Immunologic Mechanisms in Lung Carcinogenesis and Metastasis

  • Jay M. Lee
  • Jane Yanagawa
  • Saswati Hazra
  • Sherven Sharma
  • Tonya Walser
  • Edward Garon
  • Steven M. Dubinett


Progression and metastasis of cancer proceeds in the context of a host response that includes interactions with immune cells that can both attenuate and paradoxically promote the process of metastasis. Growing evidence demonstrating the role of the inflammatory response in carcinogenesis is shedding light on a functional relationship between the host immune system and the malignant neoplasm. The interaction between neoplasm and the immune system can be described with the concepts of (1) cancer immunosurveillance, (2) cancer immunoediting, (3) complicity of the host cellular networks in lung tumorigenesis, and (4) tumor-mediated immunosuppression. Understanding the molecular mechanisms involved in inflammation and lung carcinogenesis provides insight for new drug development that target reversible, non-mutational events in the chemoprevention and treatment of lung cancer.


Lung Cancer Epidermal Growth Factor Receptor Epithelial Mesenchymal Transition Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor Lung Carcinogenesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    DeNardo, D.G., M. Johansson, and L.M. Coussens. Immune cells as mediators of solid tumor metastasis. Cancer Metastasis Rev 27: 11–8, 2008.PubMedGoogle Scholar
  2. 2.
    de Visser, K.E., A. Eichten, and L.M. Coussens. Paradoxical roles of the immune system during cancer development. Nat Rev Cancer 6: 24–37, 2006.PubMedGoogle Scholar
  3. 3.
    Balkwill, F., K.A. Charles, and A. Mantovani. Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell 7: 211–7, 2005.PubMedGoogle Scholar
  4. 4.
    Schwartz, R.S. Paul Ehrlich’s magic bullets. N Engl J Med 350: 1079–80, 2004.PubMedGoogle Scholar
  5. 5.
    Fenner, F. and G. Ada Frank. MacFarlane Burnet: two personal views. Nat Immunol 8: 111–3, 2007.PubMedGoogle Scholar
  6. 6.
    Dunn, G.P., L.J. Old, and R.D. Schreiber. The immunobiology of cancer immunosurveillance and immunoediting. Immunity 21: 137–48, 2004.PubMedGoogle Scholar
  7. 7.
    Burnet, F.M. The Clonal Selection Theory of Acquired Immunity. London: Cambridge University Press, 1959.Google Scholar
  8. 8.
    O‘Mahony, D. and S. Kummar, and M.E. Gutierrez. Non-small-cell lung cancer vaccine therapy: a concise review. J Clin Oncol 23: 9022–8, 2005.PubMedGoogle Scholar
  9. 9.
    Dunn, G.P., L.J. Old, and R.D. Schreiber. The three Es of cancer immunoediting. Annu Rev Immunol 22: 329–60, 2004.PubMedGoogle Scholar
  10. 10.
    Dunn, G.P., A.T. Bruce, H. Ikeda, L.J. Old, and R.D. Schreiber. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 3: 991–8, 2002.PubMedGoogle Scholar
  11. 11.
    Pham, S.M., R.L. Kormos, R.J. Landreneau, A. Kawai, I. Gonzalez-Cancel, R.L. Hardesty, B.G. Hattler, and B.P. Griffith. Solid tumors after heart transplantation: lethality of lung cancer. Ann Thorac Surg 60: 1623–6, 1995.PubMedGoogle Scholar
  12. 12.
    Dickson, R.P., R.D. Davis, J.B. Rea, and S.M. Palmer. High frequency of bronchogenic carcinoma after single-lung transplantation. J Heart Lung Transplant 25: 1297–301, 2006.PubMedGoogle Scholar
  13. 13.
    Dieu-Nosjean, M.C., M. Antoine, C. Danel, D. Heudes, M. Wislez, V. Poulot, N. Rabbe, L. Laurans, E. Tartour, L. de Chaisemartin, S. Lebecque, W.H. Fridman, and J. Cadranel. Long-term survival for patients with non-small-cell lung cancer with intratumoral lymphoid structures. J Clin Oncol 26: 4410–7, 2008.PubMedGoogle Scholar
  14. 14.
    Kirk, C.J., D. Hartigan-O’Connor, and J.J. Mule. The dynamics of the T-cell antitumor response: chemokine-secreting dendritic cells can prime tumor-reactive T cells extranodally. Cancer Res 61: 8794–802, 2001.PubMedGoogle Scholar
  15. 15.
    Baratelli, F., H. Takedatsu, S. Hazra, K. Peebles, J. Luo, P.S. Kurimoto, G. Zeng, R.K. Batra, S. Sharma, S.M. Dubinett, and J.M. Lee. Pre-clinical characterization of GMP grade CCL21-gene modified dendritic cells for application in a phase I trial in non-small cell lung cancer. J Transl Med 6: 38, 2008.PubMedGoogle Scholar
  16. 16.
    Korst, R.J. and R.G. Crystal. Active, specific immunotherapy for lung cancer: hurdles and strategies using genetic modification. Ann Thorac Surg 76: 1319–26, 2003.PubMedGoogle Scholar
  17. 17.
    Ichiki, Y., M. Takenoyama, M. Mizukami, T. So, M. Sugaya, M. Yasuda, T. Hanagiri, K. Sugio, and K. Yasumoto. Simultaneous cellular and humoral immune response against mutated p53 in a patient with lung cancer. J Immunol 172: 4844–50, 2004.PubMedGoogle Scholar
  18. 18.
    Glassy, M.C., J. Yasutomi, and K. Koda. Lessons learned about the therapeutic potential of the natural human immune response to lung cancer. Expert Opin Investig Drugs 8: 995–1006, 1999.PubMedGoogle Scholar
  19. 19.
    Walser, T.C., X. Cui, J. Yanagawa, J.M. Lee, E. Heinrich, G. Lee, S. Sharma, and S.M. Dubinett. Smoking and lung cancer: The role of inflammation. Proceedings of the American Thoracic Society, 2008.Google Scholar
  20. 20.
