Epithelial–Mesenchymal Transition as a Mechanism of Metastasis

  • Katia Savary
  • Stefan Termén
  • Sylvie Thuault
  • Venkateshwar Keshamouni
  • Aristidis Moustakas


Mammalian embryonic cells form adhering cell sheets interconnected via various intercellular junctional complexes. Gastrulation and later stages of histo- and organogenesis depend on changes in developmental stage, such as epithelial–mesenchymal transition (EMT), whereby adherent cells disintegrate their intercellular contacts, organize their motility apparatus, and move to new locations in the developing body. EMT generates transitory mesenchymal cells, which can differentiate into myofibroblasts or pericytes (in the case of endothelial–mesenchymal transition (EndMT)), or feed the progenitor pools of cell lineages (e.g., blood, muscle, bone, adipose, and neuronal). EMT is guided by cues from extracellular signaling factors including mitogens, transforming growth factor β, Notch, and Wnt. The signaling molecules can cooperate or act sequentially to initiate transcriptional programs that involve many transcriptional regulators. Changes in gene expression lead to a reprogramming of epithelial protein components and the generation of the mesenchymal progenitor stage. EMT can also contribute to the progression of cancer, when the same growth factor pathways reawaken embryonic transcriptional programs otherwise silenced in adult life. Induction of cancer cell EMT generates rare transitory mesenchymal cells that support tumor growth, remodel the tumor microenvironment, and facilitate tissue invasiveness and metastasis. In that sense, cancer cells undergoing EMT have some of the capacities that one would expect from the so-called “tumor-initiating cells.” This makes EMT an attractive problem for medical research with new therapeutic implications.


Cancer Stem Cell Hepatocyte Growth Factor Neural Crest Cell Lung Development Smad Signaling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Due to space limitations, only selected literature is cited. Funding of the authors’ work is provided by the Ludwig Institute for Cancer Research, the Atlantic Philanthropies/Ludwig Institute for Cancer Research Clinical Discovery Program, the Swedish Cancer Society, the Swedish Research Council and the Marie Curie Research Training Network (RTN) “EpiPlastCarcinoma” under the European Union FP6 program. We thank Carl-Henrik Heldin for his continuous support and all other members of the TGFβ signaling group for their contributions to the scientific work emanating from our laboratory.


  1. 1.
    Hay, E.D. The mesenchymal cell, its role in the embryo, and the remarkable signaling mechanisms that create it. Dev. Dyn. 233: 706–720, 2005.PubMedGoogle Scholar
  2. 2.
    Berx, G., E. Raspe, G. Christofori, J.P. Thiery, and J.P. Sleeman. Pre-EMTing metastasis? Recapitulation of morphogenetic processes in cancer. Clin. Exp. Metastasis 24: 587–597, 2007.PubMedGoogle Scholar
  3. 3.
    Hugo, H., M.L. Ackland, T. Blick, M.G. Lawrence, J.A. Clements, E.D. Williams, and E.W. Thompson. Epithelial–mesenchymal and mesenchymal–epithelial transitions in carcinoma progression. J. Cell. Physiol. 213: 374–383, 2007.PubMedGoogle Scholar
  4. 4.
    Zeisberg, M. and R. Kalluri. The role of epithelial-to-mesenchymal transition in renal fibrosis. J. Mol. Med. 82: 175–181, 2004.PubMedGoogle Scholar
  5. 5.
    Radisky, D.C., P.A. Kenny, and M.J. Bissell. Fibrosis and cancer: Do myofibroblasts come also from epithelial cells via EMT? J. Cell. Biochem. 101: 830–839, 2007.PubMedGoogle Scholar
  6. 6.
    Zeisberg, E.M., S. Potenta, L. Xie, M. Zeisberg, and R. Kalluri. Discovery of endothelial to mesenchymal transition as a source for carcinoma-associated fibroblasts. Cancer Res. 67: 10123–10128, 2007.PubMedGoogle Scholar
  7. 7.
    Huber, M.A., N. Kraut, and H. Beug. Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr. Opin. Cell Biol. 17: 548–558, 2005.PubMedGoogle Scholar
  8. 8.
    Moustakas, A. and C.-H. Heldin. Signaling networks guiding epithelial-mesenchymal transitions during embryogenesis and cancer progression. Cancer Sci. 98: 1512–1520, 2007.PubMedGoogle Scholar
  9. 9.
    Peinado, H., D. Olmeda, and A. Cano. Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat. Rev. Cancer 7: 415–428, 2007.PubMedGoogle Scholar
  10. 10.
    Keller, R., L. Davidson, A. Edlund, T. Elul, M. Ezin, D. Shook, and P. Skoglund. Mechanisms of convergence and extension by cell intercalation. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 355: 897–922, 2000.PubMedGoogle Scholar
  11. 11.
    Deng, C.-X., A. Wynshaw-Boris, M.M. Shen, C. Daugherty, D.M. Ornitz, and P. Leder. Murine FGFR-1 is required for early postimplantation growth and axial organization. Genes Dev. 8: 3045–3057, 1994.PubMedGoogle Scholar
  12. 12.
    Yamaguchi, T.P., K. Harpal, M. Henkemeyer, and J. Rossant. fgfr-1 is required for embryonic growth and mesodermal patterning during mouse gastrulation. Genes Dev. 8: 3032–3044, 1994.PubMedGoogle Scholar
  13. 13.
    Sun, X., E.N. Meyers, M. Lewandoski, and G.R. Martin. Targeted disruption of Fgf8 causes failure of cell migration in the gastrulating mouse embryo. Genes Dev. 13: 1834–1846, 1999.PubMedGoogle Scholar
  14. 14.
    Batlle, E., E. Sancho, C. Franci, D. Dominguez, M. Monfar, J. Baulida, and A. Garcia De Herreros. The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat. Cell Biol. 2: 84–89, 2000.PubMedGoogle Scholar
  15. 15.
    Cano, A., M.A. Perez-Moreno, I. Rodrigo, A. Locascio, M.J. Blanco, M.G. del Barrio, F. Portillo, and M.A. Nieto. The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat. Cell Biol. 2: 76–83, 2000.PubMedGoogle Scholar
  16. 16.
    Ciruna, B. and J. Rossant. FGF signaling regulates mesoderm cell fate specification and morphogenetic movement at the primitive streak. Dev. Cell 1: 37–49, 2001.PubMedGoogle Scholar
  17. 17.
    Sheng, G., M. dos Reis, and C.D. Stern. Churchill, a zinc finger transcriptional activator, regulates the transition between gastrulation and neurulation. Cell 115: 603–613, 2003.PubMedGoogle Scholar
  18. 18.
    Carver, E.A., R. Jiang, Y. Lan, K.F. Oram, and T. Gridley. The mouse snail gene encodes a key regulator of the epithelial-mesenchymal transition. Mol. Cell. Biol. 21: 8184–8188, 2001.PubMedGoogle Scholar
  19. 19.
