Selection: Theory

  • Arnel R. Hallauer
  • Marcelo J. Carena
  • J. B. Miranda Filho
Part of the Handbook of Plant Breeding book series (HBPB, volume 6)


Plant breeding has been defined by Nikolai I. Vavilov as plant evolution directed by man (Sanchez-Monge, 1993). Selection has been the essence of the overall science of plant breeding through the identification of elite germplasm and the combined application of methods available to the breeder. Evolution (via natural selection) and domestication (via artificial selection) created and improved the crop plant species that are so important for human survival. Ever since the potential of certain plant species as food sources was recognized, selection has been practiced for more productive plant types. Particularly in maize, in addition to great advances achieved by domestication and early empirical breeding, significant improvements have been made by changes in breeding methods that have occurred mainly during the past 100 years. New and old selection methods, for the genetic improvement of maize still are important in increasing food production. Applied plant breeding programs and their targeted selection methods will allow the continuous production of more efficient cultivars which can maintain a sustainable production without the requirement of expensive inputs. Public breeding programs focus on not only short-term research goals but also long-term improvement of germplasm. Even though the product (e.g., hybrid, pure line) is the goal, some of the breeding strategies used for long-term selection are neglected. Long-term genetic improvement is needed for the success of short-term products. Future genetic gains are dependent on the deployment of useful genetic diversity carried out in the public sector (Smith, 2007).