    Hogg, J.C., F. Chu, S. Utokaparch, R. Woods, W.M. Elliott, L. Buzatu, R.M. Cherniack, R.M. Rogers, F.C. Sciurba, H.O. Coxson, and P.D. Pare. The nature of small-airway obstruction in chronic obstructive pulmonary disease. N Engl J Med 350: 2645–53, 2004.PubMedGoogle Scholar
  21. 21.
    Taraseviciene-Stewart, L. and N.F. Voelkel. Molecular pathogenesis of emphysema. J Clin Invest 118: 394–402, 2008.PubMedGoogle Scholar
  22. 22.
    O‘Donnell, R., D. Breen, S. Wilson, and R. Djukanovic. Inflammatory cells in the airways in COPD. Thorax 61: 448–54, 2006.PubMedGoogle Scholar
  23. 23.
    Sevenoaks, M.J. and R.A. Stockley. Chronic Obstructive Pulmonary Disease, inflammation and co-morbidity–a common inflammatory phenotype? Respir Res 7: 70, 2006.PubMedGoogle Scholar
  24. 24.
    Dohadwala, M., S.C. Yang, J. Luo, S. Sharma, R.K. Batra, M. Huang, Y. Lin, L. Goodglick, K. Krysan, M.C. Fishbein, L. Hong, C. Lai, R.B. Cameron, R.M. Gemmill, H.A. Drabkin, and S.M. Dubinett. Cyclooxygenase-2-dependent regulation of E-cadherin: prostaglandin E(2) induces transcriptional repressors ZEB1 and snail in non-small cell lung cancer. Cancer Res 66: 5338–45, 2006.PubMedGoogle Scholar
  25. 25.
    Charuworn, B. Inflammation-mediated promotion of EMT in NSCLC: IL-1beta mediates a MEK/Erk- and JNK/SAPK-dependent down-regulation of E-cadherin. (American Thoracic Society 2006).Google Scholar
  26. 26.
    Baratelli, F., Y. Lin, L. Zhu, S.C. Yang, N. Heuze-Vourc’h, G. Zeng, K. Reckamp, M. Dohadwala, S. Sharma, and S.M. Dubinett. Prostaglandin E2 induces FOXP3 gene expression and T regulatory cell function in human CD4+ T cells. J Immunol 175: 1483–90, 2005.PubMedGoogle Scholar
  27. 27.
    Keshamouni, V.G., G. Michailidis, C.S. Grasso, S. Anthwal, J.R. Strahler, A. Walker, D.A. Arenberg, R.C. Reddy, S. Akulapalli, V.J. Thannickal, T.J. Standiford, P.C. Andrews, and G.S. Omenn. Differential protein expression profiling by iTRAQ-2DLC-MS/MS of lung cancer cells undergoing epithelial-mesenchymal transition reveals a migratory/invasive phenotype. J Proteome Res 5: 1143–54, 2006.PubMedGoogle Scholar
  28. 28.
    Leng, Q., Z. Bentwich, and G. Borkow. Increased TGF-beta, Cbl-b and CTLA-4 levels and immunosuppression in association with chronic immune activation. Int Immunol 18: 637–44, 2006.PubMedGoogle Scholar
  29. 29.
    Huber, M.A., N. Kraut, and H. Beug. Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr Opin Cell Biol 17: 548–58, 2005.PubMedGoogle Scholar
  30. 30.
    Lee, J.M., S. Dedhar, R. Kalluri, and E.W. Thompson. The epithelial-mesenchymal transition: new insights in signaling, development, and disease. J Cell Biol 172: 973–81, 2006.PubMedGoogle Scholar
  31. 31.
    Thiery, J.P. Epithelial-mesenchymal transitions in development and pathologies. Curr Opin Cell Biol 15: 740–6, 2003.PubMedGoogle Scholar
  32. 32.
    Dasari, V., M. Gallup, H. Lemjabbar, I. Maltseva, and N. McNamara. Epithelial-mesenchymal transition in lung cancer: is tobacco the "smoking gun"? Am J Respir Cell Mol Biol 35: 3–9, 2006.PubMedGoogle Scholar
  33. 33.
    Krysan, K., J.M. Lee, M. Dohadwala, B.K. Gardner, K.L. Reckamp, E. Garon, M. St John, S. Sharma, and S.M. Dubinett. Inflammation, epithelial to mesenchymal transition, and epidermal growth factor receptor tyrosine kinase inhibitor resistance. J Thorac Oncol 3: 107–10, 2008.PubMedGoogle Scholar
  34. 34.
    Heinrich, E., M. Dohadwala, B. Charuworn, and S. Dubinett. Inflammation-dependent regulation of epithelial-mesenchymal transition in non-small cell lung cancer: the role of interleukin-1b. (Proceedings of the American Association for Cancer Research: 2008).Google Scholar
  35. 35.
    Mani, S.A., W. Guo, M.J. Liao, E.N. Eaton, A. Ayyanan, A.Y. Zhou, M. Brooks, F. Reinhard, C.C. Zhang, M. Shipitsin, L.L. Campbell, K. Polyak, C. Brisken, J. Yang, and R.A. Weinberg. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133: 704–15, 2008.PubMedGoogle Scholar
  36. 36.
    Yoshino, I., T. Kometani, F. Shoji, A. Osoegawa, T. Ohba, H. Kouso, T. Takenaka, T. Yohena, and Y. Maehara. Induction of epithelial-mesenchymal transition-related genes by benzo[a]pyrene in lung cancer cells. Cancer 110: 369–74, 2007.PubMedGoogle Scholar
  37. 37.
    Fondrevelle, M.E., B. Kantelip, R.E. Reiter, D.K. Chopin, J.P. Thiery, F. Monnien, H. Bittard, and H. Wallerand. The expression of Twist has an impact on survival in human bladder cancer and is influenced by the smoking status. Urologic Oncology, 2008.Google Scholar
  38. 38.