    Takada, S., K.L. Stark, M.J. Shea, G. Vassileva, J.A. McMahon, and A.P. McMahon. Wnt-3a regulates somite and tailbud formation in the mouse embryo. Genes Dev. 8: 174–189, 1994.PubMedGoogle Scholar
  20. 20.
    Galceran, J., S.C. Hsu, and R. Grosschedl. Rescue of a Wnt mutation by an activated form of LEF-1: regulation of maintenance but not initiation of Brachyury expression. Proc. Natl. Acad. Sci. USA 98: 8668–8673, 2001.PubMedGoogle Scholar
  21. 21.
    Barrallo-Gimeno, A. and M.A. Nieto. Evolution of the neural crest. Adv. Exp. Med. Biol. 589: 235–244, 2006.PubMedGoogle Scholar
  22. 21a.
    LaBonne, C., and M. Bronner-Fraser. Induction and patterning of the neural crest, a stem cell-like precursor population. J. Neurobiol. 36: 175–189, 1998.Google Scholar
  23. 22.
    Kalcheim, C. Mechanisms of early neural crest development: from cell specification to migration. Int. Rev. Cytol. 200: 143–196, 2000.PubMedGoogle Scholar
  24. 23.
    Halloran, M.C. and J.D. Berndt. Current progress in neural crest cell motility and migration and future prospects for the zebrafish model system. Dev. Dyn. 228: 497–513, 2003.PubMedGoogle Scholar
  25. 24.
    LaBonne, C. and M. Bronner-Fraser. Snail-related transcriptional repressors are required in Xenopus for both the induction of the neural crest and its subsequent migration. Dev. Biol. 221: 195–205, 2000.PubMedGoogle Scholar
  26. 25.
    Nawshad, A., D. LaGamba, and E.D. Hay. Transforming growth factor β (TGFβ) signalling in palatal growth, apoptosis and epithelial mesenchymal transformation (EMT). Arch. Oral Biol. 49: 675–689, 2004.PubMedGoogle Scholar
  27. 26.
    Murray, S.A., K.F. Oram, and T. Gridley. Multiple functions of Snail family genes during palate development in mice. Development 134: 1789–1797, 2007.PubMedGoogle Scholar
  28. 27.
    Person, A.D., S.E. Klewer, and R.B. Runyan. Cell biology of cardiac cushion development. Int. Rev. Cytol. 243: 287–335, 2005.PubMedGoogle Scholar
  29. 28.
    Zavadil, J., L. Cermak, N. Soto-Nieves, and E.P. Böttinger. Integration of TGF-β/Smad and Jagged1/Notch signalling in epithelial-to-mesenchymal transition. EMBO J. 23: 1155–1165, 2004.PubMedGoogle Scholar
  30. 29.
    Niimi, H., K. Pardali, M. Vanlandewijck, C.-H. Heldin, and A. Moustakas. Notch signaling is necessary for epithelial growth arrest by TGF-b. J. Cell Biol. 176: 695–707, 2007.PubMedGoogle Scholar
  31. 30.
    Chuang, P.T. and A.P. McMahon. Branching morphogenesis of the lung: new molecular insights into an old problem. Trends Cell Biol. 13: 86–91, 2003.PubMedGoogle Scholar
  32. 31.
    Shannon, J.M. Induction of alveolar type II cell differentiation in fetal tracheal epithelium by grafted distal lung mesenchyme. Dev. Biol. 166: 600–614, 1994.PubMedGoogle Scholar
  33. 32.
    Cardoso, W.V. and J. Lü. Regulation of early lung morphogenesis: questions, facts and controversies. Development 133: 1611–1624, 2006.Google Scholar
  34. 33.
    Min, H., D.M. Danilenko, S.A. Scully, B. Bolon, B.D. Ring, J.E. Tarpley, M. DeRose, and W.S. Simonet. Fgf-10 is required for both limb and lung development and exhibits striking functional similarity to Drosophila branchless. Genes Dev. 12: 3156–3161, 1998.PubMedGoogle Scholar
  35. 34.
    Sekine, K., H. Ohuchi, M. Fujiwara, M. Yamasaki, T. Yoshizawa, T. Sato, N. Yagishita, D. Matsui, Y. Koga, N. Itoh, and S. Kato. Fgf10 is essential for limb and lung formation. Nat. Genet. 21: 138–141, 1999.PubMedGoogle Scholar
  36. 35.
    Weaver, M., N.R. Dunn, and B.L. Hogan. Bmp4 and Fgf10 play opposing roles during lung bud morphogenesis. Development 127: 2695–2704, 2000.PubMedGoogle Scholar
  37. 36.
    Cardoso, W.V., A. Itoh, H. Nogawa, I. Mason, and J.S. Brody. FGF-1 and FGF-7 induce distinct patterns of growth and differentiation in embryonic lung epithelium. Dev. Dyn. 208: 398–405, 1997.PubMedGoogle Scholar
  38. 37.
    Kaartinen, V., J.W. Voncken, C. Shuler, D. Warburton, D. Bu, N. Heisterkamp, and J. Groffen. Abnormal lung development and cleft palate in mice lacking TGF-β 3 indicates defects of epithelial-mesenchymal interaction. Nat. Genet. 11: 415–421, 1995.PubMedGoogle Scholar
  39. 38.
    Serra, R., R.W. Pelton, and H.L. Moses. TGF β1 inhibits branching morphogenesis and N-myc expression in lung bud organ cultures. Development 120: 2153–2161, 1994.PubMedGoogle Scholar
  40. 39.
    Zhou, L., C.R. Dey, S.E. Wert, and J.A. Whitsett. Arrested lung morphogenesis in transgenic mice bearing an SP-C-TGF-β 1 chimeric gene. Dev. Biol. 175: 227–238, 1996.PubMedGoogle Scholar
  41. 40.
    Zhao, J., D. Bu, M. Lee, H.C. Slavkin, F.L. Hall, and D. Warburton. Abrogation of transforming growth factor-β type II receptor stimulates embryonic mouse lung branching morphogenesis in culture. Dev. Biol. 180: 242–257, 1996.PubMedGoogle Scholar
  42. 41.
    Zhao, J., M. Lee, S. Smith, and D. Warburton. Abrogation of Smad3 and Smad2 or of Smad4 gene expression positively regulates murine embryonic lung branching morphogenesis in culture. Dev. Biol. 194: 182–195., 1998.PubMedGoogle Scholar
  43. 42.
    Bitgood, M.J. and A.P. McMahon. Hedgehog and Bmp genes are coexpressed at many diverse sites of cell-cell interaction in the mouse embryo. Dev. Biol. 172: 126–138, 1995.PubMedGoogle Scholar
  44. 43.
