Carcinoma-Associated Fibroblasts in Lung Cancer



There is growing evidence that carcinogenesis is influenced and controlled by the cellular interactions between tumor stroma, ECM, and neoplastic cells. Therefore, the stromal cells surrounding cancer epithelial cells, rather than being passive bystanders, appear to have an important role in modifying tumor development and progression. Clinical evidence also supports the significant contribution of stroma to the development of a wide variety of tumors. There is a higher incidence of tumor formation in tissues exhibiting a chronically inflamed stroma as well as those undergoing wound healing, in which the stroma plays a central role. The stromal microenvironment of human cancers is also different from that of the corresponding normal tissue. Studies have revealed reactive stroma that is characterized by modified ECM composition, increased microvasculature, inflammatory cells, and fibroblasts with “activated” phenotype. These modified fibroblasts are often referred to as activated fibroblasts, myofibroblasts, tumor-associated fibroblasts, or carcinoma-associated fibroblasts (CAFs). This chapter will focus its discussion on the characterization of CAFs, their role in human lung carcinogenesis and malignant progression, and as potential novel therapeutic targets.


Hepatocyte Growth Factor Mammary Epithelial Cell Stellate Cell NSCLC Cell Lung Fibroblast 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Supported by the Canadian Institutes of Health Research (CIHR) grant MOP-64345 and Princess Margaret Hospital “Investment in Research” grant. Dr. Tsao is the M. Qasim Choksi Chair in Lung Cancer Translational Research at the Princess Margaret Hospital and University of Toronto. Dr. Bandarchi is a Fellow of the CIHR Training Program in Molecular Pathology of Cancer (STP-53912).

We thank Dr. D. Gullberg (University of Bergen) for reviewing this chapter.


  1. 1.
    Bissell, M.J. and D. Radisky. Putting tumours in context. Nat Rev Cancer 1: 46–54, 2001.PubMedGoogle Scholar
  2. 2.
    Mueller, M.M. and N.E. Fusenig. Friends or foes – bipolar effects of the tumour stroma in cancer. Nat Rev Cancer 4: 839–49, 2004.PubMedGoogle Scholar
  3. 3.
    Coussens, L.M. and Z. Werb. Inflammation and cancer. Nature 420: 860–7, 2002.PubMedGoogle Scholar
  4. 4.
    Jacobs, T.W., C. Byrne, G. Colditz, J.L. Connolly, and S.J. Schnitt. Radial scars in benign breast-biopsy specimens and the risk of breast cancer. N Engl J Med 340: 430–6, 1999.PubMedGoogle Scholar
  5. 5.
    Bhowmick, N.A., E.G. Neilson, and H.L. Moses. Stromal fibroblasts in cancer initiation and progression. Nature 432: 332–7, 2004.PubMedGoogle Scholar
  6. 6.
    Cunha, G.R., S.W. Hayward, Y.Z. Wang, and W.A. Ricke. Role of the stromal microenvironment in carcinogenesis of the prostate. Int J Cancer 107: 1–10, 2003.PubMedGoogle Scholar
  7. 7.
    Olumi, A.F., G.D. Grossfeld, S.W. Hayward, P.R. Carroll, T.D. Tlsty, and G.R. Cunha. Carcinoma-associated fibroblasts direct tumor progression of initiated human prostatic epithelium. Cancer Res 59: 5002–11, 1999.PubMedGoogle Scholar
  8. 8.
    Tlsty, T.D. Stromal cells can contribute oncogenic signals. Semin Cancer Biol 11: 97–104, 2001.PubMedGoogle Scholar
  9. 9.
    Liotta, L.A. and E.C. Kohn. The microenvironment of the tumour–host interface. Nature 411: 375–9, 2001.PubMedGoogle Scholar
  10. 10.
    Pupa, S.M., S. Menard, S. Forti, and E. Tagliabue. New insights into the role of extracellular matrix during tumor onset and progression. J Cell Physiol 192: 259–67, 2002.PubMedGoogle Scholar
  11. 11.
    Singh, S., S.R. Ross, M. Acena, D.A. Rowley, and H. Schreiber. Stroma is critical for preventing or permitting immunological destruction of antigenic cancer cells. J Exp Med 175: 139–46, 1992.PubMedGoogle Scholar
  12. 12.
    De Wever, O. and M. Mareel. Role of tissue stroma in cancer cell invasion. J Pathol 200: 429–47, 2003.PubMedGoogle Scholar
  13. 13.
    Powell, D.W., R.C. Mifflin, J.D. Valentich, S.E. Crowe, J.I. Saada, and A.B. West. Myofibroblasts. I. Paracrine. cells important in health and disease. Am J Physiol 277: C1-9, 1999.PubMedGoogle Scholar
  14. 14.
    Gabbiani, G., G.B. Ryan, and G. Majne. Presence of modified fibroblasts in granulation tissue and their possible role in wound contraction. Experientia 27: 549–50, 1971.PubMedGoogle Scholar
  15. 15.
    Ronnov-Jessen, L., O.W. Petersen, V.E. Koteliansky, and M.J. Bissell. The origin of the myofibroblasts in breast cancer. Recapitulation of tumor environment in culture unravels diversity and implicates converted fibroblasts and recruited smooth muscle cells. J Clin Invest 95: 859–73, 1995.PubMedGoogle Scholar
  16. 16.