    Lee, G., M. Dohadwala, and S. Dubinett. Chronic exposure to Tobacco-Specific 4-(N-methyl-N-nitrosamino)-1-(3-pyridyl)-1-butanone (NNK) Induces Epithelial-to-Mesenchymal Transition in Non-small Cell Lung Cancer (Proceedings of the American Thoracic Society, 2008).Google Scholar
  39. 39.
    Gershon, R.K. and K. Kondo. Cell interactions in the induction of tolerance: the role of thymic lymphocytes. Immunology 18: 723–37, 1970.PubMedGoogle Scholar
  40. 40.
    Dye, E.S. and R.J. North. T cell-mediated immunosuppression as an obstacle to adoptive immunotherapy of the P815 mastocytoma and its metastases. J Exp Med 154: 1033–42, 1981.PubMedGoogle Scholar
  41. 41.
    Berendt, M.J. and R.J. North. T-cell-mediated suppression of anti-tumor immunity. An explanation for progressive growth of an immunogenic tumor. J Exp Med 151: 69–80, 1980.PubMedGoogle Scholar
  42. 42.
    DiGiacomo, A. and R.J. North. T cell suppressors of antitumor immunity. The production of Ly-1-,2+ suppressors of delayed sensitivity precedes the production of suppressors of protective immunity. J Exp Med 164: 1179–92, 1986.PubMedGoogle Scholar
  43. 43.
    Rakhmilevich, A.L. and R.J. North. Elimination of CD4+ T cells in mice bearing an advanced sarcoma augments the antitumor action of interleukin-2. Cancer Immunol Immunother 38: 107–12, 1994.PubMedGoogle Scholar
  44. 44.
    Antony, P.A. and N.P. Restifo. Do CD4+ CD25+ immunoregulatory T cells hinder tumor immunotherapy? J Immunother 25: 202–6, 2002.PubMedGoogle Scholar
  45. 45.
    Shevach, E.M. Certified professionals: CD4(+)CD25(+) suppressor T cells. J Exp Med 193: F41–6, 2001.PubMedGoogle Scholar
  46. 46.
    Maloy, K.J. and F. Powrie. Regulatory T cells in the control of immune pathology. Nat Immunol 2: 816–22, 2001.PubMedGoogle Scholar
  47. 47.
    Sakaguchi, S., N. Sakaguchi, M. Asano, M. Itoh, and M. Toda. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 155: 1151–64, 1995.PubMedGoogle Scholar
  48. 48.
    Thornton, A.M. and E.M. Shevach. Suppressor effector function of CD4+CD25+ immunoregulatory T cells is antigen nonspecific. J Immunol 164: 183–90, 2000.PubMedGoogle Scholar
  49. 49.
    Takahashi, T., Y. Kuniyasu, M. Toda, N. Sakaguchi, M. Itoh, M. Iwata, J. Shimizu, and S. Sakaguchi. Immunologic self-tolerance maintained by CD25+CD4+ naturally anergic and suppressive T cells: induction of autoimmune disease by breaking their anergic/suppressive state. Int Immunol 10: 1969–80, 1998.PubMedGoogle Scholar
  50. 50.
    Thornton, A.M. and E.M. Shevach. CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J Exp Med 188: 287–96, 1998.PubMedGoogle Scholar
  51. 51.
    Itoh, M., T. Takahashi, N. Sakaguchi, Y. Kuniyasu, J. Shimizu, F. Otsuka, and S. Sakaguchi. Thymus and autoimmunity: production of CD25+CD4+ naturally anergic and suppressive T cells as a key function of the thymus in maintaining immunologic self-tolerance. J Immunol 162: 5317–26, 1999.PubMedGoogle Scholar
  52. 52.
    Papiernik, M., M.L. de Moraes, C. Pontoux, F. Vasseur, and C. Penit. Regulatory CD4 T cells: expression of IL-2R alpha chain, resistance to clonal deletion and IL-2 dependency. Int Immunol 10: 371–8, 1998.PubMedGoogle Scholar
  53. 53.
    Shevach, E.M. Regulatory T cells in autoimmmunity*. Annu Rev Immunol 18: 423–49, 2000.PubMedGoogle Scholar
  54. 54.
    Jordan, M.S., A. Boesteanu, A.J. Reed, A.L. Petrone, A.E. Holenbeck, M.A. Lerman, A. Naji, and A.J. Caton. Thymic selection of CD4+CD25+ regulatory T cells induced by an agonist self-peptide. Nat Immunol 2: 301–6, 2001.PubMedGoogle Scholar
  55. 55.
    Sakaguchi, S. The origin of FOXP3-expressing CD4+ regulatory T cells: thymus or periphery. J Clin Invest 112: 1310–2, 2003.PubMedGoogle Scholar
  56. 56.
    Walker, M.R., D.J. Kasprowicz, V.H. Gersuk, A. Benard, M. Van Landeghen, J.H. Buckner, and S.F. Ziegler. Induction of FoxP3 and acquisition of T regulatory activity by stimulated human CD4+CD25- T cells. J Clin Invest 112: 1437–43, 2003.PubMedGoogle Scholar
  57. 57.
    Sogn, J.A. Tumor immunology: the glass is half full. Immunity 9: 757–63, 1998.PubMedGoogle Scholar
  58. 58.
    Yoshino, I., T. Yano, M. Murata, T. Ishida, K. Sugimachi, G. Kimura, and K. Nomoto. Tumor-reactive T-cells accumulate in lung cancer tissues but fail to respond due to tumor cell-derived factor. Cancer Res 52: 775–81, 1992.PubMedGoogle Scholar
  59. 59.
    Batra, R.K., Y. Lin, S. Sharma, M. Dohadwala, J. Luo, M. Pold, and S.M. Dubinett. Non-small cell lung cancer-derived soluble mediators enhance apoptosis in activated T lymphocytes through an I kappa B kinase-dependent mechanism. Cancer Res 63: 642–6, 2003.PubMedGoogle Scholar
  60. 60.
