Personalized Management of Neurological Disorders

  • Kewal K. JainEmail author


Personalized neurology requires the integration of several neuroscientific and clinical aspects of neuropharmacology (Jain 2005c). Drug discovery for neurological disorders should take into consideration targeting a specific type in the broad clinical category of a neurological disease in the conventional clinical diagnosis. Drug delivery to the central nervous system (CNS) is an important factor in personalizing treatment of neurological disorders. Personalized management of some important neurological disorders such as Alzheimer’s disease (AD), Parkinson’s disease (PD), epilepsy, migraine, and multiple sclerosis (MS) will be considered in this chapter.


Multiple Sclerosis Attention Deficit Hyperactivity Disorder Human Leukocyte Antigen Multiple Sclerosis Patient Glatiramer Acetate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Babic T, Lakusic DM, Sertic J et al (2004) ApoE genotyping and response to galanthamine in Alzheimer’s disease – a real life retrospective study. Coll Antropol 28:199–204PubMedGoogle Scholar
  2. Barba I, Fernandez-Montesinos R, Garcia-Dorado D, Pozo D (2008) Alzheimer’s disease beyond the genomic era: nuclear magnetic resonance (NMR) spectroscopy-based metabolomics. J Cell Mol Med 12:1477–1485CrossRefPubMedGoogle Scholar
  3. Byun E, Caillier SJ, Montalban X et al (2008) Genome-wide pharmacogenomic analysis of the response to interferon beta therapy in multiple sclerosis. Arch Neurol 65:337–344CrossRefPubMedGoogle Scholar
  4. Cacabelos R (2002) Pharmacogenomics in Alzheimer’s disease. Mini Rev Med Chem 2:59–84CrossRefPubMedGoogle Scholar
  5. de Leon J, Sandson NB, Cozza KL (2008) A preliminary attempt to personalize risperidone dosing using drug-drug interactions and genetics: part I. Psychosomatics 49:258–270Google Scholar
  6. de Leon J, Susce MT, Pan RM et al (2005) The CYP2D6 poor metabolizer phenotype may be associated with risperidone adverse drug reactions and discontinuation. J Clin Psychiatry 66:15–27.Google Scholar
  7. Ferraro TN, Dlugos DJ, Buono RJ (2006) Challenges and opportunities in the application of pharmacogenetics to antiepileptic drug therapy. Pharmacogenomics 7:89–103CrossRefPubMedGoogle Scholar
  8. Frost JJ (2008) Molecular imaging to biomarker development in neuroscience. Ann N Y Acad Sci 1144:251–255CrossRefPubMedGoogle Scholar
  9. Greenberg DA, Cayanis E, Strug L et al (2005) Malic enzyme 2 may underlie susceptibility to adolescent-onset idiopathic generalized epilepsy. Am J Hum Genet 76:139–146CrossRefPubMedGoogle Scholar
  10. Grossman I, Avidan N, Singer C et al (2007) Pharmacogenetics of glatiramer acetate therapy for multiple sclerosis reveals drug-response markers. Pharmacogenet Genomics 17:657–666.Google Scholar
  11. Holsboer F (2008) How can we realize the promise of personalized antidepressant medicines? Nat Rev Neurosci 9:638–646CrossRefPubMedGoogle Scholar
  12. Hunter AM, Leuchter AF, Morgan ML et al (2005) Neurophysiologic correlates of side effects in normal subjects randomized to venlafaxine or placebo. Neuropsychopharmacology 30:792–799PubMedGoogle Scholar
  13. Jain KK (2005) Personalised medicine for cancer – from drug development into clinical practice. Exp Opin Pharmacother 6:1463–1476CrossRefGoogle Scholar
  14. Jain KK (2009o) Alzheimer’s disease: new drugs, markets and companies. Jain PharmaBiotech, Basel, Switzerland.Google Scholar
  15. Kappos L, Freedman MS, Polman CH et al (2007) Effect of early versus delayed interferon beta-1b treatment on disability after a first clinical event suggestive of multiple sclerosis: a 3-year follow-up analysis of the BENEFIT study. Lancet 370:389–397CrossRefPubMedGoogle Scholar