    Tarin, D. and C.B. Croft. Ultrastructural features of wound healing in mouse skin. J Anat 105: 189–90, 1969.PubMedGoogle Scholar
  17. 17.
    Hanahan, D. and R.A. Weinberg. The hallmarks of cancer. Cell 100: 57–70, 2000.PubMedGoogle Scholar
  18. 18.
    Ronnov-Jessen, L., O.W. Petersen, and M.J. Bissell. Cellular changes involved in conversion of normal to malignant breast: importance of the stromal reaction. Physiol Rev 76: 69–125, 1996.PubMedGoogle Scholar
  19. 19.
    Dvorak, H.F. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med 315: 1650–9, 1986.PubMedGoogle Scholar
  20. 20.
    Dvorak, H.F., D.M. Form, E.J. Manseau, and B.D. Smith. Pathogenesis of desmoplasia. I. Immunofluorescence identification and localization of some structural proteins of line 1 and line 10 guinea pig tumors and of healing wounds. J Natl Cancer Inst 73: 1195–205, 1984.PubMedGoogle Scholar
  21. 21.
    Shekhar, M.P., R. Pauley, and G. Heppner. Host microenvironment in breast cancer development: extracellular matrix-stromal cell contribution to neoplastic phenotype of epithelial cells in the breast. Breast Cancer Res 5: 130–5, 2003.PubMedGoogle Scholar
  22. 22.
    Willis, R. Pathology of tumors. 4th edition. London: Butterworth and Company, 1967.Google Scholar
  23. 23.
    De Wever, O. and M. Mareel. Role of myofibroblasts at the invasion front. Biol Chem 383: 55–67, 2002.PubMedGoogle Scholar
  24. 24.
    Hofer, S.O., G. Molema, R.A. Hermens, H.J. Wanebo, J.S. Reichner, and H.J. Hoekstra. The effect of surgical wounding on tumour development. Eur J Surg Oncol 25: 231–43, 1999.PubMedGoogle Scholar
  25. 25.
    Arora, P.D. and C.A. McCulloch. The deletion of transforming growth factor-beta-induced myofibroblasts depends on growth conditions and actin organization. Am J Pathol 155: 2087–99, 1999.PubMedGoogle Scholar
  26. 26.
    Chang, H.Y., J.T. Chi, S. Dudoit, C. Bondre, M. van de Rijn, D. Botstein, and P.O. Brown. Diversity, topographic differentiation, and positional memory in human fibroblasts. Proc Natl Acad Sci USA 99: 12877–82, 2002.PubMedGoogle Scholar
  27. 27.
    Nazareth, M.R., L. Broderick, M.R. Simpson-Abelson, R.J. Kelleher, Jr., S.J. Yokota, and R.B. Bankert. Characterization of human lung tumor-associated fibroblasts and their ability to modulate the activation of tumor-associated T cells. J Immunol 178: 5552–62, 2007.PubMedGoogle Scholar
  28. 28.
    Micke, P. and A. Ostman. Tumour–stroma interaction: cancer-associated fibroblasts as novel targets in anti-cancer therapy? Lung Cancer 45 ( Suppl 2): S163–75, 2004.PubMedGoogle Scholar
  29. 29.
    Nakamura, N., T. Iijima, K. Mase, S. Furuya, J. Kano, Y. Morishita, and M. Noguchi. Phenotypic differences of proliferating fibroblasts in the stroma of lung adenocarcinoma and normal bronchus tissue. Cancer Sci 95: 226–32, 2004.PubMedGoogle Scholar
  30. 30.
    Anderson, I.C., S.E. Mari, R.J. Broderick, B.P. Mari, and M.A. Shipp. The angiogenic factor interleukin 8 is induced in non-small cell lung cancer/pulmonary fibroblast cocultures. Cancer Res 60: 269–72, 2000.PubMedGoogle Scholar
  31. 31.
    Mari, B.P., I.C. Anderson, S.E. Mari, Y. Ning, Y. Lutz, L. Kobzik, and M.A. Shipp. Stromelysin-3 is induced in tumor/stroma cocultures and inactivated via a tumor-specific and basic fibroblast growth factor-dependent mechanism. J Biol Chem 273: 618–26, 1998.PubMedGoogle Scholar
  32. 32.
    Fromigue, O., K. Louis, M. Dayem, J. Milanini, G. Pages, S. Tartare-Deckert, G. Ponzio, P. Hofman, P. Barbry, P. Auberger, and B. Mari. Gene expression profiling of normal human pulmonary fibroblasts following coculture with non-small-cell lung cancer cells reveals alterations related to matrix degradation, angiogenesis, cell growth and survival. Oncogene 22: 8487–97, 2003.PubMedGoogle Scholar
  33. 33.
    Mitsiadis, T.A., M. Lardelli, U. Lendahl, and I. Thesleff. Expression of Notch 1, 2 and 3 is regulated by epithelial–mesenchymal interactions and retinoic acid in the developing mouse tooth and associated with determination of ameloblast cell fate. J Cell Biol 130: 407–18, 1995.PubMedGoogle Scholar
  34. 34.
    Coppe, J.P., K. Kauser, J. Campisi, and C.M. Beausejour. Secretion of vascular endothelial growth factor by primary human fibroblasts at senescence. J Biol Chem 281: 29568–74, 2006.PubMedGoogle Scholar
  35. 35.