    Woo, E.Y., H. Yeh, C.S. Chu, K. Schlienger, R.G. Carroll, J.L. Riley, L.R. Kaiser, and C.H. June. Cutting edge: Regulatory T cells from lung cancer patients directly inhibit autologous T cell proliferation. J Immunol 168: 4272–6, 2002.PubMedGoogle Scholar
  61. 61.
    Alleva, D.G., C.J. Burger, and K.D. Elgert. Tumor-induced regulation of suppressor macrophage nitric oxide and TNF-alpha production. Role of tumor-derived IL-10, TGF-beta, and prostaglandin E2. J Immunol 153: 1674–86, 1994.PubMedGoogle Scholar
  62. 62.
    Huang, M., S. Sharma, J.T. Mao, and S.M. Dubinett. Non-small cell lung cancer-derived soluble mediators and prostaglandin E2 enhance peripheral blood lymphocyte IL-10 transcription and protein production. J Immunol 157: 5512–20, 1996.PubMedGoogle Scholar
  63. 63.
    Liu, V.C., L.Y. Wong, T. Jang, A.H. Shah, I. Park, X. Yang, Q. Zhang, S. Lonning, B.A. Teicher, and C. Lee. Tumor evasion of the immune system by converting CD4+CD25- T cells into CD4+CD25+ T regulatory cells: role of tumor-derived TGF-beta. J Immunol 178: 2883–92, 2007.PubMedGoogle Scholar
  64. 64.
    Finke, J. and R. Bukowski, eds., Lung Cancer and Immune Dysfunction (Humana Press, 2004): 335–348.Google Scholar
  65. 65.
    Huang, M., M. Stolina, S. Sharma, J. Mao, L. Zhu, P. Miller, J. Wollman, H. Herschman, and S. Dubinett. Non-small cell lung cancer cyclooxygenase-2-dependent regulation of cytokine balance in lymphocytes and macrophages: up-regulation of interleukin 10 and down-regulation of interleukin 12 production. Cancer Res 58: 1208–1216, 1998.PubMedGoogle Scholar
  66. 66.
    Stolina, M., S. Sharma, Y. Lin, M. Dohadwala, B. Gardner, J. Luo, L. Zhu, M. Kronenberg, P.W. Miller, J. Portanova, J.C. Lee, and S.M. Dubinett. Specific inhibition of cyclooxygenase 2 restores antitumor reactivity by altering the balance of IL-10 and IL-12 synthesis. J Immunol 164: 361–70, 2000.PubMedGoogle Scholar
  67. 67.
    Sharma, S., S.C. Yang, L. Zhu, K. Reckamp, B. Gardner, F. Baratelli, M. Huang, R.K. Batra, and S.M. Dubinett. Tumor cyclooxygenase-2/prostaglandin E2-dependent promotion of FOXP3 expression and CD4+ CD25+ T regulatory cell activities in lung cancer. Cancer Res 65: 5211–20, 2005.PubMedGoogle Scholar
  68. 68.
    Katori, M. and M. Majima. Cyclooxygenase-2: its rich diversity of roles and possible application of its selective inhibitors. Inflamm Res 49: 367–92, 2000.PubMedGoogle Scholar
  69. 69.
    Funk, C.D. Prostaglandins and leukotrienes: advances in eicosanoid biology. Science 294: 1871–5, 2001.PubMedGoogle Scholar
  70. 70.
    FitzGerald, G.A. COX-2 and beyond: Approaches to prostaglandin inhibition in human disease. Nat Rev Drug Discov 2: 879–90, 2003.PubMedGoogle Scholar
  71. 71.
    Malkowski, M.G., S.L. Ginell, W.L. Smith, and R.M. Garavito. The productive conformation of arachidonic acid bound to prostaglandin synthase. Science 289: 1933–7, 2000.PubMedGoogle Scholar
  72. 72.
    Chandrasekharan, N.V., H. Dai, K.L. Roos, N.K. Evanson, J. Tomsik, T.S. Elton, and D.L. Simmons. COX-3, a cyclooxygenase-1 variant inhibited by acetaminophen and other analgesic/antipyretic drugs: cloning, structure, and expression. Proc Natl Acad Sci USA 99: 13926–31, 2002.PubMedGoogle Scholar
  73. 73.
    Smith, W.L., D.L. DeWitt, and R.M. Garavito. Cyclooxygenases: structural, cellular, and molecular biology. Annu Rev Biochem 69: 145–82, 2000.PubMedGoogle Scholar
  74. 74.
    Dubois, R.N., S.B. Abramson, L. Crofford, R.A. Gupta, L.S. Simon, L.B. Van De Putte, and P.E. Lipsky. Cyclooxygenase in biology and disease. FASEB J 12: 1063–73, 1998.PubMedGoogle Scholar
  75. 75.
    Aoyama, T., Y. Yui, H. Morishita, and C. Kawai. Prostaglandin I2 half-life regulated by high density lipoprotein is decreased in acute myocardial infarction and unstable angina pectoris. Circulation 81: 1784–91, 1990.PubMedGoogle Scholar
  76. 76.
    Ishihara, O., M.H. Sullivan, and M.G. Elder. Differences of metabolism of prostaglandin E2 and F2 alpha by decidual stromal cells and macrophages in culture. Eicosanoids 4: 203–7, 1991.PubMedGoogle Scholar
  77. 77.
    Kliewer, S.A., J.M. Lenhard, T.M. Willson, I. Patel, D.C. Morris, and J.M. Lehmann. A prostaglandin J2 metabolite binds peroxisome proliferator-activated receptor gamma and promotes adipocyte differentiation. Cell 83: 813–9, 1995.PubMedGoogle Scholar
  78. 78.
    Riedl, K., K. Krysan, M. Pold, H. Dalwadi, N. Heuze-Vourc’h, M. Dohadwala, M. Liu, X. Cui, R. Figlin, J.T. Mao, R. Strieter, S. Sharma, and S.M. Dubinett. Multifaceted roles of cyclooxygenase-2 in lung cancer. Drug Resist Updat 7: 169–84, 2004.PubMedGoogle Scholar
  79. 79.
