• Arnel R. Hallauer
  • J. B. Miranda Filho
  • Marcelo J. Carena
Part of the Handbook of Plant Breeding book series (HBPB, volume 6)


Maize is a naturally cross-pollinated crop and dispersion of pollen grains (male gametes) is achieved by wind currents, system that favors cross-pollination. The plant has a separate male and female inflorescence (monoecious) which makes relatively easy to produce seed by artificial hybridization and self-pollination for inbreeding. The tassel (male inflorescence with staminate flowers) is at the top of the plant arising from the shoot apical meristem. The ear (female inflorescence with pistillate flowers) is usually located in the middle of the stalk (at the sixth of seventh node from the top of the plant) and originates from the axillary bud apice. During development flowers become unisexual. Apical dominance is present on stalks with multiple ears (prolific genotypes). The male florets usually mature before than the female florets (protandry). Genotype and environmental conditions (e.g., stress) influence the difference in maturity of male and female florets. Pollen shed occurs after anther exertion from each spikelet and begins in the main tassel branch (central spike or rachis). Each spikelet has two florets and pollen shed starts from the upper flower. Spikelets are in pairs: pedicellate and sessile. Each spikelet has a pair of glumes. Within the glumes each floret is also enclosed with thin scales (a lemma and a palea). Two of the three anthers are located adjacent to the palea and the third one is located adjacent to the lemma. The number of pollen grains dispersed by the tassel depends on the genotype and/or vigor of the plants. Hybrids, for example, shed more pollen than inbred-lines. Some open-pollinated varieties, however, shed even more pollen than hybrids. Ear shoots are formed of husks (modified leaves) and silks emerging from the cob. The silks are functional stigmas and there is one stigma for each potential kernel. Silk emergence progresses from the bottom to the tip of the ear. High temperatures and low-moisture availability may cause silk growth to stop and not be ready for fertilization at the time of pollen shed. The ear branch or shank is formed of nodes and short internodes.


Inbreeding Depression Epistatic Effect Recurrent Selection Single Cross Maize Breeding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Allard, R. W. 1960. Principles of Plant Breeding. Wiley, New York, NY.Google Scholar
  2. Baker, L. H., and R. N. Curnow. 1969. Choice of population size and use of variation between replicate populations in plant breeding selection programs. Crop Sci. 9:555–60.CrossRefGoogle Scholar
  3. Carena, M. J. 2005. Maize commercial hybrids compared to improved population hybrids for grain yield and agronomic performance. Euphytica 141:201–8.CrossRefGoogle Scholar
  4. Carena, M. J. 2007. Maize population hybrids: Successful genetic resources for breeding programs and potential alternatives to single-cross hybrids. Acta Agronomica Hung 55:27–36.CrossRefGoogle Scholar
  5. Carena, M. J. 2008. Development of new and diverse lines for early-maturing hybrids: Traditional and modern maize breeding. In Modern Variety Breeding for Present and Future Needs. J. Prohens and M.L. Badenes (eds.), Eucarpia, Valencia, Spain.Google Scholar
  6. Carena, M. J., and A. R. Hallauer. 2001. Response to inbred progeny recurrent selection in Leaming and Midland Yellow Dent populations. Maydica 46:1–10.Google Scholar
  7. Carena, M. J., and D. W. Wanner. 2003. Registration of ND2000 inbred line of maize. Crop Sci. 43:1568–9.CrossRefGoogle Scholar
  8. Carena, M. J., and D. W. Wanner. 2010. Development of genetically broad-based inbred lines of maize for early maturing (70-80RM) hybrids. J. Plant Reg. 4:86–92.CrossRefGoogle Scholar
