Tumor Stem Cells and Metastasis



The last decade has seen the emergence of a shift in paradigm in the therapeutic strategies to target cancer. This is based on the existence of a small reservoir of cells within the tumor mass that exhibits the capacity for self-renewal, as well as undergo differentiation to give rise to phenotypically heterogeneous progeny with limited proliferative potential. These stem-like cells likely drive the continued growth of the tumor mass and are capable of disseminating and are subsequently metastasized. Relapse is probably orchestrated by the post-therapy residual drug-resistant “cancer stem cells” that escape treatment. Therefore, the selective targeting of cancer stem cells is supposed to offer radical advances in the treatment and diagnosis of lung cancer. This chapter will discuss the emerging data supporting the validity of this notion and consider the growing evidence that cancer stem cells may contribute to tumor progression, drug resistance, metastasis, and speculates about how taking these cells into consideration may affect the way we treat lung cancer in the future.


Acute Myeloid Leukemia Cancer Stem Cell Side Population Side Population Cell Normal Stem Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



I would like to recognize support from the Canadian Institute of Health Research, British Columbia Lung Association, and the British Columbia Cancer Agency. These sources have no role in the preparation of this chapter. I would like to thank Alvin V. Ng and Maria M. Ho for their hard work and contributions. I apologize to colleagues whose work I could not cite due to space limitation.


  1. 1.
    Jemal, A., R. Siegel, E. Ward, T. Murray, J. Xu, C. Smigal, and M.J. Thun. 2006. Cancer statistics, 2006. CA Cancer J Clin 56(2):106–30.PubMedGoogle Scholar
  2. 2.
    Ozols, R.F., R.S. Herbst, Y.L. Colson, J. Gralow, J. Bonner, W.J. Curran, Jr., B.L. Eisenberg, P.A. Ganz, B.S. Kramer, M.G. Kris, M. Markman, R.J. Mayer, D. Raghavan, G.H. Reaman, R. Sawaya, R.L. Schilsky, L.M. Schuchter, J.W. Sweetenham, L.T. Vahdat, and R.J. Winn. 2007. Clinical cancer advances 2006: major research advances in cancer treatment, prevention, and screening – a report from the American Society of Clinical Oncology. J Clin Oncol 25(1):146–62.PubMedGoogle Scholar
  3. 3.
    Clarke, M.F., J.E. Dick, P.B. Dirks, C.J. Eaves, C.H. Jamieson, D.L. Jones, J.Visvader, I.L. Weissman, and G.M. Wahl. 2006. Cancer stem cells – perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res 66(19):9339–44.PubMedGoogle Scholar
  4. 4.
    Marx, J. 2007. Molecular biology. Cancer's perpetual source? Science 317(5841):1029–31.PubMedGoogle Scholar
  5. 5.
    Jordan, C.T., M.L. Guzman, and M. Noble. 2006. Cancer stem cells. N Engl J Med 355(12):1253–61.PubMedGoogle Scholar
  6. 6.
    Ward, R.J., and P.B. Dirks. 2007. Cancer Stem Cells: At the Headwaters of Tumor Development. Annu Rev Pathol 2:175–189.PubMedGoogle Scholar
  7. 7.
    Wicha, M.S., S. Liu, and G. Dontu. 2006. Cancer stem cells: an old idea – a paradigm shift. Cancer Res 66(4):1883–90; discussion 1895–6.PubMedGoogle Scholar
  8. 8.
    Michor, F., T.P. Hughes, Y. Iwasa, S. Branford, N.P. Shah, C.L. Sawyers, and M.A. Nowak. 2005. Dynamics of chronic myeloid leukaemia. Nature 435(7046):1267–70.PubMedGoogle Scholar
  9. 9.
    Hill, R.P. 2006. Identifying cancer stem cells in solid tumors: case not proven. Cancer Res 66(4):1891–5; discussion 1890.PubMedGoogle Scholar
  10. 10.
    Hill, R.P. and R. Perris. 2007. “Destemming” cancer stem cells. J Natl Cancer Inst 99(19):1435–40.PubMedGoogle Scholar
  11. 11.
