. Xue, M.D. Burdick, and R.M. Strieter. Depletion of CXCR2 inhibits tumor growth and angiogenesis in a murine model of lung cancer. J Immunol 172: 2853–60, 2004.PubMedGoogle Scholar
  18. 18.
    Ji, H., A.M. Houghton, T.J. Mariani, S. Perera, C.B. Kim, R. Padera, G. Tonon, K. McNamara, L.A. Marconcini, A. Hezel, N. El-Bardeesy, R.T. Bronson, D. Sugarbaker, R.S. Maser, S.D. Shapiro, and K.K. Wong. K-ras activation generates an inflammatory response in lung tumors. Oncogene 25: 2105–12, 2006.PubMedGoogle Scholar
  19. 19.
    Wislez, M., N. Fujimoto, J.G. Izzo, A.E. Hanna, D.D. Cody, R.R. Langley, H. Tang, M.D. Burdick, M. Sato, J.D. Minna, L. Mao, I. Wistuba, R.M. Strieter, and J.M. Kurie. High expression of ligands for chemokine receptor CXCR2 in alveolar epithelial neoplasia induced by oncogenic kras. Cancer Res 66: 4198–207, 2006.PubMedGoogle Scholar
  20. 20.
    Yatsunami, J., N. Tsuruta, K. Ogata, K. Wakamatsu, K. Takayama, M. Kawasaki, Y. Nakanishi, N. Hara, and S. Hayashi. Interleukin-8 participates in angiogenesis in non-small cell, but not small cell carcinoma of the lung. Cancer Lett 120: 101–8, 1997.PubMedGoogle Scholar
  21. 21.
    Smith, D.R., P.J. Polverini, S.L. Kunkel, M.B. Orringer, R.I. Whyte, M.D. Burdick, C.A. Wilke, and R.M. Strieter. IL-8 mediated angiogenesis in human bronchogenic carcinoma. J. Exp. Med. 179: 1409–1415, 1994.PubMedGoogle Scholar
  22. 22.
    Arenberg, D.A., S.L. Kunkel, M.D. Burdick, P.J. Polverini, and R.M. Strieter. Treatment with anti-IL-8 inhibits non-small cell lung cancer tumor growth (Meeting abstract). J Investig Med 43: 479A 1995.Google Scholar
  23. 23.
    Arenberg, D.A., M.P. Keane, B. DiGiovine, S.L. Kunkel, S.B. Morris, Y.Y. Xue, M.D. Burdick, M.C. Glass, M.D. Iannettoni, and R.M. Strieter. Epithelial-neutrophil activating peptide (ENA-78) is an important angiogenic factor in non-small cell lung cancer. J Clin Invest 102: 465–72, 1998.PubMedGoogle Scholar
  24. 24.
    Pold, M., L.X. Zhu, S. Sharma, M.D. Burdick, Y. Lin, P.P. Lee, A. Pold, J. Luo, K. Krysan, M. Dohadwala, J.T. Mao, R.K. Batra, R.M. Strieter, and S.M. Dubinett. Cyclooxygenase-2-dependent expression of angiogenic CXC chemokines ENA-78/CXC ligand (CXCL) 5 and interleukin-8/CXCL8 in human non-small cell lung cancer. Cancer Res 64: 1853–60, 2004.PubMedGoogle Scholar
  25. 25.
    Hadley, T.J. and S.C. Peiper. From malaria to chemokine receptor: the emerging physiologic role of the Duffy blood group antigen. Blood 89: 3077–91, 1997.PubMedGoogle Scholar
  26. 26.
    Locati, M., Y.M. Torre, E. Galliera, R. Bonecchi, H. Bodduluri, G. Vago, A. Vecchi, and A. Mantovani. Silent chemoattractant receptors: D6 as a decoy and scavenger receptor for inflammatory CC chemokines. Cytokine Growth Factor Rev 16: 679–86, 2005.PubMedGoogle Scholar
  27. 27.
    Arenberg, D.A., S.L. Kunkel, P.J. Polverini, M. Glass, M.D. Burdick, and R.M. Strieter. Inhibition of interleukin-8 reduces tumorigenesis of human non-small cell lung cancer in SCID mice. J Clin Invest 97: 2792–802, 1996.PubMedGoogle Scholar
  28. 28.