  9. Carena, M. J., and Z. W. Wicks III. 2006. Maize early maturing hybrids: An exploitation of U.S. temperate public genetic diversity in reserve. Maydica 51:201–8.Google Scholar
  10. Carena, M. J., D. W. Wanner, and H. Z. Cross. 2003. Registration of ND291 inbred line of maize. Crop Sci. 43:1568.CrossRefGoogle Scholar
  11. Carena, M. J., D. W. Wanner, J. Yang. 2009. Linking pre-breeding for local germplasm improvement with cultivar development in maize breeding for short-season (85-95RM) hybrids. J. Plant Reg. (in press).Google Scholar
  12. Carena, M. J., L. Pollak, W. Salhuana, and M. Denuc. 2009. Development of unique lines for early-maturing hybrids: Moving GEM germplasm northward and westward. Euphytica 170:87–97.CrossRefGoogle Scholar
  13. Cockerham, C. C. 1961. Implications of genetic variances in a hybrid breeding program. Crop Sci. 1:47–52.CrossRefGoogle Scholar
  14. Collins, G. N. 1909. The importance of broad breeding in corn. USDA Bull. 141(IV):33–44.Google Scholar
  15. Cornelius, P. L., and J. W. Dudley. 1974. Effects of inbreeding by selfing and full-sibbing in a maize population. Crop Sci. 14:815–19.CrossRefGoogle Scholar
  16. Darrah, L. L., and M. S. Zuber. 1986. United States farm maize germplasm base and commercial breeding strategies. Crop Sci. 26:1109–13.CrossRefGoogle Scholar
  17. Darwin, C. 1859. The Origin of Species. World Famous Books, Merrill & Baker, New York, NY.Google Scholar
  18. Darwin, C. 1877. The Effects of Cross- and Self-Fertilization in the Vegetable Kingdom. Appleton, London.Google Scholar
  19. Dowswell, C. R., R. L. Paliwal, and R. P. Cantrell. 1996. Maize in the Third World. Westview Press, Boulder, CO.Google Scholar
  20. Doxtator, C. M., and I. J. Johnson. 1936. Prediction of double cross yields in corn. J. Am. Soc. Agron. 28:460–62.CrossRefGoogle Scholar
  21. Dudley, J. W., and G. R. Johnson. 2009. Epistatic models improve prediction of performance in corn. Crop Sci. 49:763–70.CrossRefGoogle Scholar
  22. Duvick, D. N. 1999. Heterosis: Feeding people and protecting natural resources. In Genetics and Exploitation of Heterosis in Crops, J. G. Coors and S. Pandey (eds.), pp. 19–29. ASA, CSSA, SSSA, Madison, WI.Google Scholar
  23. Duvick, D. N., J. S. C. Smith, and M. Cooper. 2004. Changes in performance, parentage, and genetic diversity of successful corn hybrids, 1930–2000. In Corn: Origin, History and Production, C. W. Smith, J. Betran, and E.C.A. Runge (eds.), pp. 65–97. John Wiley & Sons, Hoboken, NJ.Google Scholar
  24. East, E. M. 1908. Inbreeding in corn. Connecticut Agric. Exp. Stn. Rep. 1907:419–28.Google Scholar
  25. East, E. M. 1909. The distinction between development and heredity in inbreeding. Am. Nat. 43:173–81.CrossRefGoogle Scholar
  26. East, E. M., and H. K. Hayes. 1912. Heterozygosis in evolution and in plant breeding. USDA Bur. Plant Ind. Bull. 243:58pp.Google Scholar
  27. East, E. M., and D. F. Jones. 1918. Inbreeding and Outbreeding. Lippincott, Philadelphia, PA.Google Scholar
  28. Eberhart, S. A., and A. R. Hallauer. 1968. Genetic effects for yield in single-, three-way, and double-cross maize hybrids. Crop Sci. 8:377–79.CrossRefGoogle Scholar
  29. Eberhart, S. A., and W. A. Russell. 1966. Stability parameters for comparing varieties. Crop Sci. 6:36–40.CrossRefGoogle Scholar
  30. Eberhart, S. A., and W. A. Russell. 1969. Yield and stability for a 10-line diallel of single-cross and double-cross maize hybrids. Crop Sci. 9:357–61.CrossRefGoogle Scholar
  31. Eyherabide, G. H., and A. R. Hallauer. 1991. Reciprocal full-sib selection in maize. II. Contributions of additive, dominance, and genetic drift effects. Crop Sci. 31:1442–8.CrossRefGoogle Scholar