    Kelly, P.N., A. Dakic, J.M. Adams, S.L. Nutt, and A. Strasser. 2007. Tumor growth need not be driven by rare cancer stem cells. Science 317(5836):337.PubMedGoogle Scholar
  12. 12.
    Seaberg, R.M. and D. van der Kooy. 2003. Stem and progenitor cells: the premature desertion of rigorous definitions. Trends Neurosci 26(3):125–31.PubMedGoogle Scholar
  13. 13.
    Dalerba, P., R.W. Cho, and M.F. Clarke. 2007. Cancer stem cells: models and concepts. Annu Rev Med 58:267–84.PubMedGoogle Scholar
  14. 14.
    Furth, J. and J.B. Kahn Jr. 1936. The transmission of leukaemia of mice with a single cell. Am J cancer 31:276–82.Google Scholar
  15. 15.
    Bruce, W.R. and H. Van Der Gaag. 1963. A quantitative assay for the number of Murine Lymphoma cells capable of proliferation in vivo. Nature 199:79–80.PubMedGoogle Scholar
  16. 16.
    Hamburger, A.W. and S.E. Salmon. 1977. Primary bioassay of human tumor stem cells. Science 197(4302):461–3.PubMedGoogle Scholar
  17. 17.
    Bonnet, D. and J.E. Dick. 1997. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3(7):730–7.PubMedGoogle Scholar
  18. 18.
    Al-Hajj, M., M.S. Wicha, A. Benito-Hernandez, S.J. Morrison, and M.F. Clarke. 2003. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 100(7):3983–8.PubMedGoogle Scholar
  19. 19.
    Dick, J.E. 2003. Breast cancer stem cells revealed. Proc Natl Acad Sci U S A 100(7):3547–9.PubMedGoogle Scholar
  20. 20.
    Hemmati, H.D., I. Nakano, J.A. Lazareff, M. Masterman-Smith, D.H. Geschwind, M. Bronner-Fraser, and H.I. Kornblum. 2003. Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci U S A 100(25):15178–83.PubMedGoogle Scholar
  21. 21.
    Ignatova, T.N., V.G. Kukekov, E.D. Laywell, O.N. Suslov, F.D. Vrionis, and D.A. Steindler. 2002. Human cortical glial tumors contain neural stem-like cells expressing astroglial and neuronal markers in vitro. Glia 39(3):193–206.PubMedGoogle Scholar
  22. 22.
    Singh, S.K., C. Hawkins, I.D. Clarke, J.A. Squire, J. Bayani, T. Hide, R.M. Henkelman, M.D. Cusimano, and P.B. Dirks. 2004. Identification of human brain tumour initiating cells. Nature 432(7015):396–401.PubMedGoogle Scholar
  23. 23.
    Collins, A.T., P.A. Berry, C. Hyde, M.J. Stower, and N.J. Maitland. 2005. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 65(23):10946–51.PubMedGoogle Scholar
  24. 24.
    Dalerba, P., S.J. Dylla, I.K. Park, R. Liu, X. Wang, R.W. Cho, T. Hoey, A. Gurney, E.H. Huang, D.M. Simeone, A.A. Shelton, G. Parmiani, C. Castelli, and M.F. Clarke. 2007. Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci U S A 104(24):10158–63.PubMedGoogle Scholar
  25. 25.
    Gibbs, C.P., V.G. Kukekov, J.D. Reith, O. Tchigrinova, O.N. Suslov, E.W. Scott, S.C. Ghivizzani, T.N. Ignatova, and D.A. Steindler. 2005. Stem-like cells in bone sarcomas: implications for tumorigenesis. Neoplasia 7(11):967–76.PubMedGoogle Scholar
  26. 26.
    Li, C., D.G. Heidt, P. Dalerba, C.F. Burant, L. Zhang, V. Adsay, M. Wicha, M.F. Clarke, and D.M. Simeone. 2007. Identification of pancreatic cancer stem cells. Cancer Res 67(3):1030–7.PubMedGoogle Scholar
  27. 27.