    Moore, B.B., D.A. Arenberg, K. Stoy, T. Morgan, C.L. Addison, S.B. Morris, M. Glass, C. Wilke, Y.Y. Xue, S. Sitterding, S.L. Kunkel, M.D. Burdick, and R.M. Strieter. Distinct CXC chemokines mediate tumorigenicity of prostate cancer cells. Am J Pathol 154: 1503–12, 1999.PubMedGoogle Scholar
  29. 29.
    Addison, C.L., J.A. Belperio, M.D. Burdick, and R.M. Strieter. Overexpression of the duffy antigen receptor for chemokines (DARC) by NSCLC tumor cells results in increased tumor necrosis. BMC Cancer 4: 28, 2004.PubMedGoogle Scholar
  30. 30.
    Salcedo, R., H.A. Young, M.L. Ponce, J.M. Ward, H.K. Kleinman, W.J. Murphy, and J.J. Oppenheim. Eotaxin (CCL11) induces in vivo angiogenic responses by human CCR3+ endothelial cells. J Immunol 166: 7571–8, 2001.PubMedGoogle Scholar
  31. 31.
    Strasly, M., G. Doronzo, P. Capello, D. Valdembri, M. Arese, S. Mitola, P. Moore, G. Alessandri, M. Giovarelli, and F. Bussolino. CCL16 activates an angiogenic program in vascular endothelial cells. Blood 103: 40–9, 2004.PubMedGoogle Scholar
  32. 32.
    Galvez, B.G., L. Genis, S. Matias-Roman, S.A. Oblander, K. Tryggvason, S.S. Apte, and A.G. Arroyo. Membrane type 1-matrix metalloproteinase is regulated by chemokines monocyte-chemoattractant protein-1/ccl2 and interleukin-8/CXCL8 in endothelial cells during angiogenesis. J Biol Chem 280: 1292–8, 2005.PubMedGoogle Scholar
  33. 33.
    Weber, K.S., P.J. Nelson, H.J. Grone, and C. Weber. Expression of CCR2 by endothelial cells: implications for MCP-1 mediated wound injury repair and In vivo inflammatory activation of endothelium. Arterioscler Thromb Vasc Biol 19: 2085–93, 1999.PubMedGoogle Scholar
  34. 34.
    Goede, V., L. Brogelli, M. Ziche, and H.G. Augustin. Induction of inflammatory angiogenesis by monocyte chemoattractant protein-1. Int J Cancer 82: 765-70, 1999.PubMedGoogle Scholar
  35. 35.
    Salcedo, R., M.L. Ponce, H.A. Young, K. Wasserman, J.M. Ward, H.K. Kleinman, J.J. Oppenheim, and W.J. Murphy. Human endothelial cells express CCR2 and respond to MCP-1: direct role of MCP-1 in angiogenesis and tumor progression. Blood 96: 34–40, 2000.PubMedGoogle Scholar
  36. 36.
    Barcelos, L.S., A. Talvani, A.S. Teixeira, G.D. Cassali, S.P. Andrade, and M.M. Teixeira. Production and in vivo effects of chemokines CXCL1-3/KC and CCL2/JE in a model of inflammatory angiogenesis in mice. Inflamm Res 53: 576–84, 2004.PubMedGoogle Scholar
  37. 37.
    Stamatovic, S.M., R.F. Keep, M. Mostarica-Stojkovic, and A.V. Andjelkovic. CCL2 regulates angiogenesis via activation of Ets-1 transcription factor. J Immunol 177: 2651–61, 2006.PubMedGoogle Scholar
  38. 38.
    Nakao, S., T. Kuwano, C. Tsutsumi-Miyahara, S. Ueda, Y.N. Kimura, S. Hamano, K.H. Sonoda, Y. Saijo, T. Nukiwa, R.M. Strieter, T. Ishibashi, M. Kuwano, and M. Ono. Infiltration of COX-2-expressing macrophages is a prerequisite for IL-1 beta-induced neovascularization and tumor growth. J Clin Invest 115: 2979–91, 2005.PubMedGoogle Scholar
  39. 39.
    Strieter, R.M., J.A. Belperio, D.A. Arenberg, M.I. Smith, M.D. Burdick, and M.P. Keane. CXC chemokine in angiogenesis. In Universes in delicate balance: Chemokines and the nervous system, eds. Ransohoff, R.M., K. Suzuki, A.E.I. Proudfoot and W.F. Hickey. Amsterdam, The Netherlands: Elsevier Science B.V., 129–48, 2002.Google Scholar
  40. 40.