  32. Falconer, D. S., and T. F. C. Mackay. 1996. Introduction to quantitative genetics. 4th edn., Longman Group Ltd., Edinburgh, UK.Google Scholar
  33. Federer, W. T., and G. F. Sprague. 1947. A comparison of variance components in corn yield trials. I. Error, tester × line, and line components in top-cross experiments. J. Am. Soc. Agron. 39:453–63.CrossRefGoogle Scholar
  34. Focke, W. O. 1881. Die Pflanzen-Mischlinge, 569pp. Borntraeger, Berlin.Google Scholar
  35. Gama, E. E. G., and A. R. Hallauer. 1980. Stability of hybrids produced from selected and unselected lines of maize. Crop Sci. 20:623–26.CrossRefGoogle Scholar
  36. Gärtner, C. F. 1849. Versuche und Beobachtungen über die Bastarderzengung in Pflanyenreich, 791pp. Stuttgart.Google Scholar
  37. Geadelmann, J. L., and R. H. Peterson. 1978. Effects of two yield component selection procedures on maize. Crop Sci. 18:387–90.CrossRefGoogle Scholar
  38. Genter, C. F. 1971. Yield of S1 lines from original and advanced synthetic varieties of maize. Crop Sci. 11:821–24.CrossRefGoogle Scholar
  39. Gilmore, E. C. 1969. Effect of inbreeding of parental lines on predicted yields of synthetics. Crop Sci. 9:102–04.CrossRefGoogle Scholar
  40. Good, R. L. 1976. Inbreeding depression in Iowa Stiff Stalk Synthetic (Zea mays L.) by selfing and full-sibbing. Ph.D. dissertation, Iowa State University, Ames, IA.Google Scholar
  41. Good, R. L., and A. R. Hallauer. 1977. Inbreeding depression in maize by selfing and full-sibbing. Crop Sci. 17:935–40.CrossRefGoogle Scholar
  42. Gordillo, G. A., and H. H. Geiger. 1977. Alternative recurrent selection strategies using doubled haploid lines in hybrid maize breeding. Crop Sci. 48:911–22.CrossRefGoogle Scholar
  43. Gutierrez, M. G., and G. F. Sprague. 1959. Randomness of mating in isolated polycross plantings in maize. Genetics 44:1075–82.PubMedGoogle Scholar
  44. Guzman, P. S., and K. R. Lamkey. 2000. Effective population size and genetic variability in the BS11 maize population. Crop Sci. 40:338–46.CrossRefGoogle Scholar
  45. Hallauer, A. R., and M. J. Carena. 2009. Maize breeding. In Handbook of Plant Breeding: Cereals, M. J. Carena (ed.), pp. 3–98. Springer, New York, NY.Google Scholar
  46. Hallauer, A. R., and J. H. Sears. 1973. Changes in quantitative traits associated with inbreeding in a synthetic variety of maize. Crop Sci. 13:327–30.CrossRefGoogle Scholar
  47. Hallauer, A. R., W. A. Russell, and K. R. Lamkey. 1988. Corn breeding. In Corn and Corn Improvement, G.F. Sprague and J.W. Dudley (eds.), pp. 463–564. ASA, CSSA, SSSA Madison, WI.Google Scholar
  48. Harris, R. E., C. O. Gardner, and W. A. Compton. 1972. Effects of mass selection and irradiation in corn measured by random S1 lines and their testcrosses. Crop Sci. 12:594–98.CrossRefGoogle Scholar
  49. Harvey, P. H., and J. A. Rigney. 1947. Inbreeding studies with prolific corn varieties. Department of Agronomy, North Carolina State University, Raleigh, NC.Google Scholar
  50. Hayes, H. K. 1956. I saw hybrid corn develop. Annu. Corn & Sorghum Res. Conf. Proc. 11:48–55.Google Scholar
  51. Hayes, H. K. 1963. A professor’s Story of Hybrid Corn. Burgess Publishing Co., Minneapolis, MN.Google Scholar
  52. Helms, T. C., A. R. Hallauer, O. S. Smith. 1989. Genetic drift and selection evaluated from recurrent selection programs in maize. Crop Sci. 29:606–7.Google Scholar
  53. Jenkins, M. T. 1934. Methods of estimating performance of double-crosses in corn. J. Am. Soc. Agron. 26:199–204.CrossRefGoogle Scholar
  54. Jones, D. F. 1918. The effects of inbreeding and crossbreeding upon development. Connecticut Agric. Exp. Stn. Bull. 207:5–100.Google Scholar