    Bellusci, S., R. Henderson, G. Winnier, T. Oikawa, and B.L. Hogan. Evidence from normal expression and targeted misexpression that bone morphogenetic protein (Bmp-4) plays a role in mouse embryonic lung morphogenesis. Development 122: 1693–1702, 1996.PubMedGoogle Scholar
  45. 44.
    Hogan, B.L. Morphogenesis. Cell 96: 225–233., 1999.PubMedGoogle Scholar
  46. 45.
    Murone, M., A. Rosenthal, and F.J. de Sauvage. Sonic hedgehog signaling by the patched-smoothened receptor complex. Curr. Biol. 9: 76–84, 1999.PubMedGoogle Scholar
  47. 46.
    Litingtung, Y., L. Lei, H. Westphal, and C. Chiang. Sonic hedgehog is essential to foregut development. Nat. Genet. 20: 58–61, 1998.PubMedGoogle Scholar
  48. 47.
    Pepicelli, C.V., P.M. Lewis, and A.P. McMahon. Sonic hedgehog regulates branching morphogenesis in the mammalian lung. Curr. Biol. 8: 1083–1086, 1998.PubMedGoogle Scholar
  49. 48.
    Bellusci, S., Y. Furuta, M.G. Rush, R. Henderson, G. Winnier, and B.L. Hogan. Involvement of Sonic hedgehog (Shh) in mouse embryonic lung growth and morphogenesis. Development 124: 53–63, 1997.PubMedGoogle Scholar
  50. 49.
    Motoyama, J., H. Heng, M.A. Crackower, T. Takabatake, K. Takeshima, L.C. Tsui, and C. Hui. Overlapping and non-overlapping Ptch2 expression with Shh during mouse embryogenesis. Mech. Dev. 78: 81–84, 1998.PubMedGoogle Scholar
  51. 50.
    Grindley, J.C., S. Bellusci, D. Perkins, and B.L. Hogan. Evidence for the involvement of the Gli gene family in embryonic mouse lung development. Dev. Biol. 188: 337–348, 1997.PubMedGoogle Scholar
  52. 51.
    Threadgill, D.W., A.A. Dlugosz, L.A. Hansen, T. Tennenbaum, U. Lichti, D. Yee, C. LaMantia, T. Mourton, K. Herrup, R.C. Harris, et al. Targeted disruption of mouse EGF receptor: effect of genetic background on mutant phenotype. Science 269: 230–234, 1995.PubMedGoogle Scholar
  53. 52.
    Miettinen, P.J., D. Warburton, D. Bu, J.S. Zhao, J.E. Berger, P. Minoo, T. Koivisto, L. Allen, L. Dobbs, Z. Werb, and R. Derynck. Impaired lung branching morphogenesis in the absence of functional EGF receptor. Dev. Biol. 186: 224–236, 1997.PubMedGoogle Scholar
  54. 53.
    Leveen, P., M. Pekny, S. Gebre-Medhin, B. Swolin, E. Larsson, and C. Betsholtz. Mice deficient for PDGF B show renal, cardiovascular, and hematological abnormalities. Genes Dev. 8: 1875–1887, 1994.PubMedGoogle Scholar
  55. 54.
    Aranda, V., T. Haire, M.E. Nolan, J.P. Calarco, A.Z. Rosenberg, J.P. Fawcett, T. Pawson, and S.K. Muthuswamy. Par6-aPKC uncouples ErbB2 induced disruption of polarized epithelial organization from proliferation control. Nat. Cell Biol. 8: 1235–1245, 2006.PubMedGoogle Scholar
  56. 55.
    Carraway, C.A. and K.L. Carraway. Sequestration and segregation of receptor kinases in epithelial cells: implications for ErbB2 oncogenesis. Sci. STKE 2007: re3, 2007.Google Scholar
  57. 56.
    Rosario, M. and W. Birchmeier. How to make tubes: signaling by the Met receptor tyrosine kinase. Trends Cell Biol. 13: 328–335, 2003.PubMedGoogle Scholar
  58. 57.
    Schramek, H., E. Feifel, E. Healy, and V. Pollack. Constitutively active mutant of the mitogen-activated protein kinase kinase MEK1 induces epithelial dedifferentiation and growth inhibition in madin-darby canine kidney-C7 cells. J. Biol. Chem. 272: 11426–11433, 1997.PubMedGoogle Scholar
  59. 58.
    Montesano, R., J.V. Soriano, G. Hosseini, M.S. Pepper, and H. Schramek. Constitutively active mitogen-activated protein kinase kinase MEK1 disrupts morphogenesis and induces an invasive phenotype in Madin-Darby canine kidney epithelial cells. Cell Growth Differ. 10: 317–332, 1999.PubMedGoogle Scholar
  60. 59.
    Lehmann, K., E. Janda, C.E. Pierreux, M. Rytomaa, A. Schulze, M. McMahon, C.S. Hill, H. Beug, and J. Downward. Raf induces TGFβ production while blocking its apoptotic but not invasive responses: a mechanism leading to increased malignancy in epithelial cells. Genes Dev. 14: 2610–2622, 2000.PubMedGoogle Scholar
  61. 60.
    Janda, E., K. Lehmann, I. Killisch, M. Jechlinger, M. Herzig, J. Downward, H. Beug, and S. Grünert. Ras and TGFβ cooperatively regulate epithelial cell plasticity and metastasis: dissection of Ras signaling pathways. J. Cell Biol. 156: 299–313., 2002.PubMedGoogle Scholar
  62. 61.
    Oft, M., R.J. Akhurst, and A. Balmain. Metastasis is driven by sequential elevation of H-ras and Smad2 levels. Nat. Cell Biol. 4: 487–494., 2002.PubMedGoogle Scholar
  63. 62.
    Grotegut, S., D. von Schweinitz, G. Christofori, and F. Lehembre. Hepatocyte growth factor induces cell scattering through MAPK/Egr-1-mediated upregulation of Snail. Embo J 25: 3534–45, 2006.PubMedGoogle Scholar
  64. 63.
    Savagner, P., K.M. Yamada, and J.P. Thiery. The zinc-finger protein slug causes desmosome dissociation, an initial and necessary step for growth factor-induced epithelial-mesenchymal transition. J. Cell Biol. 137: 1403–1419, 1997.PubMedGoogle Scholar
  65. 64.
    Cordenonsi, M., M. Montagner, M. Adorno, L. Zacchigna, G. Martello, A. Mamidi, S. Soligo, S. Dupont, and S. Piccolo. Integration of TGF-β and Ras/MAPK signaling through p53 phosphorylation. Science 315: 840–843, 2007.PubMedGoogle Scholar
  66. 65.
    Irie, H.Y., R.V. Pearline, D. Grueneberg, M. Hsia, P. Ravichandran, N. Kothari, S. Natesan, and J.S. Brugge. Distinct roles of Akt1 and Akt2 in regulating cell migration and epithelial-mesenchymal transition. J. Cell Biol. 171: 1023–1034, 2005.PubMedGoogle Scholar
  67. 66.