    Parrinello, S., J.P. Coppe, A. Krtolica, and J. Campisi. Stromal–epithelial interactions in aging and cancer: senescent fibroblasts alter epithelial cell differentiation. J Cell Sci 118: 485–96, 2005.PubMedGoogle Scholar
  36. 36.
    Begley, L., C. Monteleon, R.B. Shah, J.W. Macdonald, and J.A. Macoska. CXCL12 overexpression and secretion by aging fibroblasts enhance human prostate epithelial proliferation in vitro. Aging Cell 4: 291–8, 2005.PubMedGoogle Scholar
  37. 37.
    Lewis, C.E. and J.W. Pollard. Distinct role of macrophages in different tumor microenvironments. Cancer Res 66: 605–12, 2006.PubMedGoogle Scholar
  38. 38.
    Bavik, C., I. Coleman, J.P. Dean, B. Knudsen, S. Plymate, and P.S. Nelson. The gene expression program of prostate fibroblast senescence modulates neoplastic epithelial cell proliferation through paracrine mechanisms. Cancer Res 66: 794–802, 2006.PubMedGoogle Scholar
  39. 39.
    Stewart, D.A., C.R. Cooper, and R.A. Sikes. Changes in extracellular matrix (ECM) and ECM-associated proteins in the metastatic progression of prostate cancer. Reprod Biol Endocrinol 2: 2, 2004.PubMedGoogle Scholar
  40. 40.
    Sappino, A.P., O. Skalli, B. Jackson, W. Schurch, and G. Gabbiani. Smooth-muscle differentiation in stromal cells of malignant and non-malignant breast tissues. Int J Cancer 41: 707–12, 1988.PubMedGoogle Scholar
  41. 41.
    Rodemann, H.P. and G.A. Muller. Characterization of human renal fibroblasts in health and disease: II. In vitro growth, differentiation, and collagen synthesis of fibroblasts from kidneys with interstitial fibrosis. Am J Kidney Dis 17: 684–6, 1991.PubMedGoogle Scholar
  42. 42.
    Orimo, A., P.B. Gupta, D.C. Sgroi, F. Arenzana-Seisdedos, T. Delaunay, R. Naeem, V.J. Carey, A.L. Richardson, and R.A. Weinberg. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121: 335–48, 2005.PubMedGoogle Scholar
  43. 43.
    Kuperwasser, C., T. Chavarria, M. Wu, G. Magrane, J.W. Gray, L. Carey, A. Richardson, and R.A. Weinberg. Reconstruction of functionally normal and malignant human breast tissues in mice. Proc Natl Acad Sci USA 101: 4966–71, 2004.PubMedGoogle Scholar
  44. 44.
    Boire, A., L. Covic, A. Agarwal, S. Jacques, S. Sherifi, and A. Kuliopulos. PAR1 is a matrix metalloprotease-1 receptor that promotes invasion and tumorigenesis of breast cancer cells. Cell 120: 303–13, 2005.PubMedGoogle Scholar
  45. 45.
    Stetler-Stevenson, W.G., S. Aznavoorian, and L.A. Liotta. Tumor cell interactions with the extracellular matrix during invasion and metastasis. Annu Rev Cell Biol 9: 541–73, 1993.PubMedGoogle Scholar
  46. 46.
    Sternlicht, M.D., A. Lochter, C.J. Sympson, B. Huey, J.P. Rougier, J.W. Gray, D. Pinkel, M.J. Bissell, and Z. Werb. The stromal proteinase MMP3/stromelysin-1 promotes mammary carcinogenesis. Cell 98: 137–46, 1999.PubMedGoogle Scholar
  47. 47.
    Lochter, A., S. Galosy, J. Muschler, N. Freedman, Z. Werb, and M.J. Bissell. Matrix metalloproteinase stromelysin-1 triggers a cascade of molecular alterations that leads to stable epithelial-to-mesenchymal conversion and a premalignant phenotype in mammary epithelial cells. J Cell Biol 139: 1861–72, 1997.PubMedGoogle Scholar
  48. 48.
    Maffini, M.V., A.M. Soto, J.M. Calabro, A.A. Ucci, and C. Sonnenschein. The stroma as a crucial target in rat mammary gland carcinogenesis. J Cell Sci 117: 1495–502, 2004.PubMedGoogle Scholar
  49. 49.
    Gilead, A., G. Meir, and M. Neeman. The role of angiogenesis, vascular maturation, regression and stroma infiltration in dormancy and growth of implanted MLS ovarian carcinoma spheroids. Int J Cancer 108: 524–31, 2004.PubMedGoogle Scholar
  50. 50.
    Gilad, A.A., T. Israely, H. Dafni, G. Meir, B. Cohen, and M. Neeman. Functional and molecular mapping of uncoupling between vascular permeability and loss of vascular maturation in ovarian carcinoma xenografts: the role of stroma cells in tumor angiogenesis. Int J Cancer 117: 202–11, 2005.PubMedGoogle Scholar
  51. 51.
    Olaso, E., A. Santisteban, J. Bidaurrazaga, A.M. Gressner, J. Rosenbaum, and F. Vidal-Vanaclocha. Tumor-dependent activation of rodent hepatic stellate cells during experimental melanoma metastasis. Hepatology 26: 634–42, 1997.PubMedGoogle Scholar
  52. 52.