  55. Jones, D. F. 1924. Selective fertilization among the gametes from the same individuals. Proc. Nat. Acad. Sci. 10:218–21.PubMedCrossRefGoogle Scholar
  56. Jones, D. F. 1939. Continued inbreeding in maize. Genetics 24:462–73.PubMedGoogle Scholar
  57. Jones, D. F. 1958. Heterosis and homeostasis in evolution and in applied genetics. Am. Nat. 92:321–28.CrossRefGoogle Scholar
  58. Jugenheimer, R. W. 1958. Hybrid Maize Breeding and Seed Production. FAO, Rome.Google Scholar
  59. Keeratinijakal, V., and K. R. Lamkey. 1993. Responses to reciprocal recurrent selection in BSSS and BSCB1 maize populations. Crop Sci. 33:73–7.CrossRefGoogle Scholar
  60. Kempthorne, O. 1957. An Introduction to Genetic Statistics. Wiley, New York, NY.Google Scholar
  61. Kiesselbach, T. A. 1922. Corn investigations. Nebraska Agric. Exp. Stn. Res. Bull. 20:5–151.Google Scholar
  62. Kiesselbach, T. A. 1930. The use of advanced generation hybrids as parents of double cross seed corn. J. Am. Soc. Agron. 22:614–26.CrossRefGoogle Scholar
  63. Kiesselbach, T. A. 1933. The possibilities of modern corn breeding. Proc. World Grain Exhib. Conf. (Canada) 2:92–112.Google Scholar
  64. Kinman, M. L. 1952. Composite sibbing versus selfing in development of corn inbred lines. Agron. J. 44:209–41.CrossRefGoogle Scholar
  65. Kinman, M. L., and G. F. Sprague. 1945. Relation between number of parental lines and theoretical performance of synthetic varieties of corn. J. Am. Soc. Agron. 37:341–51.CrossRefGoogle Scholar
  66. Knight, T. A. 1799. An account of some experiments on the fecundation of vegetables. Philos. Trans. R. Soc. London 89:195.Google Scholar
  67. Kölreuter, J. G. 1776. Dritte Fortsetzung der vorläufigen Nachricht von einigen das Geschlecht der Pflanzen betreftender Versuchen and Beobachtunger, 266pp. Leipzig.Google Scholar
  68. Lamkey, K. R., and O. S. Smith. 1987. Performance and inbreeding depression of populations representing seven eras of maize breeding. Crop Sci. 27:695–9.CrossRefGoogle Scholar
  69. Levings, C. S. III, J. W. Dudley, and D. E. Alexander. 1967. Inbreeding and crossing in autotetraploid maize. Crop Sci. 7:72–3.CrossRefGoogle Scholar
  70. Li, C. C. 1976. Population Genetics. Boxwood Press, Pacific Grove, CA.Google Scholar
  71. Lindstrom, E. W. 1939. Analysis of modern maize breeding principles and methods. Proc. Seventh Int. Genet. Congr. 7:191–6.Google Scholar
  72. Loeffel, F. A. 1971. Development and utilization of parental lines. Annu. Corn Sorghum Res. Conf. Proc. 26:209–17.Google Scholar
  73. Lopez-Perez, E. 1977. Comparisons among maize hybrids made from unselected lines developed by selfing and full-sibbing. Master’s thesis, Iowa State University, Ames, IA.Google Scholar
  74. Macaulay, T. B. 1928. The improvement of corn by selection and plot inbreeding. J. Hered. 19:57–72.Google Scholar
  75. Malécot, G. 1948. Les Mathématiques de l’Hérédité. Masson et Cie, Paris.Google Scholar
  76. Martin, J. M., and A. R. Hallauer. 1976. Relation between heterozygosis and yield for four types of maize inbred lines. Egyptian J. Genet. Cytol. 5:119–35.Google Scholar
  77. Mikel, M. A. 2008. Genetic diversity and improvement of contemporary proprietary North American dent corn. Crop Sci. 48:1686–95.CrossRefGoogle Scholar
  78. Mikel, M. A., and J. W. Dudley. 2006. Evolution of North American dent corn inbred lines with expired U.S. plant variety protection. Crop Sci. 46:1193–205.CrossRefGoogle Scholar
  79. Moll, R. H.;, J. H. Lonnquist, J. V. Fortuno, and E. C. Johnson. 1965. The relation of heterosis and genetic divergence in maize. Genetics 52:139–44.PubMedGoogle Scholar
  80. Morris, M. L. 1998. Maize Seed Industries in Developing Countries. Lynne Rienner Publ., Boulder, CO.Google Scholar