    Larue, L. and A. Bellacosa.Epithelial-mesenchymal transition in development and cancer: role of phosphatidylinositol 3' kinase/AKT pathways. Oncogene 24: 7443–7454, 2005.PubMedGoogle Scholar
  68. 67.
    Zohn, I.E., Y. Li, E.Y. Skolnik, K.V. Anderson, J. Han, and L. Niswander. p38 and a p38-interacting protein are critical for downregulation of E-cadherin during mouse gastrulation. Cell 125: 957–69, 2006.PubMedGoogle Scholar
  69. 68.
    Oft, M., K.H. Heider, and H. Beug. TGFβsignaling is necessary for carcinoma cell invasiveness and metastasis. Curr. Biol. 8: 1243–1252., 1998.PubMedGoogle Scholar
  70. 69.
    Portella, G., S.A. Cumming, J. Liddell, W. Cui, H. Ireland, R.J. Akhurst, and A. Balmain. Transforming growth factor β is essential for spindle cell conversion of mouse skin carcinoma in vivo: implications for tumor invasion. Cell Growth Differ. 9: 393–404., 1998.PubMedGoogle Scholar
  71. 70.
    Gotzmann, J., H. Huber, C. Thallinger, M. Wolschek, B. Jansen, R. Schulte-Hermann, H. Beug, and W. Mikulits. Hepatocytes convert to a fibroblastoid phenotype through the cooperation of TGF-β1 and Ha-Ras: steps towards invasiveness. J. Cell Sci. 115: 1189–1202, 2002.PubMedGoogle Scholar
  72. 71.
    Miettinen, P.J., R. Ebner, A.R. Lopez, and R. Derynck. TGF-β induced transdifferentiation of mammary epithelial cells to mesenchymal cells: involvement of type I receptors. J. Cell Biol. 127: 2021–2036., 1994.PubMedGoogle Scholar
  73. 72.
    Valcourt, U., M. Kowanetz, H. Niimi, C.-H. Heldin, and A. Moustakas. TGF-β and the Smad signaling pathway support transcriptomic reprogramming during epithelial-mesenchymal cell transition. Mol. Biol. Cell 16: 1987–2002, 2005.PubMedGoogle Scholar
  74. 73.
    Willis, B.C., J.M. Liebler, K. Luby-Phelps, A.G. Nicholson, E.D. Crandall, R.M. du Bois, and Z. Borok. Induction of epithelial-mesenchymal transition in alveolar epithelial cells by transforming growth factor-β1: potential role in idiopathic pulmonary fibrosis. Am. J. Pathol. 166: 1321–1332, 2005.PubMedGoogle Scholar
  75. 74.
    Bierie, B. and H.L. Moses.: Tumour microenvironment: TGFβ the molecular Jekyll and Hyde of cancer. Nat. Rev. Cancer 6: 506–520, 2006.PubMedGoogle Scholar
  76. 75.
    Yang, Y., X. Pan, W. Lei, J. Wang, and J. Song. Transforming growth factor-β1 induces epithelial-to-mesenchymal transition and apoptosis via a cell cycle-dependent mechanism. Oncogene 25: 7235–7244, 2006.PubMedGoogle Scholar
  77. 76.
    Sakaue-Sawano, A., H. Kurokawa, T. Morimura, A. Hanyu, H. Hama, H. Osawa, S. Kashiwagi, K. Fukami, T. Miyata, H. Miyoshi, T. Imamura, M. Ogawa, H. Masai, and A. Miyawaki. Visualizing spatiotemporal dynamics of multicellular cell-cycle progression. Cell 132: 487–498, 2008.PubMedGoogle Scholar
  78. 77.
    Massagué, J., J. Seoane, and D. Wotton. Smad transcription factors. Genes Dev. 19: 2783–2810, 2005.PubMedGoogle Scholar
  79. 78.
    Piek, E., A. Moustakas, A. Kurisaki, C.-H. Heldin, and P. ten Dijke. TGF-β type I receptor/ALK-5 and Smad proteins mediate epithelial to mesenchymal transdifferentiation in NMuMG breast epithelial cells. J. Cell Sci. 112: 4557–4568, 1999.PubMedGoogle Scholar
  80. 79.
    Kowanetz, M., U. Valcourt, R. Bergström, C.-H. Heldin, and A. Moustakas. Id2 and Id3 define the potency of cell proliferation and differentiation responses to transforming growth factor β and bone morphogenetic protein. Mol. Cell. Biol. 24: 4241–4254, 2004.PubMedGoogle Scholar
  81. 80.
    Pardali, K. and A. Moustakas. Actions of TGF-β as tumor suppressor and pro-metastatic factor in human cancer. Biochim. Biophys. Acta 1775: 21–62, 2007.PubMedGoogle Scholar
  82. 81.
    Takano, S., F. Kanai, A. Jazag, H. Ijichi, J. Yao, H. Ogawa, N. Enomoto, M. Omata, and A. Nakao. Smad4 is Essential for Down-regulation of E-cadherin Induced by TGF-β in Pancreatic Cancer Cell Line PANC-1. J. Biochem. (Tokyo) 141: 345–351, 2007.PubMedGoogle Scholar
  83. 82.
    Li, W., W. Qiao, L. Chen, X. Xu, X. Yang, D. Li, C. Li, S.G. Brodie, M.M. Meguid, L. Hennighausen, and C.-X. Deng. Squamous cell carcinoma and mammary abscess formation through squamous metaplasia in Smad4/Dpc4 conditional knockout mice. Development 130: 6143–6153, 2003.PubMedGoogle Scholar
  84. 83.
    Bardeesy, N., K.H. Cheng, J.H. Berger, G.C. Chu, J. Pahler, P. Olson, A.F. Hezel, J. Horner, G.Y. Lauwers, D. Hanahan, and R.A. DePinho. Smad4 is dispensable for normal pancreas development yet critical in progression and tumor biology of pancreas cancer. Genes Dev. 20: 3130–3146, 2006.PubMedGoogle Scholar
  85. 84.
    Deckers, M., M. van Dinther, J. Buijs, I. Que, C. Lowik, G. van der Pluijm, and P. ten Dijke. The tumor suppressor Smad4 is required for transforming growth factor β-induced epithelial to mesenchymal transition and bone metastasis of breast cancer cells. Cancer Res. 66: 2202–2209, 2006.PubMedGoogle Scholar
  86. 85.
    Ju, W., A. Ogawa, J. Heyer, D. Nierhof, L. Yu, R. Kucherlapati, D.A. Shafritz, and E.P. Böttinger. Deletion of Smad2 in mouse liver reveals novel functions in hepatocyte growth and differentiation. Mol. Cell. Biol. 26: 654–667, 2006.PubMedGoogle Scholar
  87. 86.