    Krysan, K., K. Reckamp, S. Sharma, M. Dohadwala, and S. Dubinett. PGE2 activates MAPK/Erk pathway in non-small cell lung cancer cells in an EGF receptor-independent manner. Cancer Res 65: 6275–81, 2005.PubMedGoogle Scholar
  80. 80.
    Tsujii, M. and R. Dubois. Alterations in cellular adhesion and apoptosis in epithelial cells overexpressing prostaglandin endoperoxide synthase-2. Cell 83: 493–501, 1995.PubMedGoogle Scholar
  81. 81.
    Hosomi, Y., T. Yokose, Y. Hirose, R. Nakajima, K. Nagai, Y. Nishiwaki, and A. Ochiai. Increased cyclooxygenase 2 (COX-2) expression occurs frequently in precursor lesions of human adenocarcinoma of the lung. Lung Cancer 30: 73–81, 2000.PubMedGoogle Scholar
  82. 82.
    Wolff, H., K. Saukkonen, S. Anttila, A. Karjalainen, H. Vainio, and A. Ristimaki. Expression of cyclooxygenase-2 in human lung carcinoma. Cancer Res 58: 4997–5001, 1998.PubMedGoogle Scholar
  83. 83.
    Khuri, F.R., H. Wu, J.J. Lee, B.L. Kemp, R. Lotan, S.M. Lippman, L. Feng, W.K. Hong, and X.-C. Xu. Cyclooxygenase-2 overexpression is a marker of poor prognosis in stage I non-s86mall cell lung cancer. Clin Cancer Res 7: 861–7, 2001.PubMedGoogle Scholar
  84. 84.
    Soslow, R.A., A.J. Dannenberg, D. Rush, B.M. Woerner, K.N. Khan, J. Masferrer, and A.T. Koki. COX-2 is expressed in human pulmonary, colonic, and mammary tumors. Cancer 89: 2637–45, 2000.PubMedGoogle Scholar
  85. 85.
    Hasturk, S., B. Kemp, S.K. Kalapurakal, J.M. Kurie, W.K. Hong, and J.S. Lee. Expression of cyclooxygenase-1 and cyclooxygenase-2 in bronchial epithelium and nonsmall cell lung carcinoma. Cancer 94: 1023–31, 2002.PubMedGoogle Scholar
  86. 86.
    Tsubochi, H., N. Sato, M. Hiyama, M. Kaimori, S. Endo, Y. Sohara, and T. Imai. Combined analysis of cyclooxygenase-2 expression with p53 and Ki-67 in nonsmall cell lung cancer. Ann Thorac Surg 82: 1198–204, 2006.PubMedGoogle Scholar
  87. 87.
    Hida, T., Y. Yatabe, H. Achiwa, H. Muramatsu, K. Kozaki, S. Nakamura, M. Ogawa, T. Mitsudomi, T. Sugiura, and T. Takahashi. Increased expression of cyclooxygenase 2 occurs frequently in human lung cancers, specifically in adenocarcinomas. Cancer Res 58: 3761–4, 1998.PubMedGoogle Scholar
  88. 88.
    Brabender, J., J. Park, R. Metzger, P.M. Schneider, R.V. Lord, A.H. Holscher, K.D. Danenberg, and P.V. Danenberg. Prognostic significance of cyclooxygenase 2 mRNA expression in non-small cell lung cancer. Ann Surg 235: 440–3, 2002.PubMedGoogle Scholar
  89. 89.
    Achiwa, H., Y. Yatabe, T. Hida, T. Kuroishi, K. Kozaki, S. Nakamura, M. Ogawa, T. Sugiura, T. Mitsudomi, and T. Takahashi. Prognostic significance of elevated cyclooxygenase 2 expression in primary, resected lung adenocarcinomas. Clin Cancer Res 5: 1001–5, 1999.PubMedGoogle Scholar
  90. 90.
    Campa, D., S. Zienolddiny, V. Maggini, V. Skaug, A. Haugen, and F. Canzian. Association of a common polymorphism in the cyclooxygenase 2 gene with risk of non-small cell lung cancer. Carcinogenesis 25: 229–35, 2004.PubMedGoogle Scholar
  91. 91.
    Schreinemachers, D.M. and R.B. Everson. Aspirin use and lung, colon, and breast cancer incidence in a prospective study. Epidemiology 5: 138–46, 1994.PubMedGoogle Scholar
  92. 92.
    Krysan, K., H. Dalwadi, S. Sharma, M. Pold, and S. Dubinett. Cyclooxygenase 2-dependent expression of survivin is critical for apoptosis resistance in non-small cell lung cancer. Cancer Res 64: 6359–62, 2004.PubMedGoogle Scholar
  93. 93.
    Leahy, K.M., A.T. Koki, and J.L. Masferrer. Role of cyclooxygenases in angiogenesis. Curr Med Chem 7: 1163–70, 2000.PubMedGoogle Scholar
  94. 94.
    Gately, S. The contributions of cyclooxygenase-2 to tumor angiogenesis. Cancer Metastasis Rev 19: 19–27, 2000.PubMedGoogle Scholar
  95. 95.
    Dohadwala, M., R.K. Batra, J. Luo, Y. Lin, K. Krysan, M. Pold, S. Sharma, and S.M. Dubinett. Autocrine/paracrine prostaglandin E2 production by non-small cell lung cancer cells regulates matrix metalloproteinase-2 and CD44 in cyclooxygenase-2-dependent invasion. J Biol Chem 277: 50828–33, 2002.PubMedGoogle Scholar
  96. 96.
    Dohadwala, M., J. Luo, L. Zhu, Y. Lin, G.J. Dougherty, S. Sharma, M. Huang, M. Pold, R.K. Batra, and S.M. Dubinett. Non-small cell lung cancer cyclooxygenase-2-dependent invasion is mediated by CD44. J Biol Chem 276: 20809–12, 2001.PubMedGoogle Scholar
  97. 97.
    Dy, G.K. and A.A. Adjei. Novel targets for lung cancer therapy: part II. J Clin Oncol 20: 3016–28, 2002.PubMedGoogle Scholar
  98. 98.