    Shellenberger, T.D., M. Wang, M. Gujrati, A. Jayakumar, R.M. Strieter, C. Ioannides, C.L. Efferson, A.K. El-Naggar, G.L. Clayman, and M.J. Frederick. BRAK/CXCL14 is a potent inhibitor of angiogenesis and is a chemotactic factor for immature dendritic cells. Cancer Res. 64: 8262–8270, 2004.PubMedGoogle Scholar
  41. 41.
    Struyf, S., M.D. Burdick, P. Proost, J. Van Damme, and R.M. Strieter. Platelets release CXCL4L1, a nonallelic variant of the chemokine platelet factor-4/CXCL4 and potent inhibitor of angiogenesis. Circ Res 95: 855–7, 2004.PubMedGoogle Scholar
  42. 42.
    Rollins, B.J. Chemokines. Blood 90: 909–28, 1997.PubMedGoogle Scholar
  43. 43.
    Balkwill, F. The molecular and cellular biology of the chemokines. J Viral Hepat 5: 1–14, 1998.PubMedGoogle Scholar
  44. 44.
    Strieter, R.M., J.A. Belperio, R.J. Phillips, and M.P. Keane. Chemokines: angiogenesis and metastases in lung cancer. Novartis Found Symp 256: 173–84; discussion 184–8, 259–69, 2004.Google Scholar
  45. 45.
    Strieter, R.M., J.A. Belperio, R.J. Phillips, and M.P. Keane. CXC chemokines in angiogenesis of cancer. Semin Cancer Biol 14: 195–200, 2004.PubMedGoogle Scholar
  46. 46.
    Moser, B. and P. Loetscher. Lymphocyte traffic control by chemokines. Nat Immunol 2: 123–8, 2001.PubMedGoogle Scholar
  47. 47.
    Loetscher, M., B. Gerber, P. Loetscher, S.A. Jones, L. Piali, I. Clark-Lewis, M. Baggiolini, and B. Moser. Chemokine receptor specific for IP10 and mig: structure, function, and expression in activated T-lymphocytes. J Exp Med 184: 963–9, 1996.PubMedGoogle Scholar
  48. 48.
    Rabin, R.L., M.K. Park, F. Liao, R. Swofford, D. Stephany, and J.M. Farber. Chemokine receptor responses on T cells are achieved through regulation of both receptor expression and signaling. J Immunol 162: 3840–50, 1999.PubMedGoogle Scholar
  49. 49.
    Qin, S., J.B. Rottman, P. Myers, N. Kassam, M. Weinblatt, M. Loetscher, A.E. Koch, B. Moser, and C.R. Mackay. The chemokine receptors CXCR3 and CCR5 mark subsets of T cells associated with certain inflammatory reactions. J Clin Invest 101: 746–54, 1998.PubMedGoogle Scholar
  50. 50.
    Loetscher, M., P. Loetscher, N. Brass, E. Meese, and B. Moser. Lymphocyte-specific chemokine receptor CXCR3: regulation, chemokine binding and gene localization. Eur J Immunol 28: 3696–705, 1998.PubMedGoogle Scholar
  51. 51.
    Beider, K., A. Nagler, O. Wald, S. Franitza, M. Dagan-Berger, H. Wald, H. Giladi, S. Brocke, J. Hanna, O. Mandelboim, M. Darash-Yahana, E. Galun, and A. Peled. Involvement of CXCR4 and IL-2 in the homing and retention of human NK and NK T cells to the bone marrow and spleen of NOD/SCID mice. Blood 102: 1951–8, 2003.PubMedGoogle Scholar
  52. 52.
    Romagnani, P., F. Annunziato, L. Lasagni, E. Lazzeri, C. Beltrame, M. Francalanci, M. Uguccioni, G. Galli, L. Cosmi, L. Maurenzig, M. Baggiolini, E. Maggi, S. Romagnani, and M. Serio. Cell cycle-dependent expression of CXC chemokine receptor 3 by endothelial cells mediates angiostatic activity. J Clin Invest 107: 53–63., 2001.PubMedGoogle Scholar
  53. 53.
    Lasagni, L., M. Francalanci, F. Annunziato, E. Lazzeri, S. Giannini, L. Cosmi, C. Sagrinati, B. Mazzinghi, C. Orlando, E. Maggi, F. Marra, S. Romagnani, M. Serio, and P. Romagnani. An alternatively spliced variant of CXCR3 mediates the inhibition of endothelial cell growth induced by IP-10, Mig, and I-TAC, and acts as functional receptor for platelet factor 4. J Exp Med 197: 1537–49, 2003.PubMedGoogle Scholar
  54. 54.