    Phanish, M.K., N.A. Wahab, P. Colville-Nash, B.M. Hendry, and M.E. Dockrell. The differential role of Smad2 and Smad3 in the regulation of pro-fibrotic TGFβ1 responses in human proximal-tubule epithelial cells. Biochem J. 393: 601–607, 2006.PubMedGoogle Scholar
  88. 87.
    Zavadil, J. and E.P. Böttinger. TGF-β and epithelial-to-mesenchymal transitions. Oncogene 24: 5764–5774, 2005.PubMedGoogle Scholar
  89. 88.
    Moustakas, A. and C.-H. Heldin. Non-Smad TGF-β signals. J. Cell Sci. 118: 3573–3584, 2005.PubMedGoogle Scholar
  90. 89.
    Yang, Y., X. Pan, W. Lei, J. Wang, J. Shi, F. Li, and J. Song. Regulation of Transforming Growth Factor-β1-Induced Apoptosis and Epithelial-to-Mesenchymal Transition by Protein Kinase A and Signal Transducers and Activators of Transcription 3. Cancer Res. 66: 8617–8624, 2006.PubMedGoogle Scholar
  91. 90.
    Bhowmick, N.A., R. Zent, M. Ghiassi, M. McDonnell, and H.L. Moses. Integrin β1 signaling is necessary for transforming growth factor-β activation of p38 MAPK and epithelial plasticity. J. Biol. Chem. 276: 46707–713, 2001.PubMedGoogle Scholar
  92. 91.
    Bates, R.C., D.I. Bellovin, C. Brown, E. Maynard, B. Wu, H. Kawakatsu, D. Sheppard, P. Oettgen, and A.M. Mercurio. Transcriptional activation of integrin β6 during the epithelial-mesenchymal transition defines a novel prognostic indicator of aggressive colon carcinoma. J. Clin. Invest. 115: 339–347, 2005.PubMedGoogle Scholar
  93. 92.
    Li, Y., J. Yang, C. Dai, C. Wu, and Y. Liu. Role for integrin-linked kinase in mediating tubular epithelial to mesenchymal transition and renal interstitial fibrogenesis. J. Clin. Invest. 112: 503–516, 2003.PubMedGoogle Scholar
  94. 93.
    Lee, Y.I., Y.J. Kwon, and C.K. Joo. Integrin-linked kinase function is required for transforming growth factor β-mediated epithelial to mesenchymal transition. Biochem. Biophys. Res. Commun. 316: 997–1001, 2004.PubMedGoogle Scholar
  95. 94.
    Shim, J.H., C. Xiao, A.E. Paschal, S.T. Bailey, P. Rao, M.S. Hayden, K.Y. Lee, C. Bussey, M. Steckel, N. Tanaka, G. Yamada, S. Akira, K. Matsumoto, and S. Ghosh. TAK1, but not TAB1 or TAB2, plays an essential role in multiple signaling pathways in vivo. Genes Dev. 19: 2668–2681, 2005.PubMedGoogle Scholar
  96. 95.
    Zavadil, J., M. Bitzer, D. Liang, Y.C. Yang, A. Massimi, S. Kneitz, E. Piek, and E.P. Böttinger. Genetic programs of epithelial cell plasticity directed by transforming growth factor-b. Proc. Natl. Acad. Sci. USA 98: 6686–6691, 2001.PubMedGoogle Scholar
  97. 96.
    Jechlinger, M., S. Grunert, I.H. Tamir, E. Janda, S. Ludemann, T. Waerner, P. Seither, A. Weith, H. Beug, and N. Kraut. Expression profiling of epithelial plasticity in tumor progression. Oncogene 22: 7155–7169, 2003.PubMedGoogle Scholar
  98. 97.
    Kang, Y., P.M. Siegel, W. Shu, M. Drobnjak, S.M. Kakonen, C. Cordon-Cardo, T.A. Guise, and J. Massagué. A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3: 537–549, 2003.PubMedGoogle Scholar
  99. 98.
    Xie, L., B.K. Law, M.E. Aakre, M. Edgerton, Y. Shyr, N.A. Bhowmick, and H.L. Moses. Transforming growth factor β-regulated gene expression in a mouse mammary gland epithelial cell line. Breast Cancer Res. 5: R187–198, 2003.PubMedGoogle Scholar
  100. 99.
    LaGamba, D., A. Nawshad, and E.D. Hay. Microarray analysis of gene expression during epithelial-mesenchymal transformation. Dev. Dyn. 234: 132–142, 2005.PubMedGoogle Scholar
  101. 100.
    Barrallo-Gimeno, A. and M.A. Nieto. The Snail genes as inducers of cell movement and survival: implications in development and cancer. Development 132: 3151–3161, 2005.PubMedGoogle Scholar
  102. 101.
    Shen, X., J. Li, P.P. Hu, D. Waddell, J. Zhang, and X.-F. Wang. The activity of guanine exchange factor NET1 is essential for transforming growth factor-β-mediated stress fiber formation. J. Biol. Chem. 276: 15362–15368., 2001.PubMedGoogle Scholar
  103. 102.
    Bakin, A.V., A. Safina, C. Rinehart, C. Daroqui, H. Darbary, and D.M. Helfman. A critical role of tropomyosins in TGF-β regulation of the actin cytoskeleton and cell motility in epithelial cells. Mol. Biol. Cell 15: 4682–4694, 2004.PubMedGoogle Scholar
  104. 103.
    Peinado, H., M. Quintanilla, and A. Cano. Transforming growth factor β-1 induces snail transcription factor in epithelial cell lines: mechanisms for epithelial mesenchymal transitions. J. Biol. Chem. 278: 21113–21123, 2003.PubMedGoogle Scholar
  105. 104.
    Sato, M., Y. Muragaki, S. Saika, A.B. Roberts, and A. Ooshima. Targeted disruption of TGF-β1/Smad3 signaling protects against renal tubulointerstitial fibrosis induced by unilateral ureteral obstruction. J. Clin. Invest. 112: 1486–1494, 2003.PubMedGoogle Scholar
  106. 105.
    Thuault, S., U. Valcourt, M. Petersen, G. Manfioletti, C.-H. Heldin, and A. Moustakas. Transforming growth factor-β employs HMGA2 to elicit epithelial-mesenchymal transition. J. Cell Biol. 174: 175–183, 2006.PubMedGoogle Scholar
  107. 106.
    Kondo, M., E. Cubillo, K. Tobiume, T. Shirakihara, N. Fukuda, H. Suzuki, K. Shimizu, K. Takehara, A. Cano, M. Saitoh, and K. Miyazono. A role for Id in the regulation of TGF-β-induced epithelial-mesenchymal transdifferentiation. Cell Death Differ. 11: 1092–1101, 2004.PubMedGoogle Scholar
  108. 107.