    Dy, G.K. and A.A. Adjei. Novel targets for lung cancer therapy: part I. J Clin Oncol 20: 2881–94, 2002.PubMedGoogle Scholar
  99. 99.
    Dubinett, S., S. Sharma, M. Huang, M. Dohadwala, M. Pold, and J. Mao., Cyclooxygenase-2 in lung cancer, in Progressive Experimental Tumor Research, ed. Bertino, J.R. (Basel: Basel Karger, 2003).Google Scholar
  100. 100.
    Lee, J.M., J.T. Mao, K. Krysan, and S.M. Dubinett. Significance of cyclooxygenase-2 in prognosis, targeted therapy and chemoprevention of NSCLC. Future Oncol 3: 149–53, 2007.PubMedGoogle Scholar
  101. 101.
    Bhattacharya, M., K.G. Peri, G. Almazan, A. Ribeiro-da-Silva, H. Shichi, Y. Durocher, M. Abramovitz, X. Hou, D.R. Varma, and S. Chemtob. Nuclear localization of prostaglandin E2 receptors. Proc Natl Acad Sci USA 95: 15792–7, 1998.PubMedGoogle Scholar
  102. 102.
    Breyer, R.M., C.R. Kennedy, Y. Zhang, and M.D. Breyer. Structure-function analyses of eicosanoid receptors. Physiologic and therapeutic implications. Ann N Y Acad Sci 905: 221–31, 2000.PubMedGoogle Scholar
  103. 103.
    Fujino, H. and J.W. Regan. Prostanoid receptors and phosphatidylinositol 3-kinase: a pathway to cancer? Trends Pharmacol Sci 24: 335–40, 2003.PubMedGoogle Scholar
  104. 104.
    Yang, L., Y. Huang, R. Porta, K. Yanagisawa, A. Gonzalez, E. Segi, D.H. Johnson, S. Narumiya, and D.P. Carbone. Host and direct antitumor effects and profound reduction in tumor metastasis with selective EP4 receptor antagonism. Cancer Res 66: 9665–72, 2006.PubMedGoogle Scholar
  105. 105.
    Han, S., J.D. Ritzenthaler, B. Wingerd, H.N. Rivera, and J. Roman. Extracellular matrix fibronectin increases prostaglandin E2 receptor subtype EP4 in lung carcinoma cells through multiple signaling pathways: the role of AP-2. J Biol Chem 282: 7961–72, 2007.PubMedGoogle Scholar
  106. 106.
    Lippman, S.M., N. Gibson, K. Subbaramaiah, and A.J. Dannenberg. Combined targeting of the epidermal growth factor receptor and cyclooxygenase-2 pathways. Clin Cancer Res 11: 6097–9, 2005.PubMedGoogle Scholar
  107. 107.
    Reckamp, K.L., B.K. Gardner, R.A. Figlin, D. Elashoff, K. Krysan, M. Dohadwala, J. Mao, S. Sharma, L. Inge, A. Rajasekaran, and S.M. Dubinett. Tumor response to combination celecoxib and erlotinib therapy in non-small cell lung cancer is associated with a low baseline matrix metalloproteinase-9 and a decline in serum-soluble E-cadherin. J Thorac Oncol 3: 117–24, 2008.PubMedGoogle Scholar
  108. 108.
    Reckamp, K.L., K. Krysan, J.D. Morrow, G.L. Milne, R.A. Newman, C. Tucker, R.M. Elashoff, S.M. Dubinett, and R.A. Figlin. A phase I trial to determine the optimal biological dose of celecoxib when combined with erlotinib in advanced non-small cell lung cancer. Clin Cancer Res 12: 3381–8, 2006.PubMedGoogle Scholar
  109. 109.
    Witta, S.E., R.M. Gemmill, F.R. Hirsch, C.D. Coldren, K. Hedman, L. Ravdel, B. Helfrich, R. Dziadziuszko, D.C. Chan, M. Sugita, Z. Chan, A. Baron, W. Franklin, H.A. Drabkin, L. Girard, A.F. Gazdar, J.D. Minna, and P.A. Bunn., Jr. Restoring E-cadherin expression increases sensitivity to epidermal growth factor receptor inhibitors in lung cancer cell lines. Cancer Res 66: 944–50, 2006.PubMedGoogle Scholar
  110. 110.
    Hogan, B.L. Bone morphogenetic proteins in development. Curr Opin Genet Dev 6: 432–8, 1996.PubMedGoogle Scholar
  111. 111.
    Okada, H. and R. Kalluri. Recapitulation of kidney development paradigms by BMP-7 reverses chronic renal injury. Clin Exp Nephrol 9: 100–1, 2005.PubMedGoogle Scholar
  112. 112.
    Kopp, J.B. BMP-7 and the proximal tubule. Kidney Int 61: 351–2, 2002.PubMedGoogle Scholar
  113. 113.
    Bellusci, S., R. Henderson, G. Winnier, T. Oikawa, and B.L. Hogan. Evidence from normal expression and targeted misexpression that bone morphogenetic protein (Bmp-4) plays a role in mouse embryonic lung morphogenesis. Development 122: 1693–702, 1996.PubMedGoogle Scholar
  114. 114.
    Zeisberg, M., J. Hanai, H. Sugimoto, T. Mammoto, D. Charytan, F. Strutz, and R. Kalluri. BMP-7 counteracts TGF-beta1-induced epithelial-to-mesenchymal transition and reverses chronic renal injury. Nat Med 9: 964–8, 2003.PubMedGoogle Scholar
  115. 115.
    Shao, J., B.M. Evers, and H. Sheng. Prostaglandin E2 synergistically enhances receptor tyrosine kinase-dependent signaling system in colon cancer cells. J Biol Chem 279: 14287–93, 2004.PubMedGoogle Scholar
  116. 116.
    Buchanan, F.G., D. Wang, F. Bargiacchi, and R.N. DuBois. Prostaglandin E2 regulates cell migration via the intracellular activation of the epidermal growth factor receptor. J Biol Chem 278: 35451–7, 2003.PubMedGoogle Scholar
  117. 117.