    Petrai, I., K. Rombouts, L. Lasagni, F. Annunziato, L. Cosmi, R.G. Romanelli, C. Sagrinati, B. Mazzinghi, M. Pinzani, S. Romagnani, P. Romagnani, and F. Marra. Activation of p38(MAPK) mediates the angiostatic effect of the chemokine receptor CXCR3-B. Int J Biochem Cell Biol 40: 1764–74, 2008.PubMedGoogle Scholar
  55. 55.
    Ehlert, J.E., C.A. Addison, M.D. Burdick, S.L. Kunkel, and R.M. Strieter. Identification and Partial Characterization of a Variant of Human CXCR3 Generated by Posttranscriptional Exon Skipping. J Immunol 173: 6234–40, 2004.PubMedGoogle Scholar
  56. 56.
    Luster, A.D., S.M. Greenberg, and P. Leder. The IP-10 chemokine binds to a specific cell surface heparan sulfate site shared with platelet factor 4 and inhibits endothelial cell proliferation. J Exp Med 182: 219–31, 1995.PubMedGoogle Scholar
  57. 57.
    Yang, J. and A. Richmond. The angiostatic activity of interferon-inducible protein-10/CXCL10 in human melanoma depends on binding to CXCR3 but not to glycosaminoglycan. Mol Ther 9: 846–55, 2004.PubMedGoogle Scholar
  58. 58.
    Arenberg, D.A., S.L. Kunkel, P.J. Polverini, S.B. Morris, M.D. Burdick, M.C. Glass, D.T. Taub, M.D. Iannettoni, R.I. Whyte, and R.M. Strieter. Interferon-gamma-inducible protein 10 (IP-10) is an angiostatic factor that inhibits human non-small cell lung cancer (NSCLC) tumorigenesis and spontaneous metastases. J Exp Med 184: 981–92, 1996.PubMedGoogle Scholar
  59. 59.
    Addison, C.L., D.A. Arenberg, S.B. Morris, Y.Y. Xue, M.D. Burdick, M.S. Mulligan, M.D. Iannettoni, and R.M. Strieter. The CXC chemokine, monokine induced by interferon-gamma, inhibits non-small cell lung carcinoma tumor growth and metastasis. Hum Gene Ther 11: 247–61, 2000.PubMedGoogle Scholar
  60. 60.
    Maione, T.E., G.S. Gray, J. Petro, A.J. Hunt, A.L. Donner, S.I. Bauer, H.F. Carson, and R.J. Sharpe. Inhibition of angiogenesis by recombinant human platelet factor-4 and related peptides. Science 247: 77–9, 1990.PubMedGoogle Scholar
  61. 61.
    Gupta, S.K. and J.P. Singh. Inhibition of endothelial cell proliferation by platelet factor-4 involves a unique action on S phase progression. J Cell Biol 127: 1121–7, 1994.PubMedGoogle Scholar
  62. 62.
    Hansell, P., T.E. Maione, and P. Borgstrom. Selective binding of platelet factor 4 to regions of active angiogenesis in vivo. Am J Physiol 269: H829–36, 1995.PubMedGoogle Scholar
  63. 63.
    Borgstrom, P., R. Discipio, and T.E. Maione. Recombinant platelet factor 4, an angiogenic marker for human breast carcinoma. Anticancer Res 18: 4035–41, 1998.PubMedGoogle Scholar
  64. 64.
    Bikfalvi, A. Platelet factor 4: an inhibitor of angiogenesis. Semin Thromb Hemost 30: 379–85, 2004.PubMedGoogle Scholar
  65. 65.
    Perollet, C., Z.C. Han, C. Savona, J.P. Caen, and A. Bikfalvi. Platelet factor 4 modulates fibroblast growth factor 2 (FGF-2) activity and inhibits FGF-2 dimerization. Blood 91: 3289–99, 1998.PubMedGoogle Scholar
  66. 66.
    Bikfalvi, A. and G. Gimenez-Gallego. The control of angiogenesis and tumor invasion by platelet factor-4 and platelet factor-4-derived molecules. Semin Thromb Hemost 30: 137–44, 2004.PubMedGoogle Scholar
  67. 67.