  81. Neal, N. P. 1935. The decrease in yielding capacity in advanced generations of hybrid corn. J. Am. Soc. Agron. 27:666–70.CrossRefGoogle Scholar
  82. Otsuka, Y., S. A. Eberhart, and W. A. Russell. 1972. Comparisons of prediction formulas for maize hybrids. Crop Sci. 12:325–31.CrossRefGoogle Scholar
  83. Oyervides-García, M., and A. R. Hallauer. 1986. Selection-induced differences among strains of Iowa Stiff Stalk Synthetic maize. Crop Sci. 26:506–11.CrossRefGoogle Scholar
  84. Pirchner, F. 1969. Population Genetics in Animal Breeding. W. H. Freeman, San Francisco, CA.Google Scholar
  85. Pollak, E., H. F. Robinson, and R. E. Comstock. 1957. Interpopulation hybrids in open-pollinated varieties of maize. Am. Nat. 91:387–91.CrossRefGoogle Scholar
  86. Powers, L. 1941. Inheritance of quantitative characters in crosses involving two species of Lycopersicon. J. Agric. Res. 63:149–74.Google Scholar
  87. Rasmusson, J. A. 1934. A contribution to the theory of quantitative character inheritance. Hereditas 18:245–61.CrossRefGoogle Scholar
  88. Rawlings, J. O. 1969. Present status of research on long- and short-term recurrent selection in finite populations: Choice of population size. Proc. Second Meet. Work. Group Quant. Genet., sect. 22. IUFRO, Raleigh, NC.Google Scholar
  89. Rice, J. S., and J. W. Dudley. 1974. Gene effects responsible for inbreeding depression in autotetraploid maize. Crop Sci. 14:390–93.CrossRefGoogle Scholar
  90. Richey, F. D., G. H. Stringfield, and F. F. Sprague. 1934. The loss of yield that may be expected from planting second generation double-crossed corn. J. Am. Soc. Agron. 26:196–9.CrossRefGoogle Scholar
  91. Rinke, E. H., and J. C Sentz. 1961. Moving corn-belt germ-plasm northward. Annu. Hybrid Corn Ind. Res. Conf. Proc. 16:53–56.Google Scholar
  92. Robertson, A. 1960. A theory of limits in artificial selection. Proc. R. Soc. B153:234–49.Google Scholar
  93. Robinson, H. F., and C. C. Cockerham. 1961. Heterosis and inbreeding depression in population involving two open-pollinated varieties of maize. Crop Sci. 1:68–71.CrossRefGoogle Scholar
  94. Rodriguez, O. A., and A. R. Hallauer. 1988. Effects of recurrent selection on corn populations. Crop Sci. 28:796–800.CrossRefGoogle Scholar
  95. Russell, W. A., and A. R. Hallauer. 1980. Corn. In Hybridization of Crop Plants, W. R. Fehr and H. H. Hadley (eds.), pp. 299–312. ASA, CSSA, SSSA., Madison, WI.Google Scholar
  96. Schnell, F. W. 1975. Type of variety and average performance in hybrid maize. Z. Pflanzenzuchrg 74:177–88.Google Scholar
  97. Sentz, J. C., H. F. Robinson, and R. E. Comstock. 1954. Relation between heterozygosis and performance in maize. Agron. J. 46:514–20.CrossRefGoogle Scholar
  98. Sezegen, B., and M. J. Carena. 2009. Divergent recurrent selection for cold tolerance in two improved maize populations. Euphytica 167:237–44.CrossRefGoogle Scholar
  99. Shamel, A. D. 1905. The effect of inbreeding in plants. USDA Yearbook. 377–92.Google Scholar
  100. Shehata, A. H., and N. L. Dhawan. 1975. Genetic analysis of grain yield in maize as manifested in genetically diverse varietal populations and their crosses. Egyptian J. Genet. Cytol. 4:90–116.Google Scholar
  101. Shull, G. H. 1908. The composition of a field of maize. Am. Breeders’ Assoc. Rep. 4:296–301.Google Scholar
  102. Shull, G. H. 1909. A pure line method of corn breeding. Am. Breeders’ Assoc. Rep. 5:51–9.Google Scholar
  103. Shull, G. H. 1910. Hybridization methods in corn breeding. Am. Breeders’ Mag. 1:98–107.Google Scholar
  104. Shull, G. H. 1952. Beginnings of the heterosis concept. In Heterosis, J. W. Gowen (ed.), pp. 14–48. Iowa State University Press, Ames, IA.Google Scholar
  105. Sing, C. F., R. H. Moll, and W. D. Hanson. 1967. Inbreeding in two populations of Zea mays L. Crop Sci. 7:631–6.CrossRefGoogle Scholar