    Coffey, R.J., C.J. Hawkey, L. Damstrup, R. Graves-Deal, V.C. Daniel, P.J. Dempsey, R. Chinery, S.C. Kirkland, R.N. DuBois, T.L. Jetton, and J.D. Morrow. Epidermal growth factor receptor activation induces nuclear targeting of cyclooxygenase-2, basolateral release of prostaglandins, and mitogenesis in polarizing colon cancer cells. Proc Natl Acad Sci USA 94: 657–62, 1997.PubMedGoogle Scholar
  118. 118.
    Pai, R., B. Soreghan, I.L. Szabo, M. Pavelka, D. Baatar, and A.S. Tarnawski. Prostaglandin E2 transactivates EGF receptor: a novel mechanism for promoting colon cancer growth and gastrointestinal hypertrophy. Nat Med 8: 289–93, 2002.PubMedGoogle Scholar
  119. 119.
    Yang, X.D., X.C. Jia, J.R. Corvalan, P. Wang, and C.G. Davis. Development of ABX-EGF, a fully human anti-EGF receptor monoclonal antibody, for cancer therapy. Crit Rev Oncol Hematol 38: 17–23, 2001.PubMedGoogle Scholar
  120. 120.
    Hirata, A., S. Ogawa, T. Kometani, T. Kuwano, S. Naito, M. Kuwano, and M. Ono. ZD1839 (Iressa) induces antiangiogenic effects through inhibition of epidermal growth factor receptor tyrosine kinase. Cancer Res 62: 2554–60, 2002.PubMedGoogle Scholar
  121. 121.
    Pold, M., L.X. Zhu, S. Sharma, M.D. Burdick, Y. Lin, P.P. Lee, A. Pold, J. Luo, K. Krysan, M. Dohadwala, J.T. Mao, R.K. Batra, R.M. Strieter, and S.M. Dubinett. Cyclooxygenase-2-dependent expression of angiogenic CXC chemokines ENA-78/CXC Ligand (CXCL) 5 and interleukin-8/CXCL8 in human non-small cell lung cancer. Cancer Res 64: 1853–60, 2004.PubMedGoogle Scholar
  122. 122.
    Williams, C.S., M. Tsujii, J. Reese, S.K. Dey, and R.N. DuBois. Host cyclooxygenase-2 modulates carcinoma growth. J Clin Invest 105: 1589–94, 2000.PubMedGoogle Scholar
  123. 123.
    Torrance, C.J., P.E. Jackson, E. Montgomery, K.W. Kinzler, B. Vogelstein, A. Wissner, M. Nunes, P. Frost, and C.M. Discafani. Combinatorial chemoprevention of intestinal neoplasia. Nat Med 6: 1024–8, 2000.PubMedGoogle Scholar
  124. 124.
    Kim, G.E., Y.B. Kim, N.H. Cho, H.C. Chung, H.R. Pyo, J.D. Lee, T.K. Park, W.S. Koom, M. Chun, and C.O. Suh. Synchronous coexpression of epidermal growth factor receptor and cyclooxygenase-2 in carcinomas of the uterine cervix: a potential predictor of poor survival. Clin Cancer Res 10: 1366–74, 2004.PubMedGoogle Scholar
  125. 125.
    Chen, Z., X. Zhang, M. Li, Z. Wang, H.S. Wieand, J.R. Grandis, and D.M. Shin. Simultaneously targeting epidermal growth factor receptor tyrosine kinase and cyclooxygenase-2, an efficient approach to inhibition of squamous cell carcinoma of the head and neck. Clin Cancer Res 10: 5930–9, 2004.PubMedGoogle Scholar
  126. 126.
    Gadgeel, S.M., J.C. Ruckdeschel, E.I. Heath, L.K. Heilbrun, R. Venkatramanamoorthy, and A. Wozniak. Phase II study of gefitinib, an epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI), and celecoxib, a cyclooxygenase-2 (COX-2) inhibitor, in patients with platinum refractory non-small cell lung cancer (NSCLC). J Thorac Oncol 2: 299–305, 2007.PubMedGoogle Scholar
  127. 127.
    O‘Byrne, K.J., S. Danson, D. Dunlop, N. Botwood, F. Taguchi, D. Carbone, and M. Ranson. Combination therapy with gefitinib and rofecoxib in patients with platinum-pretreated relapsed non small-cell lung cancer. J Clin Oncol 25: 3266–73, 2007.PubMedGoogle Scholar
  128. 128.
    Gridelli, C., C. Gallo, A. Ceribelli, V. Gebbia, T. Gamucci, F. Ciardiello, F. Carozza, A. Favaretto, B. Daniele, D. Galetta, S. Barbera, F. Rosetti, A. Rossi, P. Maione, F. Cognetti, A. Testa, M. Di Maio, A. Morabito, and F. Perrone. Factorial phase III randomised trial of rofecoxib and prolonged constant infusion of gemcitabine in advanced non-small-cell lung cancer: the GEmcitabine-COxib in NSCLC (GECO) study. Lancet Oncol 8: 500–12, 2007.PubMedGoogle Scholar
  129. 129.
    Juni, P., L. Nartey, S. Reichenbach, R. Sterchi, P.A. Dieppe, and M. Egger. Risk of cardiovascular events and rofecoxib: cumulative meta-analysis. Lancet 364: 2021–9, 2004.PubMedGoogle Scholar
  130. 130.
    Solomon, D.H., S. Schneeweiss, R.J. Glynn, Y. Kiyota, R. Levin, H. Mogun, and J. Avorn. Relationship between selective cyclooxygenase-2 inhibitors and acute myocardial infarction in older adults. Circulation 109: 2068–73, 2004.PubMedGoogle Scholar
  131. 131.