    Lasagni, L., R. Grepin, B. Mazzinghi, E. Lazzeri, C. Meini, C. Sagrinati, F. Liotta, F. Frosali, E. Ronconi, N. Alain-Courtois, L. Ballerini, G.S. Netti, E. Maggi, F. Annunziato, M. Serio, S. Romagnani, A. Bikfalvi, and P. Romagnani. PF-4/CXCL4 and CXCL4L1 exhibit distinct subcellular localization and a differentially regulated mechanism of secretion. Blood 109: 4127–34, 2007.PubMedGoogle Scholar
  68. 68.
    Vandercappellen, J., S. Noppen, H. Verbeke, W. Put, R. Conings, M. Gouwy, E. Schutyser, P. Proost, R. Sciot, K. Geboes, G. Opdenakker, J. Van Damme, and S. Struyf. Stimulation of angiostatic platelet factor-4 variant (CXCL4L1/PF-4var) versus inhibition of angiogenic granulocyte chemotactic protein-2 (CXCL6/GCP-2) in normal and tumoral mesenchymal cells. J Leukoc Biol 82: 1519–30, 2007.PubMedGoogle Scholar
  69. 69.
    Struyf, S., M.D. Burdick, E. Peeters, K. Van den Broeck, C. Dillen, P. Proost, J. Van Damme, and R.M. Strieter. Platelet factor-4 variant chemokine CXCL4L1 inhibits melanoma and lung carcinoma growth and metastasis by preventing angiogenesis. Cancer Res 67: 5940–8, 2007.PubMedGoogle Scholar
  70. 70.
    Frederick, M.J., Y. Henderson, X. Xu, M.T. Deavers, A.A. Sahin, H. Wu, D.E. Lewis, A.K. El-Naggar, and G.L. Clayman. In vivo expression of the novel CXC chemokine BRAK in normal and cancerous human tissue. Am J Pathol 156: 1937–50, 2000.PubMedGoogle Scholar
  71. 71.
    Hromas, R., H.E. Broxmeyer, C. Kim, H. Nakshatri, K. Christopherson, 2nd, M. Azam and Y.H. Hou. Cloning of BRAK, a novel divergent CXC chemokine preferentially expressed in normal versus malignant cells. Biochem Biophys Res Commun 255: 703–6, 1999.PubMedGoogle Scholar
  72. 72.
    Sleeman, M.A., J.K. Fraser, J.G. Murison, S.L. Kelly, R.L. Prestidge, D.J. Palmer, J.D. Watson, and K.D. Kumble. B cell- and monocyte-activating chemokine (BMAC), a novel non-ELR alpha-chemokine. Int Immunol 12: 677–89, 2000.PubMedGoogle Scholar
  73. 73.
    Schwarze, S.R., J. Luo, W.B. Isaacs, and D.F. Jarrard. Modulation of CXCL14 (BRAK) expression in prostate cancer. Prostate 13: 13, 2005.Google Scholar
  74. 74.
    Arenberg, D.A., A. Zlotnick, S.R. Strom, M.D. Burdick, and R.M. Strieter. The murine CC chemokine, 6C-kine, inhibits tumor growth and angiogenesis in a human lung cancer SCID mouse model. Cancer Immunol Immunother 49: 587–92, 2001.PubMedGoogle Scholar
  75. 75.
    Hancock, W.W., B. Lu, W. Gao, V. Csizmadia, K. Faia, J.A. King, S.T. Smiley, M. Ling, N.P. Gerard, and C. Gerard. Requirement of the chemokine receptor CXCR3 for acute allograft rejection. J Exp Med 192: 1515–20, 2000.PubMedGoogle Scholar
  76. 76.
    Pan, J., M.D. Burdick, J.A. Belperio, Y.Y. Xue, C. Gerard, S. Sharma, S.M. Dubinett, and R.M. Strieter. CXCR3/CXCR3 ligand biological axis impairs RENCA tumor growth by a mechanism of immunoangiostasis. J Immunol 176: 1456–64, 2006.PubMedGoogle Scholar
  77. 77.
    Strieter, R.M., J.A. Belperio, M.D. Burdick, S. Sharma, S.M. Dubinett and M.P. Keane. CXC chemokines: angiogenesis, immunoangiostasis, and metastases in lung cancer. Ann N Y Acad Sci 1028: 351–60, 2004.PubMedGoogle Scholar
  78. 78.
    Tannenbaum, C.S., R. Tubbs, D. Armstrong, J.H. Finke, R.M. Bukowski, and T.A. Hamilton. The CXC chemokines IP-10 and Mig are necessary for IL-12-mediated regression of the mouse RENCA tumor. J Immunol 161: 927–32, 1998.PubMedGoogle Scholar
  79. 79.