    Kang, Y., C.R. Chen, and J. Massagué. A self-enabling TGFβ response coupled to stress signaling. Smad engages stress response factor ATF3 for Id1 repression in epithelial cells. Mol. Cell 11: 915–926, 2003.Google Scholar
  109. 108.
    Zeisberg, M., A.A. Shah, and R. Kalluri. Bone morphogenic protein-7 induces mesenchymal to epithelial transition in adult renal fibroblasts and facilitates regeneration of injured kidney. J. Biol. Chem. 280: 8094–8100, 2005.PubMedGoogle Scholar
  110. 109.
    Saika, S., K. Ikeda, O. Yamanaka, K.C. Flanders, Y. Ohnishi, Y. Nakajima, Y. Muragaki, and A. Ooshima. Adenoviral gene transfer of BMP-7, Id2, or Id3 suppresses injury-induced epithelial-to-mesenchymal transition of lens epithelium in mice. Am. J. Physiol. Cell Physiol. 290: <PAGES>C282–C289</PAGES>, 2006.Google Scholar
  111. 110.
    Comijn, J., G. Berx, P. Vermassen, K. Verschueren, L. van Grunsven, E. Bruyneel, M. Mareel, D. Huylebroeck, and F. van Roy. The two-handed E box binding zinc finger protein SIP1 downregulates E- cadherin and induces invasion. Mol. Cell 7: 1267–1278., 2001.PubMedGoogle Scholar
  112. 111.
    Peinado, H., F. Portillo, and A. Cano. Transcriptional regulation of cadherins during development and carcinogenesis. Int. J. Dev. Biol. 48: 365–375, 2004.PubMedGoogle Scholar
  113. 112.
    Vandewalle, C., J. Comijn, B. De Craene, P. Vermassen, E. Bruyneel, H. Andersen, E. Tulchinsky, F. Van Roy, and G. Berx. SIP1/ZEB2 induces EMT by repressing genes of different epithelial cell-cell junctions. Nucleic Acids Res. 33: 6566–6578, 2005.PubMedGoogle Scholar
  114. 113.
    Eger, A., A. Stockinger, J. Park, E. Langkopf, M. Mikula, J. Gotzmann, W. Mikulits, H. Beug, and R. Foisner. β-Catenin and TGFβ signalling cooperate to maintain a mesenchymal phenotype after FosER-induced epithelial to mesenchymal transition. Oncogene 23: 2672–2680, 2004.PubMedGoogle Scholar
  115. 114.
    Martinez-Alvarez, C., M.J. Blanco, R. Perez, M.A. Rabadan, M. Aparicio, E. Resel, T. Martinez, and M.A. Nieto. Snail family members and cell survival in physiological and pathological cleft palates. Dev. Biol. 265: 207–218, 2004.PubMedGoogle Scholar
  116. 115.
    Li, Y., J. Yang, J.H. Luo, S. Dedhar, and Y. Liu. Tubular epithelial cell dedifferentiation is driven by the helix-loop-helix transcriptional inhibitor Id1. J. Am. Soc. Nephrol. 18: 449–460, 2007.PubMedGoogle Scholar
  117. 116.
    Mani, S.A., J. Yang, M. Brooks, G. Schwaninger, A. Zhou, N. Miura, J.L. Kutok, K. Hartwell, A.L. Richardson, and R.A. Weinberg. Mesenchyme Forkhead 1 (FOXC2) plays a key role in metastasis and is associated with aggressive basal-like breast cancers. Proc. Natl. Acad. Sci. USA 104: 10069–10074, 2007.PubMedGoogle Scholar
  118. 117.
    Venkov, C.D., A.J. Link, J.L. Jennings, D. Plieth, T. Inoue, K. Nagai, C. Xu, Y.N. Dimitrova, F.J. Rauscher, and E.G. Neilson. A proximal activator of transcription in epithelial-mesenchymal transition. J. Clin. Invest. 117: 482–491, 2007.PubMedGoogle Scholar
  119. 118.
    Spira, A. and D.S. Ettinger. Multidisciplinary management of lung cancer. N. Engl. J. Med. 350: 379–392, 2004.PubMedGoogle Scholar
  120. 119.
    Carney, D.N. Lung cancer–time to move on from chemotherapy. N. Engl. J. Med. 346: 126–128, 2002.PubMedGoogle Scholar
  121. 120.
    Kasai, H., J.T. Allen, R.M. Mason, T. Kamimura, and Z. Zhang. TGF-β1 induces human alveolar epithelial to mesenchymal cell transition (EMT). Respir. Res. 6: 56, 2005.PubMedGoogle Scholar
  122. 121.
    Keshamouni, V.G., G. Michailidis, C.S. Grasso, S. Anthwal, J.R. Strahler, A. Walker, D.A. Arenberg, R.C. Reddy, S. Akulapalli, V.J. Thannickal, T.J. Standiford, P.C. Andrews, and G.S. Omenn. Differential protein expression profiling by iTRAQ-2DLC-MS/MS of lung cancer cells undergoing epithelial-mesenchymal transition reveals a migratory/invasive phenotype. J. Proteome Res. 5: 1143–1154, 2006.PubMedGoogle Scholar
  123. 122.
    Cordenonsi, M., S. Dupont, S. Maretto, A. Insinga, C. Imbriano, and S. Piccolo. Links between tumor suppressors: p53 is required for TGF-β gene responses by cooperating with Smads. Cell 113: 301–314, 2003.PubMedGoogle Scholar
  124. 123.
    Shintani, Y., M. Maeda, N. Chaika, K.R. Johnson, and M.J. Wheelock. Collagen I promotes epithelial-to-mesenchymal transition in lung cancer cells via transforming growth factor-β signaling. Am. J. Respir. Cell. Mol. Biol. 38: 95–104, 2008.PubMedGoogle Scholar
  125. 124.
    Lu, Z., S. Ghosh, Z. Wang, and T. Hunter. Downregulation of caveolin-1 function by EGF leads to the loss of E-cadherin, increased transcriptional activity of β-catenin, and enhanced tumor cell invasion. Cancer Cell 4: 499–515, 2003.PubMedGoogle Scholar
  126. 125.
    Masuda, A., M. Kondo, T. Saito, Y. Yatabe, T. Kobayashi, M. Okamoto, M. Suyama, and T. Takahashi. Establishment of human peripheral lung epithelial cell lines (HPL1) retaining differentiated characteristics and responsiveness to epidermal growth factor, hepatocyte growth factor, and transforming growth factor β1. Cancer Res. 57: 4898–4904, 1997.PubMedGoogle Scholar
  127. 126.