    Lilenbaum, R., M.A. Socinski, N.K. Altorki, L.L. Hart, R.S. Keresztes, S. Hariharan, M.E. Morrison, R. Fayyad, and P. Bonomi. Randomized phase II trial of docetaxel/irinotecan and gemcitabine/irinotecan with or without celecoxib in the second-line treatment of non-small-cell lung cancer. J Clin Oncol 24: 4825–32, 2006.PubMedGoogle Scholar
  132. 132.
    Chan, A.T., S. Ogino, and C.S. Fuchs. Aspirin and the risk of colorectal cancer in relation to the expression of COX-2. N Engl J Med 356: 2131–42, 2007.PubMedGoogle Scholar
  133. 133.
    Edelman, M.J., D. Watson, X. Wang, C. Morrison, R.A. Kratzke, S. Jewell, L. Hodgson, A.M. Mauer, A. Gajra, G.A. Masters, M. Bedor, E.E. Vokes, and M.J. Green. Eicosanoid modulation in advanced lung cancer: cyclooxygenase-2 expression is a positive predictive factor for celecoxib + chemotherapy – Cancer and Leukemia Group B Trial 30203. J Clin Oncol 26: 848–55, 2008.PubMedGoogle Scholar
  134. 134.
    Lee, J.M., J. Yanagawa, K.A. Peebles, S. Sharma, J.T. Mao, and S.M. Dubinett. Inflammation in lung carcinogenesis: new targets for lung cancer chemoprevention and treatment. Crit Rev Oncol Hematol 66: 208–17, 2008.PubMedGoogle Scholar
  135. 135.
    Wislez, M., N. Fujimoto, J.G. Izzo, A.E. Hanna, D.D. Cody, R.R. Langley, H. Tang, M.D. Burdick, M. Sato, J.D. Minna, L. Mao, I. Wistuba, R.M. Strieter, and J.M. Kurie. High expression of ligands for chemokine receptor CXCR2 in alveolar epithelial neoplasia induced by oncogenic kras. Cancer Res 66: 4198–207, 2006.PubMedGoogle Scholar
  136. 136.
    Mao, J.T., M.C. Fishbein, B. Adams, M.D. Roth, L. Goodglick, L. Hong, M. Burdick, E.R. Strieter, C. Holmes, D.P. Tashkin, and S.M. Dubinett. Celecoxib decreases Ki-67 proliferative index in active smokers. Clin Cancer Res 12: 314–20, 2006.PubMedGoogle Scholar
  137. 137.
    Mao, J.T., X. Cui, K. Reckamp, M. Liu, K. Krysan, H. Dalwadi, S. Sharma, S. Hazra, R. Strieter, B. Gardner, and S.M. Dubinett. Chemoprevention strategies with cyclooxygenase-2 inhibitors for lung cancer. Clin Lung Cancer 7: 30–9, 2005.PubMedGoogle Scholar
  138. 138.
    Peebles, K.A., J.M. Lee, J.T. Mao, S. Hazra, K.L. Reckamp, K. Krysan, M. Dohadwala, E.L. Heinrich, T.C. Walser, X. Cui, F.E. Baratelli, E. Garon, S. Sharma, and S.M. Dubinett. Inflammation and lung carcinogenesis: applying findings in prevention and treatment. Expert Rev Anticancer Ther 7: 1405–21, 2007.PubMedGoogle Scholar
  139. 139.
    Walser, T.C., J. Yanagawa, J. Luo, M. Liu, L. Goodglick, L. Hong, M.C. Fishbein, J.D. Minna, J.W. Shay, R.M. Strieter, and S. Dubinett. Snail-induced and EMT-mediated early lung cancer development: Promotion of invasion and expansion of stem cell populations (Seventh Annual AACR International Conference, Frontiers in Cancer Prevention Research: 2008).Google Scholar
  140. 140.
    Yanagawa, J., T.C. Walser, L. Zhu, J. Luo, L. Hong, M.C. Fishbein, L. Goodglick, R.M. Strieter, S. Sharma, and S. Dubinett. The zinc-finger E-box-binding transcriptional repressor Snail promotes tumor progression and angiogenesis in non-small cell lung cancer (Seventh Annual AACR International Conference, Frontiers in Cancer Prevention Research: 2008).Google Scholar
  141. 141.
    Skillrud, D.M., K.P. Offord, and R.D. Miller. Higher risk of lung cancer in chronic obstructive pulmonary disease. A prospective, matched, controlled study. Ann Intern Med 105: 503–7, 1986.PubMedGoogle Scholar
  142. 142.
    Parimon, T., J.W. Chien, C.L. Bryson, M.B. McDonell, E.M. Udris, and D.H. Au. Inhaled corticosteroids and risk of lung cancer among patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 175: 712–9, 2007.PubMedGoogle Scholar
  143. 143.
    Wilson, D.O., J.L. Weissfeld, A. Balkan, J.G. Schragin, C.R. Fuhrman, S.N. Fisher, J. Wilson, J.K. Leader, J.M. Siegfried, S.D. Shapiro, and F.C. Sciurba. Association of radiographic emphysema and airflow obstruction with lung cancer. Am J Respir Crit Care Med 178: 738–44, 2008.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Jay M. Lee
    • 1
  • Jane Yanagawa
    • 2
  • Saswati Hazra
    • 2
  • Sherven Sharma
    • 1
  • Tonya Walser
    • 2
  • Edward Garon
    • 3
  • Steven M. Dubinett
    • 2
  1. 1.Division of Cardiothoracic Surgery, Department of Surgery, UCLA Lung Cancer Research Program, Jonsson Comprehensive Cancer CenterDavid Geffen School of Medicine at UCLALos AngelesUSA
  2. 2.Division of Pulmonary and Critical Care Medicine and Hospitalists, Department of Medicine, UCLA Lung Cancer Research Program, Jonsson Comprehensive Cancer CenterDavid Geffen School of Medicine at UCLALos AngelesUSA
  3. 3.Division of Hematology and Oncology, Department of Medicine, UCLA Lung Cancer Research Program, Jonsson Comprehensive Cancer CenterDavid Geffen School of Medicine at UCLALos AngelesUSA

Personalised recommendations