    Sharma, S., S.C. Yang, S. Hillinger, L.X. Zhu, M. Huang, R.K. Batra, J.F. Lin, M.D. Burdick, R.M. Strieter, and S.M. Dubinett. SLC/CCL21-mediated anti-tumor responses require IFNgamma, MIG/CXCL9 and IP-10/CXCL10. Mol Cancer 2: 22, 2003.PubMedGoogle Scholar
  80. 80.
    Sharma, S., M. Stolina, J. Luo, R.M. Strieter, M. Burdick, L.X. Zhu, R.K. Batra, and S.M. Dubinett. Secondary lymphoid tissue chemokine mediates T cell-dependent antitumor responses in vivo. J Immunol 164: 4558–63, 2000.PubMedGoogle Scholar
  81. 81.
    Dudek, A.Z., I. Nesmelova, K. Mayo, C.M. Verfaillie, S. Pitchford, and A. Slungaard. Platelet factor 4 promotes adhesion of hematopoietic progenitor cells and binds IL-8: novel mechanisms for modulation of hematopoiesis. Blood 101: 4687–94, 2003.PubMedGoogle Scholar
  82. 82.
    Sulpice, E., M. Bryckaert, J. Lacour, J.O. Contreres, and G. Tobelem. Platelet factor 4 inhibits FGF2-induced endothelial cell proliferation via the extracellular signal-regulated kinase pathway but not by the phosphatidylinositol 3-kinase pathway. Blood 100: 3087–94, 2002.PubMedGoogle Scholar
  83. 83.
    Sato, Y., M. Abe, and R. Takaki. Platelet factor 4 blocks the binding of basic fibroblast growth factor to the receptor and inhibits the spontaneous migration of vascular endothelial cells. Biochem Biophys Res Commun 172: 595–600, 1990.PubMedGoogle Scholar
  84. 84.
    Gengrinovitch, S., S.M. Greenberg, T. Cohen, H. Gitay-Goren, P. Rockwell, T.E. Maione, B.Z. Levi, and G. Neufeld. Platelet factor-4 inhibits the mitogenic activity of VEGF121 and VEGF165 using several concurrent mechanisms. J Biol Chem 270: 15059–65, 1995.PubMedGoogle Scholar
  85. 85.
    Jouan, V., X. Canron, M. Alemany, J.P. Caen, G. Quentin, J. Plouet, and A. Bikfalvi. Inhibition of in vitro angiogenesis by platelet factor-4-derived peptides and mechanism of action. Blood 94: 984–93, 1999.PubMedGoogle Scholar
  86. 86.
    Houck, K.A., D.W. Leung, A.M. Rowland, J. Winer, and N. Ferrara. Dual regulation of vascular endothelial growth factor bioavailability by genetic and proteolytic mechanisms. J Biol Chem 267: 26031–7, 1992.PubMedGoogle Scholar
  87. 87.
    Houck, K.A., N. Ferrara, J. Winer, G. Cachianes, B. Li, and D.W. Leung. The vascular endothelial growth factor family: identification of a fourth molecular species and characterization of alternative splicing of RNA. Mol Endocrinol 5: 1806–14, 1991.PubMedGoogle Scholar
  88. 88.
    Phillips, R.J., M.D. Burdick, M. Lutz, J.A. Belperio, M.P. Keane, and R.M. Strieter. The stromal derived factor-1/CXCL12-CXC chemokine receptor 4 biological axis in non-small cell lung cancer metastases. Am J Respir Crit Care Med 167: 1676–86, 2003.PubMedGoogle Scholar
  89. 89.
    Mehrad, B., M.P. Keane, B.N. Gomperts, and R.M. Strieter. Circulating progenitor cells in chronic lung disease. Expert Review of Respiratory Medicine 1: 157–165, 2007.PubMedGoogle Scholar
  90. 90.
    Bachelder, R.E., M.A. Wendt, and A.M. Mercurio. Vascular endothelial growth factor promotes breast carcinoma invasion in an autocrine manner by regulating the chemokine receptor CXCR4. Cancer Res 62: 7203–6, 2002.PubMedGoogle Scholar
  91. 91.
    Salcedo, R. and J.J. Oppenheim. Role of Chemokines in Angiogenesis: CXCL12/SDF-1 and CXCR4 Interaction, a Key Regulator of Endothelial Cell Responses. Microcirculation 10: 359–70, 2003.PubMedGoogle Scholar
  92. 92.