    Ma, S., K.W. Chan, L. Hu, T.K. Lee, J.Y. Wo, I.O. Ng, B.J. Zheng, and X.Y. Guan. 2007. Identification and characterization of tumorigenic liver cancer stem/progenitor cells. Gastroenterology 132(7):2542–56.PubMedGoogle Scholar
  28. 28.
    Prince, M.E., R. Sivanandan, A. Kaczorowski, G.T. Wolf, M.J. Kaplan, P. Dalerba, I.L. Weissman, M.F. Clarke, and L.E. Ailles. 2007. Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci U S A 104(3):973–8.PubMedGoogle Scholar
  29. 29.
    Ricci-Vitiani, L., D.G. Lombardi, E. Pilozzi, M. Biffoni, M. Todaro, C. Peschle, and R. De Maria. 2007. Identification and expansion of human colon-cancer-initiating cells. Nature 445(7123):111–5.PubMedGoogle Scholar
  30. 30.
    Fang, D., T.K. Nguyen, K. Leishear, R. Finko, A.N. Kulp, S. Hotz, P.A. Van Belle, X. Xu, D.E. Elder, and M. Herlyn. 2005. A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res 65(20):9328–37.PubMedGoogle Scholar
  31. 31.
    Challen, G.A., and M.H. Little. 2006. A side order of stem cells: the SP phenotype. Stem Cells 24(1):3–12.PubMedGoogle Scholar
  32. 32.
    Hadnagy, A., L. Gaboury, R. Beaulieu, and D. Balicki. 2006. SP analysis may be used to identify cancer stem cell populations. Exp Cell Res 312(19):3701–10.PubMedGoogle Scholar
  33. 33.
    Bunting, K.D. 2002. ABC transporters as phenotypic markers and functional regulators of stem cells. Stem Cells 20(1):11–20.PubMedGoogle Scholar
  34. 34.
    Goodell, M.A., K. Brose, G. Paradis, A.S. Conner, and R.C. Mulligan. 1996. Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med 183(4):1797–806.PubMedGoogle Scholar
  35. 35.
    Zhou, S., J.D. Schuetz, K.D. Bunting, A.M. Colapietro, J. Sampath, J.J. Morris, I. Lagutina, G.C. Grosveld, M. Osawa, H. Nakauchi, and B.P. Sorrentino. 2001. The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med 7(9): 1028–34.PubMedGoogle Scholar
  36. 35a.
    Scharenberg, C.W., M.A. Harkey, B. Torok-Storb. 2002. The ABCG2 transporter is an efficient Hoechst 33342 efflux pump and is preferentially expressed by immature human hematopoietic progenitors. Blood 99(2):507–12.Google Scholar
  37. 36.
    Zhang, L., J. Hu, T.P. Hong, Y.N. Liu, Y.H. Wu, and L.S. Li. 2005. Monoclonal side population progenitors isolated from human fetal pancreas. Biochem Biophys Res Commun 333(2):603–8.PubMedGoogle Scholar
  38. 37.
    Bhatt, R.I., M.D. Brown, C.A. Hart, P. Gilmore, V.A. Ramani, N.J. George, and N.W. Clarke. 2003. Novel method for the isolation and characterisation of the putative prostatic stem cell. Cytometry A 54(2):89–99.PubMedGoogle Scholar
  39. 38.
    Reynolds, S.D., H. Shen, P.R. Reynolds, T. Betsuyaku, J.M. Pilewski, F. Gambelli, M. Di Giuseppe, L.A. Ortiz, and B.R. Stripp. 2007. Molecular and functional properties of lung SP cells. Am J Physiol Lung Cell Mol Physiol 292(4):L972–83.PubMedGoogle Scholar
  40. 39.
    Summer, R., D.N. Kotton, X. Sun, B. Ma, K. Fitzsimmons, and A. Fine. 2003. Side population cells and Bcrp1 expression in lung. Am J Physiol Lung Cell Mol Physiol 285(1):L97–104.PubMedGoogle Scholar
  41. 40.
    Alvi, A.J., H. Clayton, C. Joshi, T. Enver, A. Ashworth, M.M. Vivanco, T.C. Dale, and M.J. Smalley. 2003. Functional and molecular characterisation of mammary side population cells. Breast Cancer Res 5(1):R1–8.PubMedGoogle Scholar
  42. 41.
    Clarke, R.B., K. Spence, E. Anderson, A. Howell, H. Okano, and C.S. Potten. 2005. A putative human breast stem cell population is enriched for steroid receptor-positive cells. Dev Biol 277(2):443–56.PubMedGoogle Scholar
  43. 42.
    Sainz, J., A. Al Haj Zen, G. Caligiuri, C. Demerens, D. Urbain, M. Lemitre, and A. Lafont. 2006. Isolation of "side population" progenitor cells from healthy arteries of adult mice. Arterioscler Thromb Vasc Biol 26(2):281–6.PubMedGoogle Scholar
  44. 43.
    Feuring-Buske, M., and D.E. Hogge. 2001. Hoechst 33342 efflux identifies a subpopulation of cytogenetically normal CD34(+)CD38(–) progenitor cells from patients with acute myeloid leukemia. Blood 97(12):3882–9.PubMedGoogle Scholar
  45. 44.
    Wulf, G.G., R.Y. Wang, I. Kuehnle, D. Weidner, F. Marini, M.K. Brenner, M. Andreeff, and M.A. Goodell. 2001. A leukemic stem cell with intrinsic drug efflux capacity in acute myeloid leukemia. Blood 98(4):1166–73.PubMedGoogle Scholar
  46. 45.
    Hirschmann-Jax, C., A.E. Foster, G.G. Wulf, J.G. Nuchtern, T.W. Jax, U. Gobel, M.A. Goodell, and M.K. Brenner. 2004. A distinct “side population” of cells with high drug efflux capacity in human tumor cells. Proc Natl Acad Sci U S A 101(39):14228–33.PubMedGoogle Scholar
  47. 46.
    Kondo, T., T. Setoguchi, and T. Taga. 2004. Persistence of a small subpopulation of cancer stem-like cells in the C6 glioma cell line. Proc Natl Acad Sci U S A 101(3):781–6.PubMedGoogle Scholar
  48. 47.
    Seigel, G.M., L.M. Campbell, M. Narayan, and F. Gonzalez-Fernandez. 2005. Cancer stem cell characteristics in retinoblastoma. Mol Vis 11:729–37.PubMedGoogle Scholar
  49. 48.
    Patrawala, L., T. Calhoun, R. Schneider-Broussard, J. Zhou, K. Claypool, and D.G. Tang. 2005. Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2+ and ABCG2– cancer cells are similarly tumorigenic. Cancer Res 65(14):6207–19.PubMedGoogle Scholar
  50. 49.
    Chen, J.S., F.S. Pardo, J. Wang-Rodriguez, T.S. Chu, J.P. Lopez, J. Aguilera, X. Altuna, R.A. Weisman, and W.M. Ongkeko. 2006. EGFR regulates the side population in head and neck squamous cell carcinoma. Laryngoscope 116(3):401–6.PubMedGoogle Scholar
  51. 50.
    Chiba, T., K. Kita, Y.W. Zheng, O. Yokosuka, H. Saisho, A. Iwama, H. Nakauchi, and H. Taniguchi. 2006. Side population purified from hepatocellular carcinoma cells harbors cancer stem cell-like properties. Hepatology 44(1):240–51.PubMedGoogle Scholar
  52. 51.
    Szotek, P.P., R. Pieretti-Vanmarcke, P.T. Masiakos, D.M. Dinulescu, D. Connolly, R. Foster, D. Dombkowski, F. Preffer, D.T. Maclaughlin, and P.K. Donahoe. 2006. Ovarian cancer side population defines cells with stem cell-like characteristics and Mullerian Inhibiting Substance responsiveness. Proc Natl Acad Sci U S A 103(30):11154–9.PubMedGoogle Scholar
  53. 52.
    Mitsutake, N., A. Iwao, K. Nagai, H. Namba, A. Ohtsuru, V. Saenko, and S. Yamashita. 2007. Characterization of side population in thyroid cancer cell lines: cancer stem-like cells are enriched partly but not exclusively. Endocrinology 148(4):1797–803.PubMedGoogle Scholar
  54. 53.
    Haraguchi, N., T. Utsunomiya, H. Inoue, F. Tanaka, K. Mimori, G.F. Barnard, and M. Mori. 2006. Characterization of a side population of cancer cells from human gastrointestinal system. Stem Cells 24(3):506–513.Google Scholar
  55. 54.
    Ho, M.M., A.V. Ng, S. Lam, and J.Y. Hung. 2007. Side population in human lung cancer cell lines and tumors is enriched with stem-like cancer cells. Cancer Res 67(10):4827–33.PubMedGoogle Scholar
  56. 55.
    Eramo, A., F. Lotti, G. Sette, E. Pilozzi, M. Biffoni, A. Di Virgilio, C. Conticello, L. Ruco, C. Peschle, and R. De Maria. 2008. Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ 15(3):504–514.Google Scholar
  57. 56.
    Reynolds, B.A., and S. Weiss. 1992. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255(5052):1707–10.PubMedGoogle Scholar
  58. 57.
    Bjerkvig, R., B.B. Tysnes, K.S. Aboody, J. Najbauer, and A.J. Terzis. 2005. Opinion: the origin of the cancer stem cell: current controversies and new insights. Nat Rev Cancer 5(11):899–904.PubMedGoogle Scholar
  59. 58.
    Cohnheim, J. 1867. Ueber entzundung und eiterung. Path. Anat. Physiol. Klin. Med. 40:1–79.Google Scholar
  60. 59.
    Virchow, R. 1855. Virchows Arch. Pathol. Anat. Physiol. Klin. Med. 3:23.Google Scholar
  61. 60.
    Sell, S., and G.B. Pierce. 1994. Maturation arrest of stem cell differentiation is a common pathway for the cellular origin of teratocarcinomas and epithelial cancers. Lab Invest 70(1):6–22.PubMedGoogle Scholar
  62. 61.
    Emura, M. 2002. Stem cells of the respiratory tract. Paediatr Respir Rev 3(1):36–40.PubMedGoogle Scholar
  63. 62.
    Giangreco, A., K.R. Groot, and S.M. Janes. 2007. Lung cancer and lung stem cells: strange bedfellows? Am J Respir Crit Care Med 175(6):547–53.PubMedGoogle Scholar
  64. 63.
    Giangreco, A., S.D. Reynolds, and B.R. Stripp. 2002. Terminal bronchioles harbor a unique airway stem cell population that localizes to the bronchoalveolar duct junction. Am J Pathol 161(1):173–82.PubMedGoogle Scholar
  65. 64.
    Gomperts, B.N., and R.M. Strieter. 2007. Stem cells and chronic lung disease. Annu Rev Med 58:285–98.PubMedGoogle Scholar
  66. 65.
    Griffiths, M.J., D. Bonnet, and S.M. Janes. 2005. Stem cells of the alveolar epithelium. Lancet 366(9481):249–60.PubMedGoogle Scholar
  67. 66.
    Kotton, D.N., and A. Fine. 2008. Lung stem cells. Cell Tissue Res 331(1):145–56.PubMedGoogle Scholar
  68. 67.
    Lane, S., H.J. Rippon, and A.E. Bishop. 2007. Stem cells in lung repair and regeneration. Regen Med 2(4):407–15.PubMedGoogle Scholar
  69. 68.
    Beachy, P.A., S.S. Karhadkar, and D.M. Berman. 2004. Tissue repair and stem cell renewal in carcinogenesis. Nature 432(7015):324–31.PubMedGoogle Scholar
  70. 69.
    Beachy, P.A., S.S. Karhadkar, and D.M. Berman. 2004. Mending and malignancy. Nature 431(7007):402.PubMedGoogle Scholar
  71. 70.
    Engelhardt, J.F. 2001. Stem cell niches in the mouse airway. Am J Respir Cell Mol Biol 24(6):649–52.PubMedGoogle Scholar
  72. 71.
    Kim, C.F., E.L. Jackson, A.E. Woolfenden, S. Lawrence, I. Babar, S. Vogel, D. Crowley, R.T. Bronson, and T. Jacks. 2005. Identification of bronchoalveolar stem cells in normal lung and lung cancer. Cell 121(6):823–35.PubMedGoogle Scholar
  73. 72.
    Cozzio, A., E. Passegue, P.M. Ayton, H. Karsunky, M.L. Cleary, and I.L. Weissman. 2003. Similar MLL-associated leukemias arising from self-renewing stem cells and short-lived myeloid progenitors. Genes Dev 17(24):3029–35.PubMedGoogle Scholar
  74. 73.
    Jamieson, C.H., L.E. Ailles, S.J. Dylla, M. Muijtjens, C. Jones, J.L. Zehnder, J. Gotlib, K. Li, M.G. Manz, A. Keating, C.L. Sawyers, and I.L. Weissman. 2004. Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N Engl J Med 351(7):657–67.PubMedGoogle Scholar
  75. 74.
    Krivtsov, A.V., D. Twomey, Z. Feng, M.C. Stubbs, Y. Wang, J. Faber, J.E. Levine, J. Wang, W.C. Hahn, D.G. Gilliland, T.R. Golub, and S.A. Armstrong. 2006. Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9. Nature 442(7104):818–22.PubMedGoogle Scholar
  76. 75.
    Passegue, E., C.H. Jamieson, L.E. Ailles, and I.L. Weissman. 2003. Normal and leukemic hematopoiesis: are leukemias a stem cell disorder or a reacquisition of stem cell characteristics? Proc Natl Acad Sci U S A 100(Suppl 1):11842–9.PubMedGoogle Scholar
  77. 76.
    Duelli, D., and Y. Lazebnik. 2003. Cell fusion: a hidden enemy? Cancer Cell 3(5): 445–8.PubMedGoogle Scholar
  78. 77.
    Thiery, J.P. 2002. Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer 2(6):442–54.PubMedGoogle Scholar
  79. 78.
    Thiery, J.P. 2003. Epithelial-mesenchymal transitions in development and pathologies. Curr Opin Cell Biol 15(6):740–6.PubMedGoogle Scholar
  80. 79.
    Brabletz, T., A. Jung, S. Spaderna, F. Hlubek, and T. Kirchner. 2005. Opinion: migrating cancer stem cells – an integrated concept of malignant tumour progression. Nat Rev Cancer 5(9):744–9.PubMedGoogle Scholar
  81. 80.
    Chaffer, C.L., J.P. Brennan, J.L. Slavin, T. Blick, E.W. Thompson, and E.D. Williams. 2006. Mesenchymal-to-epithelial transition facilitates bladder cancer metastasis: role of fibroblast growth factor receptor-2. Cancer Res 66(23):11271–8.PubMedGoogle Scholar
  82. 81.
    Bissell, M.J. and M.A. Labarge. 2005. Context, tissue plasticity, and cancer: are tumor stem cells also regulated by the microenvironment? Cancer Cell 7(1):17–23.PubMedGoogle Scholar
  83. 82.
    Li, L. and W.B. Neaves. 2006. Normal stem cells and cancer stem cells: the niche matters. Cancer Res 66(9):4553–7.PubMedGoogle Scholar
  84. 83.
    Tse, J.C. and R. Kalluri. 2007. Mechanisms of metastasis: epithelial-to-mesenchymal transition and contribution of tumor microenvironment. J Cell Biochem 101(4):816–29.PubMedGoogle Scholar
  85. 84.
    Kaplan, R.N., R.D. Riba, S. Zacharoulis, A.H. Bramley, L. Vincent, C. Costa, D.D. MacDonald, D.K. Jin, K. Shido, S.A. Kerns, Z. Zhu, D. Hicklin, Y. Wu, J.L. Port, N. Altorki, E.R. Port, D. Ruggero, S.V. Shmelkov, K.K. Jensen, S. Rafii, and D. Lyden. 2005. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438(7069):820–7.PubMedGoogle Scholar
  86. 85.
    Li, F., B. Tiede, J. Massague, and Y. Kang. 2007. Beyond tumorigenesis: cancer stem cells in metastasis. Cell Res 17(1):3–14.PubMedGoogle Scholar
  87. 86.
    Tu, S.M., S.H. Lin, and C.J. Logothetis. 2002. Stem-cell origin of metastasis and heterogeneity in solid tumours. Lancet Oncol 3(8):508–13.PubMedGoogle Scholar
  88. 87.
    Schiller, J.H., D. Harrington, C.P. Belani, C. Langer, A. Sandler, J. Krook, J. Zhu, and D.H. Johnson. 2002. Comparison of four chemotherapy regimens for advanced non-small-cell lung cancer. N Engl J Med 346(2):92–8.PubMedGoogle Scholar
  89. 88.
    Goldie, J.H. and A.J. Coldman. 1979. A mathematic model for relating the drug sensitivity of tumors to their spontaneous mutation rate. Cancer Treat Rep 63(11–12):1727–33.Google Scholar
  90. 89.
    Costello, R.T., F. Mallet, B. Gaugler, D. Sainty, C. Arnoulet, J.A. Gastaut, and D. Olive. 2000. Human acute myeloid leukemia CD34+/CD38– progenitor cells have decreased sensitivity to chemotherapy and Fas-induced apoptosis, reduced immunogenicity, and impaired dendritic cell transformation capacities. Cancer Res 60(16):4403–11.PubMedGoogle Scholar
  91. 89a.
    Guzman, M.L., C.F. Swiderski, D.S. Howard, B.A. Grimes, R.M. Rossi, S.J. Szilvassy, and C.T. Jordan. 2002. Preferential induction of apoptosis for primary human leukemic stem cells. Proc Natl Acad Sci USA 99(25):16220–5.Google Scholar
  92. 90.
    Dean, M., T. Fojo, and S. Bates. 2005. Tumour stem cells and drug resistance. Nat Rev Cancer 5(4):275–84.PubMedGoogle Scholar
  93. 91.
    Donnenberg, V.S., and A.D. Donnenberg. 2005. Multiple drug resistance in cancer revisited: the cancer stem cell hypothesis. J Clin Pharmacol 45(8):872–7.PubMedGoogle Scholar
  94. 92.
    Diehn, M., and M.F. Clarke. 2006. Cancer stem cells and radiotherapy: new insights into tumor radioresistance. J Natl Cancer Inst 98(24):1755–7.PubMedGoogle Scholar
  95. 93.
    Bao, S., Q. Wu, R.E. McLendon, Y. Hao, Q. Shi, A.B. Hjelmeland, M.W. Dewhirst, D.D. Bigner, and J.N. Rich. 2006. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444(7120):756–60.PubMedGoogle Scholar
  96. 94.
    Gilbertson, R.J., and J.N. Rich. 2007. Making a tumour's bed: glioblastoma stem cells and the vascular niche. Nat Rev Cancer 7(10):733–6.PubMedGoogle Scholar
  97. 95.
    Bao, S., Q. Wu, S. Sathornsumetee, Y. Hao, Z. Li, A.B. Hjelmeland, Q. Shi, R.E. McLendon, D.D. Bigner, and J.N. Rich. 2006. Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res 66(16):7843–8.PubMedGoogle Scholar
  98. 96.
    Calabrese, C., H. Poppleton, M. Kocak, T.L. Hogg, C. Fuller, B. Hamner, E.Y. Oh, M.W. Gaber, D. Finklestein, M. Allen, A. Frank, I.T. Bayazitov, S.S. Zakharenko, A. Gajjar, A. Davidoff, and R.J. Gilbertson. 2007. A perivascular niche for brain tumor stem cells. Cancer Cell 11(1):69–82.PubMedGoogle Scholar
  99. 97.
    Folkman, J. 2002. Role of angiogenesis in tumor growth and metastasis. Semin Oncol 29(6 Suppl 16):15–8.PubMedGoogle Scholar
  100. 98.
    Cao, C., J.M. Albert, L. Geng, P.S. Ivy, A. Sandler, D.H. Johnson, and B. Lu. 2006. Vascular endothelial growth factor tyrosine kinase inhibitor AZD2171 and fractionated radiotherapy in mouse models of lung cancer. Cancer Res 66(23):11409–15.PubMedGoogle Scholar
  101. 99.
    Herbst, R.S., D.H. Johnson, E. Mininberg, D.P. Carbone, T. Henderson, E.S. Kim, G. Blumenschein, Jr., J.J. Lee, D.D. Liu, M.T. Truong, W.K. Hong, H. Tran, A. Tsao, D. Xie, D.A. Ramies, R. Mass, S. Seshagiri, D.A. Eberhard, S.K. Kelley, and A. Sandler. 2005. Phase I/II trial evaluating the anti-vascular endothelial growth factor monoclonal antibody bevacizumab in combination with the HER-1/epidermal growth factor receptor tyrosine kinase inhibitor erlotinib for patients with recurrent non-small-cell lung cancer. J Clin Oncol 23(11):2544–55.PubMedGoogle Scholar
  102. 100.
    Johnson, D.H., L. Fehrenbacher, W.F. Novotny, R.S. Herbst, J.J. Nemunaitis, D.M. Jablons, C.J. Langer, R.F. DeVore, IIIrd, J. Gaudreault, L.A. Damico, E. Holmgren, and F. Kabbinavar. 2004. Randomized phase II trial comparing bevacizumab plus carboplatin and paclitaxel with carboplatin and paclitaxel alone in previously untreated locally advanced or metastatic non-small-cell lung cancer. J Clin Oncol 22(11):2184–91.PubMedGoogle Scholar
  103. 101.
    Vokes, E., R. Herbst, and A. Sandler. 2006. Angiogenesis inhibition in the treatment of lung cancer. Clin Adv Hematol Oncol 4(11 Suppl 23):1-10; quiz 11-2.Google Scholar
  104. 102.
    Batchelor, T.T., A.G. Sorensen, E. di Tomaso, W.T. Zhang, D.G. Duda, K.S. Cohen, K.R. Kozak, D.P. Cahill, P.J. Chen, M. Zhu, M. Ancukiewicz, M.M. Mrugala, S. Plotkin, J. Drappatz, D.N. Louis, P. Ivy, D.T. Scadden, T. Benner, J.S. Loeffler, P.Y. Wen, and R.K. Jain. 2007. AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell 11(1):83–95.PubMedGoogle Scholar
  105. 103.
    Vredenburgh, J.J., A. Desjardins, J.E. Herndon, IInd, J.M. Dowell, D.A. Reardon, J.A. Quinn, J.N. Rich, S. Sathornsumetee, S. Gururangan, M. Wagner, D.D. Bigner, A.H. Friedman, and H.S. Friedman. 2007. Phase II trial of bevacizumab and irinotecan in recurrent malignant glioma. Clin Cancer Res 13(4):1253–9.PubMedGoogle Scholar
  106. 104.
    Phatak, P., J.C. Cookson, F. Dai, V. Smith, R.B. Gartenhaus, M.F. Stevens, and A.M. Burger. 2007. Telomere uncapping by the G-quadruplex ligand RHPS4 inhibits clonogenic tumour cell growth in vitro and in vivo consistent with a cancer stem cell targeting mechanism. Br J Cancer 96(8):1223–33.PubMedGoogle Scholar
  107. 105.
    Shay, J.W., and W.N. Keith. 2008. Targeting telomerase for cancer therapeutics. Br J Cancer 98(4):677–83.PubMedGoogle Scholar
  108. 106.
    Sun, S., J.H. Schiller, M. Spinola, and J.D. Minna. 2007. New molecularly targeted therapies for lung cancer. J Clin Invest 117(10):2740–50.PubMedGoogle Scholar
  109. 107.
    Harley, C.B. 2008. Telomerase and cancer therapeutics. Nat Rev Cancer 8(3):167–79.PubMedGoogle Scholar
  110. 108.
    Liu, R., X. Wang, G.Y. Chen, P. Dalerba, A. Gurney, T. Hoey, G. Sherlock, J. Lewicki, K. Shedden, and M.F. Clarke. 2007. The prognostic role of a gene signature from tumorigenic breast-cancer cells. N Engl J Med 356(3):217–26.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Pediatrics, Greehey Children’s Cancer Research InstituteUniversity of Texas Health Science CenterSan AntonioUSA

Personalised recommendations