    Blanco, D., S. Vicent, E. Elizegi, I. Pino, M.F. Fraga, M. Esteller, U. Saffiotti, F. Lecanda, and L.M. Montuenga. Altered expression of adhesion molecules and epithelial-mesenchymal transition in silica-induced rat lung carcinogenesis. Lab Invest. 84: 999–1012, 2004.PubMedGoogle Scholar
  128. 127.
    Powell, D.W., R.C. Mifflin, J.D. Valentich, S.E. Crowe, J.I. Saada, and A.B. West. Myofibroblasts. I. Paracrine. cells important in health and disease. Am. J. Physiol. 277: <PAGES>C1–9</PAGES>, 1999.Google Scholar
  129. 128.
    Balkwill, F. and A. Mantovani. Inflammation and cancer: back to Virchow? Lancet 357: 539–545, 2001.PubMedGoogle Scholar
  130. 129.
    Bhowmick, N.A., A. Chytil, D. Plieth, A.E. Gorska, N. Dumont, S. Shappell, M.K. Washington, E.G. Neilson, and H.L. Moses. TGF-β signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science 303: 848–851, 2004.PubMedGoogle Scholar
  131. 130.
    Cheng, N., N.A. Bhowmick, A. Chytil, A.E. Gorksa, K.A. Brown, R. Muraoka, C.L. Arteaga, E.G. Neilson, S.W. Hayward, and H.L. Moses. Loss of TGF-β type II receptor in fibroblasts promotes mammary carcinoma growth and invasion through upregulation of TGF-β-, MSP- and HGF-mediated signaling networks. Oncogene 24: 5053–5068, 2005.PubMedGoogle Scholar
  132. 131.
    Nakamura, T., K. Matsumoto, A. Kiritoshi, and Y. Tano. Induction of hepatocyte growth factor in fibroblasts by tumor-derived factors affects invasive growth of tumor cells: in vitro analysis of tumor-stromal interactions. Cancer Res. 57: 3305–3313, 1997.PubMedGoogle Scholar
  133. 132.
    Gmyrek, G.A., M. Walburg, C.P. Webb, H.M. Yu, X. You, E.D. Vaughan, G.F. Vande Woude, and B.S. Knudsen. Normal and malignant prostate epithelial cells differ in their response to hepatocyte growth factor/scatter factor. Am. J. Pathol. 159: 579–590, 2001.PubMedGoogle Scholar
  134. 133.
    Beviglia, L., K. Matsumoto, C.S. Lin, B.L. Ziober, and R.H. Kramer. Expression of the c-Met/HGF receptor in human breast carcinoma: correlation with tumor progression. Int. J. Cancer 74: 301–309, 1997.PubMedGoogle Scholar
  135. 134.
    Masuya, D., C. Huang, D. Liu, T. Nakashima, K. Kameyama, R. Haba, M. Ueno, and H. Yokomise. The tumour-stromal interaction between intratumoral c-Met and stromal hepatocyte growth factor associated with tumour growth and prognosis in non-small-cell lung cancer patients. Br. J. Cancer 90: 1555–1562, 2004.PubMedGoogle Scholar
  136. 135.
    Lewis, M.P., K.A. Lygoe, M.L. Nystrom, W.P. Anderson, P.M. Speight, J.F. Marshall, and G.J. Thomas. Tumour-derived TGF-β1 modulates myofibroblast differentiation and promotes HGF/SF-dependent invasion of squamous carcinoma cells. Br. J. Cancer 90: 822–832, 2004.PubMedGoogle Scholar
  137. 136.
    Joseph, H., A.E. Gorska, P. Sohn, H.L. Moses, and R. Serra. Overexpression of a kinase-deficient transforming growth factor-β type II receptor in mouse mammary stroma results in increased epithelial branching. Mol. Biol. Cell 10: 1221–1234., 1999.PubMedGoogle Scholar
  138. 137.
    Wynn, T.A. Cellular and molecular mechanisms of fibrosis. J. Pathol. 214: 199–210, 2008.PubMedGoogle Scholar
  139. 138.
    Iwano, M., D. Plieth, T.M. Danoff, C. Xue, H. Okada, and E.G. Neilson. Evidence that fibroblasts derive from epithelium during tissue fibrosis. J. Clin. Invest. 110: 341–350, 2002.PubMedGoogle Scholar
  140. 139.
    Yang, J. and Y. Liu. Blockage of tubular epithelial to myofibroblast transition by hepatocyte growth factor prevents renal interstitial fibrosis. J. Am. Soc. Nephrol. 13: 96–107, 2002.PubMedGoogle Scholar
  141. 140.
    Kalluri, R. and E.G. Neilson.Epithelial-mesenchymal transition and its implications for fibrosis. J. Clin. Invest. 112: 1776–1784, 2003.PubMedGoogle Scholar
  142. 141.
    Saika, S., S. Kono-Saika, Y. Ohnishi, M. Sato, Y. Muragaki, A. Ooshima, K.C. Flanders, J. Yoo, M. Anzano, C.Y. Liu, W.W. Kao, and A.B. Roberts. Smad3 signaling is required for epithelial-mesenchymal transition of lens epithelium after injury. Am. J. Pathol. 164: 651–663, 2004.PubMedGoogle Scholar
  143. 142.
    Schurch, W., T.A. Seemayer, and G. Gabbiani.: The myofibroblast a quarter century after its discovery. Am. J. Surg. Pathol. 22: 141–147, 1998.PubMedGoogle Scholar
  144. 143.
    Phan, S.H. The myofibroblast in pulmonary fibrosis. Chest 122: 286S–289S, 2002.PubMedGoogle Scholar
  145. 144.
    Singh, S.R. and I.P. Hall. Airway myofibroblasts and their relationship with airway myocytes and fibroblasts. Proc. Am. Thorac. Soc. 5: 127–132, 2008.PubMedGoogle Scholar
  146. 145.
    Direkze, N.C., K. Hodivala-Dilke, R. Jeffery, T. Hunt, R. Poulsom, D. Oukrif, M.R. Alison, and N.A. Wright. Bone marrow contribution to tumor-associated myofibroblasts and fibroblasts. Cancer Res. 64: 8492–8495, 2004.PubMedGoogle Scholar
  147. 146.
    Forbes, S.J., F.P. Russo, V. Rey, P. Burra, M. Rugge, N.A. Wright, and M.R. Alison. A significant proportion of myofibroblasts are of bone marrow origin in human liver fibrosis. Gastroenterology 126: 955–963, 2004.PubMedGoogle Scholar
  148. 147.
    Ebihara, Y., M. Masuya, A.C. Larue, P.A. Fleming, R.P. Visconti, H. Minamiguchi, C.J. Drake, and M. Ogawa. Hematopoietic origins of fibroblasts: II. In vitro studies of fibroblasts, CFU-F, and fibrocytes. Exp. Hematol. 34: 219–229, 2006.PubMedGoogle Scholar
  149. 148.