    Kijowski, J., M. Baj-Krzyworzeka, M. Majka, R. Reca, L.A. Marquez, M. Christofidou-Solomidou, A. Janowska-Wieczorek, and M.Z. Ratajczak. The SDF-1-CXCR4 axis stimulates VEGF secretion and activates integrins but does not affect proliferation and survival in lymphohematopoietic cells. Stem Cells 19: 453–66, 2001.PubMedGoogle Scholar
  93. 93.
    Salcedo, R., K. Wasserman, H.A. Young, M.C. Grimm, O.M. Howard, M.R. Anver, H.K. Kleinman, W.J. Murphy, and J.J. Oppenheim. Vascular endothelial growth factor and basic fibroblast growth factor induce expression of CXCR4 on human endothelial cells: In vivo neovascularization induced by stromal-derived factor-1alpha. Am J Pathol 154: 1125–35, 1999.PubMedGoogle Scholar
  94. 94.
    Muller, A., B. Homey, H. Soto, N. Ge, D. Catron, M.E. Buchanan, T. McClanahan, E. Murphy, W. Yuan, S.N. Wagner, J.L. Barrera, A. Mohar, E. Verastegui, and A. Zlotnik. Involvement of chemokine receptors in breast cancer metastasis. Nature 410: 50–6, 2001.PubMedGoogle Scholar
  95. 95.
    Schrader, A.J., O. Lechner, M. Templin, K.E. Dittmar, S. Machtens, M. Mengel, M. Probst-Kepper, A. Franzke, T. Wollensak, P. Gatzlaff, J. Atzpodien, J. Buer, and J. Lauber. CXCR4/CXCL12 expression and signalling in kidney cancer. Br J Cancer 86: 1250–6, 2002.PubMedGoogle Scholar
  96. 96.
    Boldajipour, B., H. Mahabaleshwar, E. Kardash, M. Reichman-Fried, H. Blaser, S. Minina, D. Wilson, Q. Xu, and E. Raz. Control of chemokine-guided cell migration by ligand sequestration. Cell 132: 463–73, 2008.PubMedGoogle Scholar
  97. 97.
    Doitsidou, M., M. Reichman-Fried, J. Stebler, M. Koprunner, J. Dorries, D. Meyer, C.V. Esguerra, T. Leung, and E. Raz. Guidance of primordial germ cell migration by the chemokine SDF-1. Cell 111: 647–59, 2002.PubMedGoogle Scholar
  98. 98.
    Knaut, H., C. Werz, R. Geisler, and C. Nusslein-Volhard. A zebrafish homologue of the chemokine receptor Cxcr4 is a germ-cell guidance receptor. Nature 421: 279–82, 2003.PubMedGoogle Scholar
  99. 99.
    Zou, Y.R., A.H. Kottmann, M. Kuroda, I. Taniuchi, and D.R. Littman. Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature 393: 595–9, 1998.PubMedGoogle Scholar
  100. 100.
    Marchesi, F., P. Monti, B.E. Leone, A. Zerbi, A. Vecchi, L. Piemonti, A. Mantovani and P. Allavena. Increased survival, proliferation, and migration in metastatic human pancreatic tumor cells expressing functional CXCR4. Cancer Res 64: 8420–7, 2004.PubMedGoogle Scholar
  101. 101.
    Arya, M., H.R. Patel, C. McGurk, R. Tatoud, H. Klocker, J. Masters, and M. Williamson. The importance of the CXCL12-CXCR4 chemokine ligand-receptor interaction in prostate cancer metastasis. J Exp Ther Oncol 4: 291–303, 2004.PubMedGoogle Scholar
  102. 102.
    Kim, J., H. Takeuchi, S.T. Lam, R.R. Turner, H.J. Wang, C. Kuo, L. Foshag, A.J. Bilchik, and D.S. Hoon. Chemokine receptor CXCR4 expression in colorectal cancer patients increases the risk for recurrence and for poor survival. J Clin Oncol 23: 2744–53, 2005.PubMedGoogle Scholar
  103. 103.
    Perissinotto, E., G. Cavalloni, F. Leone, V. Fonsato, S. Mitola, G. Grignani, N. Surrenti, D. Sangiolo, F. Bussolino, W. Piacibello, and M. Aglietta. Involvement of chemokine receptor 4/stromal cell-derived factor 1 system during osteosarcoma tumor progression. Clin Cancer Res 11: 490–7, 2005.PubMedGoogle Scholar
  104. 104.