    Grum-Schwensen, B., J. Klingelhofer, C.H. Berg, C. El-Naaman, M. Grigorian, E. Lukanidin, and N. Ambartsumian. Suppression of tumor development and metastasis formation in mice lacking the S100A4(mts1) gene. Cancer Res 65: 3772–80, 2005.PubMedGoogle Scholar
  53. 53.
    Olaso, E., C. Salado, E. Egilegor, V. Gutierrez, A. Santisteban, P. Sancho-Bru, S.L. Friedman, and F. Vidal-Vanaclocha. Proangiogenic role of tumor-activated hepatic stellate cells in experimental melanoma metastasis. Hepatology 37: 674–85, 2003.PubMedGoogle Scholar
  54. 54.
    Bhowmick, N.A., A. Chytil, D. Plieth, A.E. Gorska, N. Dumont, S. Shappell, M.K. Washington, E.G. Neilson, and H.L. Moses. TGF-beta signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science 303: 848–51, 2004.PubMedGoogle Scholar
  55. 55.
    Cheng, N., N.A. Bhowmick, A. Chytil, A.E. Gorksa, K.A. Brown, R. Muraoka, C.L. Arteaga, E.G. Neilson, S.W. Hayward, and H.L. Moses. Loss of TGF-beta type II receptor in fibroblasts promotes mammary carcinoma growth and invasion through upregulation of TGF-alpha-, MSP- and HGF-mediated signaling networks. Oncogene 24: 5053–68, 2005.PubMedGoogle Scholar
  56. 56.
    Guddo, F., G. Fontanini, C. Reina, A.M. Vignola, A. Angeletti, and G. Bonsignore. The expression of basic fibroblast growth factor (bFGF) in tumor-associated stromal cells and vessels is inversely correlated with non-small cell lung cancer progression. Hum Pathol 30: 788–94, 1999.PubMedGoogle Scholar
  57. 57.
    Soderdahl, G., C. Betsholtz, A. Johansson, K. Nilsson, and J. Bergh. Differential expression of platelet-derived growth factor and transforming growth factor genes in small- and non-small-cell human lung carcinoma lines. Int J Cancer 41: 636–41, 1988.PubMedGoogle Scholar
  58. 58.
    Betsholtz, C., J. Bergh, M. Bywater, M. Pettersson, A. Johnsson, C.H. Heldin, R. Ohlsson, T.J. Knott, J. Scott, G.I. Bell et al. Expression of multiple growth factors in a human lung cancer cell line. Int J Cancer 39: 502–7, 1987.PubMedGoogle Scholar
  59. 59.
    Kawai, T., S. Hiroi, and C. Torikata. Expression in lung carcinomas of platelet-derived growth factor and its receptors. Lab Invest 77: 431–6, 1997.PubMedGoogle Scholar
  60. 60.
    Hasegawa, Y., S. Takanashi, Y. Kanehira, T. Tsushima, T. Imai, and K. Okumura. Transforming growth factor-beta1 level correlates with angiogenesis, tumor progression, and prognosis in patients with nonsmall cell lung carcinoma. Cancer 91: 964–71, 2001.PubMedGoogle Scholar
  61. 61.
    Demarchi, L.M., M.M. Reis, S.A. Palomino, C. Farhat, T.Y. Takagaki, R. Beyruti, P.H. Saldiva, and V.L. Capelozzi. Prognostic values of stromal proportion and PCNA, Ki-67, and p53 proteins in patients with resected adenocarcinoma of the lung. Mod Pathol 13: 511–20, 2000.PubMedGoogle Scholar
  62. 62.
    Pirinen, R., R. Tammi, M. Tammi, P. Hirvikoski, J.J. Parkkinen, R. Johansson, J. Bohm, S. Hollmen, and V.M. Kosma. Prognostic value of hyaluronan expression in non-small-cell lung cancer: Increased stromal expression indicates unfavorable outcome in patients with adenocarcinoma. Int J Cancer 95: 12–7, 2001.PubMedGoogle Scholar
  63. 63.
    Michael, M., B. Babic, R. Khokha, M. Tsao, J. Ho, M. Pintilie, K. Leco, D. Chamberlain, and F.A. Shepherd. Expression and prognostic significance of metalloproteinases and their tissue inhibitors in patients with small-cell lung cancer. J Clin Oncol 17: 1802–8, 1999.PubMedGoogle Scholar
  64. 64.
    Tokunou, M., T. Niki, K. Eguchi, S. Iba, H. Tsuda, T. Yamada, Y. Matsuno, H. Kondo, Y. Saitoh, H. Imamura, and S. Hirohashi. c-MET expression in myofibroblasts: role in autocrine activation and prognostic significance in lung adenocarcinoma. Am J Pathol 158: 1451–63, 2001.PubMedGoogle Scholar
  65. 65.
    Wang, K.K., N. Liu, N. Radulovich, D.A. Wigle, M.R. Johnston, F.A. Shepherd, M.D. Minden, and M.S. Tsao. Novel candidate tumor marker genes for lung adenocarcinoma. Oncogene 21: 7598–604, 2002.PubMedGoogle Scholar
  66. 66.
    Chong, I.W., M.Y. Chang, H.C. Chang, Y.P. Yu, C.C. Sheu, J.R. Tsai, J.Y. Hung, S.H. Chou, M.S. Tsai, J.J. Hwang, and S.R. Lin. Great potential of a panel of multiple hMTH1, SPD, ITGA11 and COL11A1 markers for diagnosis of patients with non-small cell lung cancer. Oncol Rep 16: 981–8, 2006.PubMedGoogle Scholar
  67. 67.
    Zhu, C.Q., S.N. Popova, E.R. Brown, D. Barsyte-Lovejoy, R. Navab, W. Shih, M. Li, M. Lu, I. Jurisica, L.Z. Penn, D. Gullberg, and M.S. Tsao. Integrin alpha 11 regulates IGF2 expression in fibroblasts to enhance tumorigenicity of human non-small-cell lung cancer cells. Proc Natl Acad Sci USA 104: 11754–9, 2007.PubMedGoogle Scholar
  68. 68.
    Tiger, C.F., F. Fougerousse, G. Grundstrom, T. Velling, and D. Gullberg. alpha11beta1 integrin is a receptor for interstitial collagens involved in cell migration and collagen reorganization on mesenchymal nonmuscle cells. Dev Biol 237: 116–29, 2001.PubMedGoogle Scholar
  69. 69.
    Joyce, J.A. Therapeutic targeting of the tumor microenvironment. Cancer Cell 7: 513–20, 2005.PubMedGoogle Scholar
  70. 70.
    Jain, R.K. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307: 58–62, 2005.PubMedGoogle Scholar
  71. 71.
    Gilboa, E. The promise of cancer vaccines. Nat Rev Cancer 4: 401–11, 2004.PubMedGoogle Scholar
  72. 72.
    Lee, J., M. Fassnacht, S. Nair, D. Boczkowski, and E. Gilboa. Tumor immunotherapy targeting fibroblast activation protein, a product expressed in tumor-associated fibroblasts. Cancer Res 65: 11156–63, 2005.PubMedGoogle Scholar
  73. 73.
    Chambers, A.F. and L.M. Matrisian. Changing views of the role of matrix metalloproteinases in metastasis. J Natl Cancer Inst 89: 1260–70, 1997.PubMedGoogle Scholar
  74. 74.
    Thomas, P., R. Khokha, F.A. Shepherd, R. Feld, and M.S. Tsao. Differential expression of matrix metalloproteinases and their inhibitors in non-small cell lung cancer. J Pathol 190: 150–6, 2000.PubMedGoogle Scholar
  75. 75.
    Kodate, M., T. Kasai, H. Hashimoto, K. Yasumoto, Y. Iwata, and H. Manabe. Expression of matrix metalloproteinase (gelatinase) in T1 adenocarcinoma of the lung. Pathol Int 47: 461–9, 1997.PubMedGoogle Scholar
  76. 76.
    Shepherd, F.A., G. Giaccone, L. Seymour, C. Debruyne, A. Bezjak, V. Hirsh, M. Smylie, S. Rubin, H. Martins, A. Lamont, M. Krzakowski, A. Sadura, and B. Zee. Prospective, randomized, double-blind, placebo-controlled trial of marimastat after response to first-line chemotherapy in patients with small-cell lung cancer: a trial of the National Cancer Institute of Canada-Clinical Trials Group and the European Organization for Research and Treatment of Cancer. J Clin Oncol 20: 4434–9, 2002.PubMedGoogle Scholar
  77. 77.
    Gabrilovich, D.I., H.L. Chen, K.R. Girgis, H.T. Cunningham, G.M. Meny, S. Nadaf, D. Kavanaugh, and D.P. Carbone. Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat Med 2: 1096–103, 1996.PubMedGoogle Scholar
  78. 78.
    O‘Connor, D.S., J.S. Schechner, C. Adida, M. Mesri, A.L. Rothermel, F. Li, A.K. Nath, J.S. Pober, and D.C. Altieri. Control of apoptosis during angiogenesis by survivin expression in endothelial cells. Am J Pathol 156: 393–8, 2000.PubMedGoogle Scholar
  79. 79.
    Muraoka, R.S., N. Dumont, C.A. Ritter, T.C. Dugger, D.M. Brantley, J. Chen, E. Easterly, L.R. Roebuck, S. Ryan, P.J. Gotwals, V. Koteliansky, and C.L. Arteaga. Blockade of TGF-beta inhibits mammary tumor cell viability, migration, and metastases. J Clin Invest 109: 1551–9, 2002.PubMedGoogle Scholar
  80. 80.
    Yang, Y.A., O. Dukhanina, B. Tang, M. Mamura, J.J. Letterio, J. MacGregor, S.C. Patel, S. Khozin, Z.Y. Liu, J. Green, M.R. Anver, G. Merlino, and L.M. Wakefield. Lifetime exposure to a soluble TGF-beta antagonist protects mice against metastasis without adverse side effects. J Clin Invest 109: 1607–15, 2002.PubMedGoogle Scholar
  81. 81.
    Jain, R.K., J. Lahdenranta, and D. Fukumura. Targeting PDGF signaling in carcinoma-associated fibroblasts controls cervical cancer in mouse model. PLoS Med 5: e24, 2008.PubMedGoogle Scholar
  82. 82.
    Demetri, G.D., M. von Mehren, C.D. Blanke, A.D. Van den Abbeele, B. Eisenberg, P.J. Roberts, M.C. Heinrich, D.A. Tuveson, S. Singer, M. Janicek, J.A. Fletcher, S.G. Silverman, S.L. Silberman, R. Capdeville, B. Kiese, B. Peng, S. Dimitrijevic, B.J. Druker, C. Corless, C.D. Fletcher, and H. Joensuu. Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N Engl J Med 347: 472–80, 2002.PubMedGoogle Scholar
  83. 83.
    Bergers, G., S. Song, N. Meyer-Morse, E. Bergsland, and D. Hanahan. Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors. J Clin Invest 111: 1287–95, 2003.PubMedGoogle Scholar
  84. 84.
    Pietras, K., J. Pahler, G. Bergers, and D. Hanahan. Functions of paracrine PDGF signaling in the proangiogenic tumor stroma revealed by pharmacological targeting. PLoS Med 5: e19, 2008.PubMedGoogle Scholar
  85. 85.
    Park, J.E., M.C. Lenter, R.N. Zimmermann, P. Garin-Chesa, L.J. Old, and W.J. Rettig. Fibroblast activation protein, a dual specificity serine protease expressed in reactive human tumor stromal fibroblasts. J Biol Chem 274: 36505–12, 1999.PubMedGoogle Scholar
  86. 86.
    Pineiro-Sanchez, M.L., L.A. Goldstein, J. Dodt, L. Howard, Y. Yeh, H. Tran, W.S. Argraves, and W.T. Chen. Identification of the 170-kDa melanoma membrane-bound gelatinase (seprase) as a serine integral membrane protease. J Biol Chem 272: 7595–601, 1997.PubMedGoogle Scholar
  87. 87.
    Ghersi, G., H. Dong, L.A. Goldstein, Y. Yeh, L. Hakkinen, H.S. Larjava, and W.T. Chen. Regulation of fibroblast migration on collagenous matrix by a cell surface peptidase complex. J Biol Chem 277: 29231–41, 2002.PubMedGoogle Scholar
  88. 88.
    Levy, M.T., G.W. McCaughan, G. Marinos, and M.D. Gorrell. Intrahepatic expression of the hepatic stellate cell marker fibroblast activation protein correlates with the degree of fibrosis in hepatitis C virus infection. Liver 22: 93–101, 2002.PubMedGoogle Scholar
  89. 89.
    Henry, L.R., H.O. Lee, J.S. Lee, A. Klein-Szanto, P. Watts, E.A. Ross, W.T. Chen, and J.D. Cheng. Clinical implications of fibroblast activation protein in patients with colon cancer. Clin Cancer Res 13: 1736–41, 2007.PubMedGoogle Scholar
  90. 90.
    Lin, K.Y., F.G. Guarnieri, K.F. Staveley-O’Carroll, H.I. Levitsky, J.T. August, D.M. Pardoll, and T.C. Wu. Treatment of established tumors with a novel vaccine that enhances major histocompatibility class II presentation of tumor antigen. Cancer Res 56: 21–6, 1996.PubMedGoogle Scholar
  91. 91.
    Loeffler, M., J.A. Kruger, A.G. Niethammer, and R.A. Reisfeld. Targeting tumor-associated fibroblasts improves cancer chemotherapy by increasing intratumoral drug uptake. J Clin Invest 116: 1955–62, 2006.PubMedGoogle Scholar
  92. 92.
    Mork, C., B. van Deurs, and O.W. Petersen. Regulation of vimentin expression in cultured human mammary epithelial cells. Differentiation 43: 146–56, 1990.PubMedGoogle Scholar
  93. 93.
    Tomasek, J.J., G. Gabbiani, B. Hinz, C. Chaponnier, and R.A. Brown. Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol 3: 349–63, 2002.PubMedGoogle Scholar
  94. 94.
    Mueller, L., F.A. Goumas, M. Affeldt, S. Sandtner, U.M. Gehling, S. Brilloff, J. Walter, N. Karnatz, K. Lamszus, X. Rogiers, and D.C. Broering. Stromal fibroblasts in colorectal liver metastases originate from resident fibroblasts and generate an inflammatory microenvironment. Am J Pathol 171: 1608–18, 2007.PubMedGoogle Scholar
  95. 95.
    Strutz, F., H. Okada, C.W. Lo, T. Danoff, R.L. Carone, J.E. Tomaszewski, and E.G. Neilson. Identification and characterization of a fibroblast marker: FSP1. J Cell Biol 130: 393–405, 1995.PubMedGoogle Scholar
  96. 96.
    Vogel, W., G.D. Gish, F. Alves, and T. Pawson. The discoidin domain receptor tyrosine kinases are activated by collagen. Mol Cell 1: 13–23, 1997.PubMedGoogle Scholar
  97. 97.
    Goldsmith, E.C., A. Hoffman, M.O. Morales, J.D. Potts, R.L. Price, A. McFadden, M. Rice, and T.K. Borg. Organization of fibroblasts in the heart. Dev Dyn 230: 787–94, 2004.PubMedGoogle Scholar
  98. 98.
    Rettig, W.J., P. Garin-Chesa, J.H. Healey, S.L. Su, H.L. Ozer, M. Schwab, A.P. Albino, and L.J. Old. Regulation and heteromeric structure of the fibroblast activation protein in normal and transformed cells of mesenchymal and neuroectodermal origin. Cancer Res 53: 3327–35, 1993.PubMedGoogle Scholar
  99. 99.
    Ramirez-Montagut, T., N.E. Blachere, E.V. Sviderskaya, D.C. Bennett, W.J. Rettig, P. Garin-Chesa, and A.N. Houghton. FAPalpha, a surface peptidase expressed during wound healing, is a tumor suppressor. Oncogene 23: 5435–46, 2004.PubMedGoogle Scholar
  100. 100.
    Gullberg, D., G. Sjoberg, T. Velling, and T. Sejersen. Analysis of fibronectin and vitronectin receptors on human fetal skeletal muscle cells upon differentiation. Exp Cell Res 220: 112–23, 1995.PubMedGoogle Scholar
  101. 101.
    Popova, S.N., Rodriguez-Sanchez, B., Liden, A., Betsholtz, C., Van Den Bos, T., and D. Gullberg. The mesenchymal alpha11beta1 integrin attenuates PDGF-BB-stimulated chemotaxis of embryonic fibroblasts on collagens. Dev Biol 270: 427–42, 2004.PubMedGoogle Scholar
  102. 102.
    Gardner, H., J. Kreidberg, V. Koteliansky, and R. Jaenisch. Deletion of integrin alpha 1 by homologous recombination permits normal murine development but gives rise to a specific deficit in cell adhesion. Dev Biol 175: 301–13, 1996.PubMedGoogle Scholar
  103. 103.
    Sudhakar, A., P. Nyberg, V.G. Keshamouni, A.P. Mannam, J. Li, H. Sugimoto, D. Cosgrove, and R. Kalluri. Human alpha1 type IV collagen NC1 domain exhibits distinct antiangiogenic activity mediated by alpha1beta1 integrin. J Clin Invest 115: 2801–10, 2005.PubMedGoogle Scholar
  104. 104.
    Mussini, E., J.J. Hutton, Jr., and S. Udenfriend. Collagen proline hydroxylase in wound healing, granuloma formation, scurvy, and growth. Science 157: 927–9, 1967.PubMedGoogle Scholar
  105. 105.
    Langness, U. and S. Udenfriend. Collagen biosynthesis in nonfibroblastic cell lines. Proc Natl Acad Sci USA 71: 50–1, 1974.PubMedGoogle Scholar
  106. 106.
    Florin, L., H. Alter, H.J. Grone, A. Szabowski, G. Schutz, and P. Angel. Cre recombinase-mediated gene targeting of mesenchymal cells. Genesis 38: 139–44, 2004.PubMedGoogle Scholar
  107. 107.
    Jenkins, R.H., G.J. Thomas, J.D. Williams, and R. Steadman. Myofibroblastic differentiation leads to hyaluronan accumulation through reduced hyaluronan turnover. J Biol Chem 279: 41453–60, 2004.PubMedGoogle Scholar
  108. 108.
    Sugimoto, H., T.M. Mundel, M.W. Kieran, and R. Kalluri. Identification of fibroblast heterogeneity in the tumor microenvironment. Cancer Biol Ther 5: 1640–6, 2006.PubMedGoogle Scholar
  109. 109.
    Chiquet-Ehrismann, R., P. Kalla, and C.A. Pearson. Participation of tenascin and transforming growth factor-beta in reciprocal epithelial–mesenchymal interactions of MCF7 cells and fibroblasts. Cancer Res 49: 4322–5, 1989.PubMedGoogle Scholar
  110. 110.
    Serini, G., M.L. Bochaton-Piallat, P. Ropraz, A. Geinoz, L. Borsi, L. Zardi, and G. Gabbiani. The fibronectin domain ED-A is crucial for myofibroblastic phenotype induction by transforming growth factor-beta1. J Cell Biol 142: 873–81, 1998.PubMedGoogle Scholar
  111. 111.
    Jaques, G., K. Noll, B. Wegmann, S. Witten, E. Kogan, R.T. Radulescu, and K. Havemann. Nuclear localization of insulin-like growth factor binding protein 3 in a lung cancer cell line. Endocrinology 138: 1767–70, 1997.PubMedGoogle Scholar
  112. 112.
    Lee, H.Y., K.H. Chun, B. Liu, S.A. Wiehle, R.J. Cristiano, W.K. Hong, P. Cohen, and J.M. Kurie. Insulin-like growth factor binding protein-3 inhibits the growth of non-small cell lung cancer. Cancer Res 62: 3530–7, 2002.PubMedGoogle Scholar
  113. 113.
    Taipale, J., J. Saharinen, and J. Keski-Oja. Extracellular matrix-associated transforming growth factor-beta: role in cancer cell growth and invasion. Adv Cancer Res 75: 87–134, 1998.PubMedGoogle Scholar
  114. 114.
    Blom, I.E., R. Goldschmeding, and A. Leask. Gene regulation of connective tissue growth factor: new targets for antifibrotic therapy? Matrix Biol 21: 473–82, 2002.PubMedGoogle Scholar
  115. 115.
    Robertson, D.M., E. Pruysers, H.G. Burger, T. Jobling, J. McNeilage, and D. Healy. Inhibins and ovarian cancer. Mol Cell Endocrinol 225: 65–71, 2004.PubMedGoogle Scholar
  116. 116.
    Fukumura, D., R. Xavier, T. Sugiura, Y. Chen, E.C. Park, N. Lu, M. Selig, G. Nielsen, T. Taksir, R.K. Jain, and B. Seed. Tumor induction of VEGF promoter activity in stromal cells. Cell 94: 715–25, 1998.PubMedGoogle Scholar
  117. 117.
    Mascaux, C., B. Martin, M. Paesmans, J.M. Verdebout, A. Verhest, P. Vermylen, T. Bosschaerts, V. Ninane, and J.P. Sculier. Expression of thrombospondin in non-small cell lung cancer. Anticancer Res 22: 1273–7, 2002.PubMedGoogle Scholar
  118. 118.
    Ohtani, H. Stromal reaction in cancer tissue: pathophysiologic significance of the expression of matrix-degrading enzymes in relation to matrix turnover and immune/inflammatory reactions. Pathol Int 48: 1–9, 1998.PubMedGoogle Scholar
  119. 119.
    Wojtukiewicz, M.Z., L.R. Zacharski, M. Rucinska, L. Zimnoch, J. Jaromin, M. Rozanska-Kudelska, W. Kisiel, and B.J. Kudryk. Expression of tissue factor and tissue factor pathway inhibitor in situ in laryngeal carcinoma. Thromb Haemost 82: 1659–62, 1999.PubMedGoogle Scholar
  120. 120.
    Lakka, S.S., S.D. Konduri, S. Mohanam, G.L. Nicolson, and J.S. Rao. In vitro modulation of human lung cancer cell line invasiveness by antisense cDNA of tissue factor pathway inhibitor-2. Clin Exp Metastasis 18: 239–44, 2000.PubMedGoogle Scholar
  121. 121.
    Rabbani, S.A. Metalloproteases and urokinase in angiogenesis and tumor progression. In Vivo 12: 135–42, 1998.PubMedGoogle Scholar
  122. 122.
    Lynch, C.C. and L.M. Matrisian. Matrix metalloproteinases in tumor-host cell communication. Differentiation 70: 561–73, 2002.PubMedGoogle Scholar
  123. 123.
    Umeda, T., Y. Eguchi, K. Okino, M. Kodama, and T. Hattori. Cellular localization of urokinase-type plasminogen activator, its inhibitors, and their mRNAs in breast cancer tissues. J Pathol 183: 388–97, 1997.PubMedGoogle Scholar
  124. 124.
    Kang, K.H., S.Y. Park, S.B. Rho, and J.H. Lee. Tissue inhibitor of metalloproteinases-3 interacts with angiotensin II type 2 receptor and additively inhibits angiogenesis. Cardiovasc Res, 2008.Google Scholar
  125. 125.
    Culig, Z., A. Hobisch, M.V. Cronauer, C. Radmayr, J. Trapman, A. Hittmair, G. Bartsch, and H. Klocker. Androgen receptor activation in prostatic tumor cell lines by insulin-like growth factor-I, keratinocyte growth factor, and epidermal growth factor. Cancer Res 54: 5474–8, 1994.PubMedGoogle Scholar
  126. 126.
    Hrouda, D., D.L. Nicol, and R.A. Gardiner. The role of angiogenesis in prostate development and the pathogenesis of prostate cancer. Urol Res 30: 347–55, 2003.PubMedGoogle Scholar
  127. 127.
    Engl, T., B. Relja, C. Blumenberg, I. Muller, E.M. Ringel, W.D. Beecken, D. Jonas, and R.A. Blaheta. Prostate tumor CXC-chemokine profile correlates with cell adhesion to endothelium and extracellular matrix. Life Sci 78: 1784–93, 2006.PubMedGoogle Scholar
  128. 128.
    Dean, J.P. and P.S. Nelson. Profiling influences of senescent and aged fibroblasts on prostate carcinogenesis. Br J Cancer 98: 245–9, 2008.PubMedGoogle Scholar
  129. 129.
    Fridman, R., G. Giaccone, T. Kanemoto, G.R. Martin, A.F. Gazdar, and J.L. Mulshine. Reconstituted basement membrane (matrigel) and laminin can enhance the tumorigenicity and the drug resistance of small cell lung cancer cell lines. Proc Natl Acad Sci USA 87: 6698–702, 1990.PubMedGoogle Scholar
  130. 130.
    Sethi, T., R.C. Rintoul, S.M. Moore, A.C. MacKinnon, D. Salter, C. Choo, E.R. Chilvers, I. Dransfield, S.C. Donnelly, R. Strieter, and C. Haslett. Extracellular matrix proteins protect small cell lung cancer cells against apoptosis: a mechanism for small cell lung cancer growth and drug resistance in vivo. Nat Med 5: 662–8, 1999.PubMedGoogle Scholar
  131. 131.
    Hwang, R.F., T. Moore, T. Arumugam, V. Ramachandran, K.D. Amos, A. Rivera, B. Ji, D.B. Evans, and C.D. Logsdon. Cancer-associated stromal fibroblasts promote pancreatic tumor progression. Cancer Res 68: 918–26, 2008.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Ontario Cancer Institute and Princess Margaret HospitalUniversity Health Network and University of TorontoTorontoCanada
  2. 2.Ontario Cancer Institute and Princess Margaret HospitalUniversity Health Network and University of TorontoTorontoCanada

Personalised recommendations