  16. Lee SH, Lee KJ, Lee HJ et al (2005) Association between the 5-HT6 receptor C267T polymorphism and response to antidepressant treatment in major depressive disorder. Psychiatry Clin Neurosci 59:140–145CrossRefPubMedGoogle Scholar
  17. Löscher W, Klotz U, Zimprich F, Schmidt D (2009) The clinical impact of pharmacogenetics on the treatment of epilepsy. Epilepsia 50:1–23CrossRefPubMedGoogle Scholar
  18. Martinez-Forero I, Pelaez A, Villoslada P (2008) Pharmacogenomics of multiple sclerosis: in search for a personalized therapy. Expert Opin Pharmacother 9:3053–3067Google Scholar
  19. Mattay VS, Goldberg TE, Fera F et al (2003) Catechol O-methyltransferase val158-met genotype and individual variation in the brain response to amphetamine. PNAS 100:6186–6191Google Scholar
  20. Piane M, Lulli P, Farinelli I et al (2007) Genetics of migraine and pharmacogenomics: some considerations. J Headache Pain 8:334–339CrossRefPubMedGoogle Scholar
  21. Ragozzino D, Palma E, Di Angelantonio S et al (2005) Rundown of GABA type A receptors is a dysfunction associated with human drug-resistant mesial temporal lobe epilepsy. Proc Natl Acad Sci USA 102:15219–15223CrossRefPubMedGoogle Scholar
  22. Remy S, Gabriel S, Urban BW et al (2003) A novel mechanism underlying drug resistance in chronic epilepsy. Ann Neurol 53:469–479CrossRefPubMedGoogle Scholar
  23. Roiser JP, Cook LJ, Cooper JD et al (2005) Association of a functional polymorphism in the serotonin transporter gene with abnormal emotional processing in ecstasy users. Am J Psychiatry 162:609–612CrossRefPubMedGoogle Scholar
  24. Siddiqui A, Kerb R, Weale ME et al (2003) Association of multidrug resistance in epilepsy with a polymorphism in the drug-transporter gene ABCB1. N Engl J Med 348:1442–1448CrossRefPubMedGoogle Scholar
  25. Stein MA, Waldman ID, Sarampote CS et al (2005) Dopamine transporter genotype and methylphenidate dose response in children with ADHD. Neuropsychopharmacology 30:1374–1378CrossRefPubMedGoogle Scholar
  26. Tang Y, Glauser TA, Gilbert DL et al (2004) Valproic acid blood genomic expression patterns in children with epilepsy - a pilot study. Acta Neurol Scand 109:159–168CrossRefPubMedGoogle Scholar
  27. Tate SK, Depondt C, Sisodiya SM et al (2005) Genetic predictors of the maximum doses patients receive during clinical use of the anti-epileptic drugs carbamazepine and phenytoin. Proc Natl Acad Sci USA 102:5507–5512CrossRefPubMedGoogle Scholar
  28. Tate SK, Sisodiya SM (2007) Multidrug resistance in epilepsy: a pharmacogenomic update. Exp Opin Pharmacother 8:1441–1449CrossRefGoogle Scholar
  29. Tfelt-Hansen P, Brøsen K (2008) Pharmacogenomics and migraine: possible implications. J Headache Pain 9:13–18CrossRefPubMedGoogle Scholar
  30. van Baarsen LG, Vosslamber S, Tijssen M et al (2008) Pharmacogenomics of interferon-beta therapy in multiple sclerosis: baseline IFN signature determines pharmacological differences between patients. PLoS ONE 3(4):e1927Google Scholar
  31. Vosslamber S, van Baarsen LG, Verweij CL (2009) Pharmacogenomics of IFN-beta in multiple sclerosis: towards a personalized medicine approach. Pharmacogenomics 10:97–108CrossRefPubMedGoogle Scholar
  32. Warren KG, Catz I, Ferenczi LZ et al (2006) Intravenous synthetic peptide MBP8298 delayed disease progression in an HLA Class II-defined cohort of patients with progressive multiple sclerosis: results of a 24-month double-blind placebo-controlled clinical trial and 5 years of follow-up treatment. Eur J Neurol 13:887–895Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Jain PharmaBiotechBaselSwitzerland

Personalised recommendations