    Schioppa, T., B. Uranchimeg, A. Saccani, S.K. Biswas, A. Doni, A. Rapisarda, S. Bernasconi, S. Saccani, M. Nebuloni, L. Vago, A. Mantovani, G. Melillo, and A. Sica. Regulation of the chemokine receptor CXCR4 by hypoxia. J Exp Med 198: 1391–402, 2003.PubMedGoogle Scholar
  105. 105.
    Staller, P., J. Sulitkova, J. Lisztwan, H. Moch, E.J. Oakeley, and W. Krek. Chemokine receptor CXCR4 downregulated by von Hippel-Lindau tumour suppressor pVHL. Nature 425: 307–11, 2003.PubMedGoogle Scholar
  106. 106.
    Semenza, G.L. Targeting HIF-1 for cancer therapy. Nat Rev Cancer 3: 721–32, 2003.PubMedGoogle Scholar
  107. 107.
    Semenza, G. Signal transduction to hypoxia-inducible factor 1. Biochem Pharmacol 64: 993–8, 2002.PubMedGoogle Scholar
  108. 108.
    Zhong, H., K. Chiles, D. Feldser, E. Laughner, C. Hanrahan, M.M. Georgescu, J.W. Simons, and G.L. Semenza. Modulation of hypoxia-inducible factor 1alpha expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics. Cancer Res 60: 1541–5, 2000.PubMedGoogle Scholar
  109. 109.
    Phillips, R.J., J. Mestas, M. Gharaee-Kermani, M.D. Burdick, A. Sica, J.A. Belperio, M.P. Keane, and R.M. Strieter. Epidermal growth factor and hypoxia-induced expression of CXC chemokine receptor 4 on non-small cell lung cancer cells is regulated by the phosphatidylinositol 3-kinase/PTEN/AKT/mammalian target of rapamycin signaling pathway and activation of hypoxia inducible factor-1alpha. J Biol Chem 280: 22473–81, 2005.PubMedGoogle Scholar
  110. 110.
    Balabanian, K., B. Lagane, S. Infantino, K.Y. Chow, J. Harriague, B. Moepps, F. Arenzana-Seisdedos, M. Thelen, and F. Bachelerie. The chemokine SDF-1/CXCL12 binds to and signals through the orphan receptor RDC1 in T lymphocytes. J Biol Chem 280: 35760–6, 2005.PubMedGoogle Scholar
  111. 111.
    Burns, J.M., B.C. Summers, Y. Wang, A. Melikian, R. Berahovich, Z. Miao, M.E. Penfold, M.J. Sunshine, D.R. Littman, C.J. Kuo, K. Wei, B.E. McMaster, K. Wright, M.C. Howard, and T.J. Schall. A novel chemokine receptor for SDF-1 and I-TAC involved in cell survival, cell adhesion, and tumor development. J Exp Med 203: 2201–13, 2006.PubMedGoogle Scholar
  112. 112.
    Miao, Z., K.E. Luker, B.C. Summers, R. Berahovich, M.S. Bhojani, A. Rehemtulla, C.G. Kleer, J.J. Essner, A. Nasevicius, G.D. Luker, M.C. Howard, and T.J. Schall. CXCR7 (RDC1) promotes breast and lung tumor growth in vivo and is expressed on tumor-associated vasculature. Proc Natl Acad Sci USA 104: 15735–40, 2007.PubMedGoogle Scholar
  113. 113.
    Wang, J., Y. Shiozawa, Y. Wang, Y. Jung, K.J. Pienta, R. Mehra, R. Loberg, and R.S. Taichman. The Role of CXCR7/RDC1 as a Chemokine Receptor for CXCL12/SDF-1 in Prostate Cancer. J Biol Chem 283: 4283–94, 2008.PubMedGoogle Scholar
  114. 114.
    Dambly-Chaudiere, C., N. Cubedo, and A. Ghysen. Control of cell migration in the development of the posterior lateral line: antagonistic interactions between the chemokine receptors CXCR4 and CXCR7/RDC1. BMC Dev Biol 7: 23, 2007.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Borna Mehrad
    • 1
  • Ellen C. Keeley
    • 2
  • Robert M. Strieter
    • 3
  1. 1.Division of Pulmonary and Critical Care Medicine, Department of MedicineUniversity of VirginiaCharlottesvilleUSA
  2. 2.Division of Cardiovascular Medicine, Department of MedicineUniversity of VirginiaCharlottesvilleUSA
  3. 3.Division of Pulmonary and Critical Care Medicine, Department of MedicineUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations