Systems Approach for Understanding Metastasis

  • Peter J. Woolf
  • Angel Alvarez
  • Venkateshwar G. Keshamouni


A systems approach to analysis is based on the belief that the component parts of a system will act differently when isolated from its environment or other parts of the system. In other words, the whole is greater than the sum of its parts due to the relationship and the interaction between the parts. In biology, the goal of a systems approach is to understand the operation of complex biological systems by providing the missing link between molecules and physiology. Currently systems biology encompasses many different approaches with an ultimate aim of developing predictive models for complex human diseases including cancer. This chapter will highlight some of the tools and efforts of systems biology that are applied to cancer and will discuss how these efforts can be further extended to the much needed understanding and targeting of lung tumor metastasis.


Bayesian Network System Biology Dynamic Bayesian Network Differential Equation Model Complex Biological System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Hanahan, D. and R.A. Weinberg. The hallmarks of cancer. Cell 100: 57–70, 2000.PubMedCrossRefGoogle Scholar
  2. 2.
    Ge, H., A.J. Walhout, and M. Vidal. Integrating ‘omic' information: a bridge between genomics and systems biology. Trends Genet 19: 551–60, 2003.PubMedCrossRefGoogle Scholar
  3. 3.
    Bruggeman, F.J., J.J. Hornberg, F.C. Boogerd, and H.V. Westerhoff. Introduction to systems biology. Exs 97: 1–19, 2007.PubMedGoogle Scholar
  4. 4.
    Bruggeman, F.J. and H.V. Westerhoff. The nature of systems biology. Trends Microbiol 15: 45–50, 2007.PubMedCrossRefGoogle Scholar
  5. 5.
    Butcher, E.C., E.L. Berg, and E.J. Kunkel. Systems biology in drug discovery. Nat Biotechnol 22: 1253–9, 2004.PubMedCrossRefGoogle Scholar
  6. 6.
    Kitano, H. Computational systems biology. Nature 420: 206–10, 2002.PubMedCrossRefGoogle Scholar
  7. 7.
    Khalil, I.G. and C. Hill. Systems biology for cancer. Curr Opin Oncol 17: 44–8, 2005.PubMedCrossRefGoogle Scholar
  8. 8.
    Zhu, Y., H. Li, D.J. Miller, Z. Wang, J. Xuan, R. Clarke, E.P. Hoffman, and Y. Wang. caBIG VISDA: modeling, visualization, and discovery for cluster analysis of genomic data. BMC Bioinformatics 9: 383, 2008.PubMedCrossRefGoogle Scholar
  9. 9.
    Zhang, R., M.V. Shah, J. Yang, S.B. Nyland, X. Liu, J.K. Yun, R. Albert, and T.P. Loughran, Jr. Network model of survival signaling in large granular lymphocyte leukemia. Proc Natl Acad Sci USA 105: 16308–13, 2008.PubMedCrossRefGoogle Scholar
  10. 10.
    Hornberg, J.J., B. Binder, F.J. Bruggeman, B. Schoeberl, R. Heinrich, and H.V. Westerhoff. Control of MAPK signalling: from complexity to what really matters. Oncogene 24: 5533–42, 2005.PubMedCrossRefGoogle Scholar
  11. 11.
    Dayananda, P.W., J.T. Kemper, and M.M. Shvartsman. A stochastic model for prostate-specific antigen levels. Math Biosci 190: 113–26, 2004.PubMedCrossRefGoogle Scholar
  12. 12.
    Shannon, P., A. Markiel, O. Ozier, N.S. Baliga, J.T. Wang, D. Ramage, N. Amin, B. Schwikowski, and T. Ideker. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13: 2498–504, 2003.PubMedCrossRefGoogle Scholar
  13. 13.
    Gansner, E.R. and S.C. North. An open graph visualization system and its applications to software engineering. Software Practice and Experience 30: 1203–33, 2000.CrossRefGoogle Scholar
  14. 14.
    Burnside, E.S., D.L. Rubin, J.P. Fine, R.D. Shachter, G.A. Sisney, and W.K. Leung. Bayesian network to predict breast cancer risk of mammographic microcalcifications and reduce number of benign biopsy results: initial experience. Radiology 240: 666–73, 2006.PubMedCrossRefGoogle Scholar
  15. 15.
    Cruz-Ramirez, N., H.G. Acosta-Mesa, H. Carrillo-Calvet, L.A. Nava-Fernandez, and R.E. Barrientos-Martinez. Diagnosis of breast cancer using Bayesian networks: a case study. Comput Biol Med 37: 1553–64, 2007.PubMedCrossRefGoogle Scholar
  16. 16.
    Antal, P., G. Fannes, D. Timmerman, Y. Moreau, and B. De Moor. Using literature and data to learn Bayesian networks as clinical models of ovarian tumors. Artif Intell Med 30: 257–81, 2004.PubMedCrossRefGoogle Scholar
  17. 17.
    Werhli, A.V., M. Grzegorczyk, and D. Husmeier. Comparative evaluation of reverse engineering gene regulatory networks with relevance networks, graphical Gaussian models and Bayesian networks. Bioinformatics 22: 2523–31, 2006.PubMedCrossRefGoogle Scholar
  18. 18.
    Driscoll, T. and R. Mitchell. Fatal work injuries in New South Wales. N S W Public Health Bull 13: 95–9, 2002.PubMedCrossRefGoogle Scholar
  19. 19.
    Keshamouni, V.G., P. Jagtap, G. Michailidis, J.R. Strahler, R. Kuick, A.K. Reka, P. Papoulias, R. Krishnapuram, A. Srirangam, T.J. Standiford, P.C. Andrews, and G.S. Omenn. Temporal quantitative proteomics by iTRAQ 2D-LC-MS/MS and corresponding mRNA expression analysis identify post-transcriptional modulation of actin-cytoskeleton regulators during TGF-beta-Induced epithelial-mesenchymal transition. J Proteome Res 8: 35–47, 2009.PubMedCrossRefGoogle Scholar
  20. 20.
    Chang, J.H., K.B. Hwang, S.J. Oh, and B.T. Zhang. Bayesian network learning with feature abstraction for gene-drug dependency analysis. J Bioinform Comput Biol 3: 61–77, 2005.PubMedCrossRefGoogle Scholar
  21. 21.
    Conti, D.V., V. Cortessis, J. Molitor, and D.C. Thomas. Bayesian modeling of complex metabolic pathways. Hum Hered 56: 83–93, 2003.PubMedCrossRefGoogle Scholar
  22. 22.
    Smith, V.A., J. Yu, T.V. Smulders, A.J. Hartemink, and E.D. Jarvis. Computational inference of neural information flow networks. PLoS Comput Biol 2: e161, 2006.Google Scholar
  23. 23.
    Tucker, A., V. Vinciotti, X. Liu, and D. Garway-Heath. A spatio-temporal Bayesian network classifier for understanding visual field deterioration. Artif Intell Med 34: 163–77, 2005.PubMedCrossRefGoogle Scholar
  24. 24.
    Xiang, Z., R.M. Minter, X. Bi, P.J. Woolf, and Y. He. miniTUBA: medical inference by network integration of temporal data using Bayesian analysis. Bioinformatics 23: 2423–32, 2007.PubMedCrossRefGoogle Scholar
  25. 25.
    Dojer, N., A. Gambin, A. Mizera, B. Wilczynski, and J. Tiuryn. Applying dynamic Bayesian networks to perturbed gene expression data. BMC Bioinformatics 7: 249, 2006.Google Scholar
  26. 26.
    Li P., C. Zhang, E.J. Perkins, P. Gong, and Y. Deng. Comparison of probabilistic Boolean network and dynamic Bayesian network approaches for inferring gene regulatory networks. BMC Bioinformatics, 8 Suppl 7: S13, 2007.Google Scholar
  27. 27.
    Kim, S., S. Imoto, and S. Miyano. Dynamic Bayesian network and nonparametric regression for nonlinear modeling of gene networks from time series gene expression data. Biosystems, 75(1-3): 57–65, 2004.Google Scholar
  28. 28.
    Kim, S.Y., Imoto, and S. Miyano. Inferring gene networks from time series microarray data using dynamic Bayesian networks. Brief Bioinform, 4(3): 228–235, 2003.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Peter J. Woolf
    • 1
    • 2
  • Angel Alvarez
    • 2
  • Venkateshwar G. Keshamouni
    • 3
  1. 1.Department of Chemical Engineering and Biomedical EngineeringUniversity of MichiganAnn ArborUSA
  2. 2.Department of Chemical EngineeringUniversity of MichiganAnn ArborUSA
  3. 3.Division of Pulmonary and Critical Care Medicine, Department of Internal MedicineUniversity of MichiganAnn ArborUSA

Personalised recommendations