  106. Smith, J. S. C. 1988. Diversity of United States hybrid maize germplasm: Isozymic and chromatographic evidence. Crop Sci. 26:63–9.CrossRefGoogle Scholar
  107. Smith, O. S. 1983. Evaluation of recurrent selection in BSSS, BSCB1, and BS13 maize populations. Crop Sci. 13:35–40.CrossRefGoogle Scholar
  108. Sprague, G. F. 1946. The experimental basis for hybrid maize. Biol. Rev. 21:101–20.PubMedCrossRefGoogle Scholar
  109. Sprague, G. F. 1971. Genetic vulnerability to disease and insects in corn and sorghum. Annu. Corn Sorghum Res. Conf. Proc. 26:96–104.Google Scholar
  110. Sprague, G. F., and S. A. Eberhart. 1977. Corn breeding. In Corn and Corn Improvement, G. F. Sprague (ed.), pp. 305–62. ASA, CSSA, SSSA, Madison, WI.Google Scholar
  111. Sprague, G. F., and W. T. Federer. 1951. A comparison of variance components in corn yield trials. II. Error, year × variety, location × variety, and variety components. Agron. J. 43:535–41.CrossRefGoogle Scholar
  112. Sprague, G. F., and W. T. Thomas. 1967. Further evidence of epistasis in single and three-way cross yields of maize (Zea mays L.). Crop Sci. 7:355–6.CrossRefGoogle Scholar
  113. Sprague, G. F., W. A. Russell, L. H. Penny, and T. W. Horner. 1962. Effects of epistasis on grain yield of maize. Crop Sci. 2:205–8.CrossRefGoogle Scholar
  114. Stringfield, G. H. 1950. Heterozygosis and hybrid vigor in maize. Agron. J. 42:145–51.CrossRefGoogle Scholar
  115. Stringfield, G. H. 1974. Developing heterozygous parent stocks for maize hybrids. DeKalb AgResearch, DeKalb, Ill.Google Scholar
  116. Stojšin, D., and L. W. Kannenberg. 1994. Genetics changes associated with different methods of recurrent selection in five maize populations. I. Directly selected traits. Crop Sci. 34:1466–72.CrossRefGoogle Scholar
  117. Stuber, C. W., W. P. Williams, and R. H. Moll. 1973. Epistasis in maize (Zea mays L.). III. Significance in predictions of hybrid performance. Crop Sci. 13:195–200.CrossRefGoogle Scholar
  118. Tanner, A. H., and O. S. Smith. 1987. Comparison of half-sib and S1 recurrent selection Krug Yellow Dent maize populations. Crop Sci. 27:509–13.CrossRefGoogle Scholar
  119. Weatherspoon, J. H. 1970. Comparative yields of single, three-way, and double crosses of maize. Crop Sci. 10:157–9.CrossRefGoogle Scholar
  120. Weatherwax, P. 1955. Structure and development of reproductive organs. In Corn and Corn Improvement, G. F. Sprague (ed.), pp. 89–121. Academic Press, New York, NY.Google Scholar
  121. Wright, J. A., A. R. Hallauer, L. H. Penny, and S. A. Eberhart. 1971. Estimating genetic variance in maize by use of single and three-way crosses among unselected inbred lines. Crop Sci. 11:690–5.CrossRefGoogle Scholar
  122. Wright, S. 1921. Systems of mating. II. The effects of inbreeding on the genetic composition of a population. Genetics 6:124–43.PubMedGoogle Scholar
  123. Wright, S. 1922a. Coefficients of inbreeding and relationship. Am. Nat. 56:330–8.CrossRefGoogle Scholar
  124. Wright, S. 1922b. The effects of inbreeding and crossbreeding on guinea pigs. III. Crosses between highly inbred families. USDA Bull. 1121:60pp.Google Scholar
  125. Wright, S. 1931. Evolution in Mendelian populations. Genetics 16:97–159.PubMedGoogle Scholar
  126. Zuber, M. S. 1975. Corn germplasm base in the United States: Is it narrowing, widening, or static? Annu. Corn Sorghum Res. Conf. Proc. 30:277–86.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Arnel R. Hallauer
    • 1
  • J. B. Miranda Filho
    • 2
  • Marcelo J. Carena
    • 3
  1. 1.Department of AgronomyIowa State UniversityAmesUSA
  2. 2.University of São PauloSão PauloBrazil
  3. 3.Department of Plant Sciences #7670North Dakota State UniversityFargoUSA

Personalised recommendations