    Quan, T.E., S.E. Cowper, and R. Bucala. The role of circulating fibrocytes in fibrosis. Curr. Rheumatol. Rep. 8: 145–150, 2006.PubMedGoogle Scholar
  150. 149.
    Willis, B.C., R.M. duBois, and Z. Borok. Epithelial origin of myofibroblasts during fibrosis in the lung. Proc. Am. Thorac. Soc. 3: 377–382, 2006.PubMedGoogle Scholar
  151. 150.
    Zeisberg, E.M., O. Tarnavski, M. Zeisberg, A.L. Dorfman, J.R. McMullen, E. Gustafsson, A. Chandraker, X. Yuan, W.T. Pu, A.B. Roberts, E.G. Neilson, M.H. Sayegh, S. Izumo, and R. Kalluri. Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nat. Med. 13: 952–961, 2007.PubMedGoogle Scholar
  152. 151.
    Hu, B., Z. Wu, and S.H. Phan. Smad3 mediates transforming growth factor-β-induced β-smooth muscle actin expression. Am. J. Respir. Cell Mol. Biol. 29: 397–404, 2003.PubMedGoogle Scholar
  153. 152.
    Reubinoff, B.E., M.F. Pera, C.Y. Fong, A. Trounson, and A. Bongso. Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat. Biotechnol. 18: 399–404, 2000.PubMedGoogle Scholar
  154. 153.
    Smith, A.G. Embryo-derived stem cells: of mice and men. Annu. Rev. Cell Dev. Biol. 17: 435–462, 2001.PubMedGoogle Scholar
  155. 154.
    Spencer, H.L., A.M. Eastham, C.L. Merry, T.D. Southgate, F. Perez-Campo, F. Soncin, S. Ritson, R. Kemler, P.L. Stern, and C.M. Ward. E-cadherin inhibits cell surface localization of the pro-migratory 5T4 oncofetal antigen in mouse embryonic stem cells. Mol. Biol. Cell 18: 2838–2851, 2007.PubMedGoogle Scholar
  156. 155.
    Eastham, A.M., H. Spencer, F. Soncin, S. Ritson, C.L. Merry, P.L. Stern, and C.M. Ward. Epithelial-mesenchymal transition events during human embryonic stem cell differentiation. Cancer Res. 67: 11254–11262, 2007.PubMedGoogle Scholar
  157. 156.
    Cavallaro, U. and G. Christofori. Cell adhesion and signalling by cadherins and Ig-CAMs in cancer. Nat. Rev. Cancer 4: 118–132, 2004.PubMedGoogle Scholar
  158. 157.
    Mani, S.A., W. Guo, M.J. Liao, E.N. Eaton, A. Ayyanan, A.Y. Zhou, M. Brooks, F. Reinhard, C.C. Zhang, M. Shipitsin, L.L. Campbell, K. Polyak, C. Brisken, J. Yang, and R.A. Weinberg. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133: 704–715, 2008.PubMedGoogle Scholar
  159. 158.
    Lobo, N.A., Y. Shimono, D. Qian, and M.F. Clarke. The biology of cancer stem cells. Annu. Rev. Cell Dev. Biol. 23: 675–699, 2007.PubMedGoogle Scholar
  160. 159.
    Dalerba, P. and M.F. Clarke. Cancer stem cells and tumor metastasis: first steps into uncharted territory. Cell Stem Cell 1: 241–242, 2007.PubMedGoogle Scholar
  161. 160.
    Karnoub, A.E., A.B. Dash, A.P. Vo, A. Sullivan, M.W. Brooks, G.W. Bell, A.L. Richardson, K. Polyak, R. Tubo, and R.A. Weinberg. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449: 557–563, 2007.PubMedGoogle Scholar
  162. 161.
    Thiery, J.-P. and J.P. Sleeman. Complex networks orchestrate epithelial-mesenchymal transitions. Nat. Rev. Mol. Cell. Biol. 7: 131–142, 2006.PubMedGoogle Scholar
  163. 162.
    Prindull, G. Hypothesis: cell plasticity, linking embryonal stem cells to adult stem cell reservoirs and metastatic cancer cells? Exp. Hematol. 33: 738–746, 2005.Google Scholar
  164. 163.
    Ben-Porath, I., M.W. Thomson, V.J. Carey, R. Ge, G.W. Bell, A. Regev, and R.A. Weinberg. An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat. Genet. 40: 499–507, 2008.PubMedGoogle Scholar
  165. 164.
    Ullmann, U., P. In’t Veld, C. Gilles, K. Sermon, M. De Rycke, H. Van de Velde, A. Van Steirteghem, and I. Liebaers. Epithelial-mesenchymal transition process in human embryonic stem cells cultured in feeder-free conditions. Mol. Hum. Reprod. 13: 21–32, 2007.PubMedGoogle Scholar
  166. 165.
    Fischer, A.N., E. Fuchs, M. Mikula, H. Huber, H. Beug, and W. Mikulits. PDGF essentially links TGF-β signaling to nuclear β-catenin accumulation in hepatocellular carcinoma progression. Oncogene In press, 2006.Google Scholar
  167. 166.
    Tarin, D., E.W. Thompson, and D.F. Newgreen. The fallacy of epithelial mesenchymal transition in neoplasia. Cancer Res. 65: 5996–6000; discussion 6000-1, 2005.PubMedGoogle Scholar
  168. 167.
    Christiansen, J.J. and A.K. Rajasekaran. Reassessing epithelial to mesenchymal transition as a prerequisite for carcinoma invasion and metastasis. Cancer Res. 66: 8319–8326, 2006.PubMedGoogle Scholar
  169. 168.
    Wicki, A., F. Lehembre, N. Wick, B. Hantusch, D. Kerjaschki, and G. Christofori. Tumor invasion in the absence of epithelial-mesenchymal transition: podoplanin-mediated remodeling of the actin cytoskeleton. Cancer Cell 9: 261–272, 2006.PubMedGoogle Scholar
  170. 169.
    Trimboli, A.J., K. Fukino, A. de Bruin, G. Wei, L. Shen, S.M. Tanner, N. Creasap, T.J. Rosol, M.L. Robinson, C. Eng, M.C. Ostrowski, and G. Leone. Direct evidence for epithelial-mesenchymal transitions in breast cancer. Cancer Res. 68: 937–945, 2008.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Katia Savary
    • 1
  • Stefan Termén
    • 1
  • Sylvie Thuault
    • 1
  • Venkateshwar Keshamouni
    • 2
  • Aristidis Moustakas
    • 3
  1. 1.Ludwig Institute for Cancer ResearchBiomedical Center, Uppsala UniversityUppsalaSweden
  2. 2.Division of Pulmonary and Critical Care Medicine, Department of Internal MedicineUniversity of MichiganAnn ArborUSA
  3. 3.Ludwig Institute for Cancer Research, Biomedical CenterUppsala UniversityUppsalaSweden

Personalised recommendations