Effective Population Size Additive Genetic Variance Recurrent Selection Selection Intensity Mass Selection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Arus, P., and J. Moreno-Gonzalez. 1993. Marker-assisted selection. In. Plant Breeding: Principles and Prospects, M.D. Hayward, N.O. Bosemark, and I. Romagosa (ed.), pp. 314–331. Chapman & Hall, London.Google Scholar
  2. Baker, L. H., and R. N. Curnow. 1969. Choice of population size and use of variation between replicate populations in plant breeding selection programs. Crop Sci. 9:555–60.CrossRefGoogle Scholar
  3. Barata, C., and M. J. Carena. 2006. Classification of North Dakota maize inbred lines into heterotic groups based on molecular and testcross data. Euphytica 151:339–249.Google Scholar
  4. Beck, D .L., S. K. Vasal, J. Crossa. 1991. Heterosis and combining ability among subtropical and temperate intermediate-maturity maize germplasm. Crop Sci. 31: 68–73.CrossRefGoogle Scholar
  5. Bernardo, R. 2008. Molecular markers and selection for complex traits in plants: Learning from the last 20 years. Crop Sci. 48:1649–64.CrossRefGoogle Scholar
  6. Bernardo, B., and J. Yu. 2007. Prospects for genome-wide selection for quantitative traits in maize. Crop Sci. 47:1082–90.Google Scholar
  7. Brim, C.A., H.W. Johnson, and C. C. Cockerham. 1959. Multiple selection criteria in soybeans. Agron. J. 51:42–46.CrossRefGoogle Scholar
  8. Buren, L. L., J. J. Mock, and I.C. Anderson. 1974. Morphological and physiological traits in maize associated with tolerance to high plant density. Crop Sci. 14:426–29.CrossRefGoogle Scholar
  9. Carena, M. J. 2005. Maize commercial hybrids compared to improved population hybrids for grain yield and agronomic performance. Euphytica 141:201–08.CrossRefGoogle Scholar
  10. Carena, M. J., and Wanner, D. W. 2009. Development of genetically broad-based inbred lines of maize for early maturing (70-80RM) hybrids. J. Plant Reg. 3:107–11.CrossRefGoogle Scholar
  11. Carena, M. J., and Z. W. Wicks III. 2006. Maize early maturing hybrids: an exploitation of U.S. temperate public genetic diversity in reserve. Maydica 51:201–08.Google Scholar
  12. Carena, M. J., I. Santiago, and A. Ordas. 1998. Direct and correlated response to selection for prolificacy in maize at two planting densities. Maydica 43:95–102.Google Scholar
  13. Carena, M. J., L. Pollak, W. Salhuana, and M. Denuc. 2009a. Development of unique lines for early-maturing hybrids: Moving GEM germplasm northward and westward. Euphytica 170:87–97.CrossRefGoogle Scholar
  14. Carena, M. J., G. Bergman, N. Riveland, E. Eriksmoen, M. Halvorson. 2009b. Breeding maize for higher yield and quality under drought stress. Maydica 54:287–298.Google Scholar
  15. Cockerham, C. C. 1956. Effects of linkage on the covariances between relatives. Genetics 41:138–41.PubMedGoogle Scholar
  16. Cockerham, C. C. 1961. Implications of genetic variances in a hybrid breeding program. Crop Sci. 1:47–52.CrossRefGoogle Scholar
  17. Collier, J. W. 1959. Three cycles of reciprocal recurrent selection. Annu. Hybrid Corn Ind. Res. Conf. Proc. 14:12–23.Google Scholar
  18. Compton, W. A., and R. E. Comstock. 1976. More on modified ear-to-row selection in corn. Crop Sci. 16:122.CrossRefGoogle Scholar
  19. Comstock, R. E. 1964. Selection procedures in corn improvement. Annu. Hybrid Corn Ind. Res. Conf. Proc. 19:87–94.Google Scholar
  20. Comstock, R. E., H. F. Robinson, and P. H. Harvey. 1949. A breeding procedure designed to make maximum use of both general and specific combining ability. Agron. J. 41:360–67.CrossRefGoogle Scholar
  21. Coors, J. G. 1999. Selection methodology and heterosis. In The Genetics and Exploitation of Heterosis in Crops. J. G. Coors, and S. Pandey (eds.), pp. 225–245. ASA, CSSA, and SSSA, Madison, WI.Google Scholar
  22. Cress, C. E. 1966. Heterosis of the hybrid related to gene frequency differences between two populations. Genetics 53:269–74.PubMedGoogle Scholar
  23. Dhillon, B. S., and A. S. Khehra. 1989. Modified S1 recurrent selection in maize improvement. Crop Sci. 29:226–228.CrossRefGoogle Scholar
  24. Dudley, J. W. 1982. Theory of transfer of alleles. Crop Sci. 22: 631–37.CrossRefGoogle Scholar
  25. Dudley, J.W., and G.R. Johnson. 2009. Epistatic models improve prediction of performance in corn. Crop Sci. 49:763–70.CrossRefGoogle Scholar
  26. Duvick, D.N. 1977. Genetic rates of gain in hybrid maize during the last 40 years. Maydica 22:187–96.Google Scholar
  27. East, E.M. 1908. Inbreeding in corn. Connecticut Agric. Exp. Stn. Rep. 1907. pp. 419–28.Google Scholar
  28. Eberhart, S. A. 1970. Factors affecting efficiencies of breeding methods. African Soils 15:669–80.Google Scholar
  29. Eberhart, S. A., S. Debela, and A. R. Hallauer. 1973. Reciprocal recurrent selection in the BSSS and BSCB1 maize populations and half-sib selection in BSSS. Crop Sci. 13:451–56.CrossRefGoogle Scholar
  30. Eberhart, S. A., M. N. Harrison, and F. Ogada. 1967. A comprehensive breeding system. Züchter 37:169–74.Google Scholar
  31. Elston, R. C. 1963. A weight free index for the purpose of ranking or selection with respect to several traits at a time. Biometrics 19:85–97.CrossRefGoogle Scholar
  32. Empig, L. T., C. O. Gardner, and W. A. Compton. 1972. Theoretical gains for different population improvement procedures. Nebraska Agric. Exp. Stn. Bull. 26:3–22.Google Scholar
  33. Eno, C., and M. J.Carena. 2008. Adaptation of elite temperate and tropical maize populations to North Dakota. Maydica 53:217–26.Google Scholar
  34. Falconer, D. S., and T. F. C. Mackay. 1996. Introduction to quantitative genetics. 4th ed., Longman Group Ltd., Edinburgh.Google Scholar
  35. Fisher, R. A. 1918. The correlation between relatives on the supposition of Mendelian inheritance. Trans. Roy. Soc. Edinburgh 52:399–433.CrossRefGoogle Scholar
  36. Fisher, R. A., and F. Yates. 1948. Statistical Tables for Biological, Agricultural, and Medical Research, 3rd ed., Oliver & Boyd, Edinburgh.Google Scholar
  37. Gardner, C. O. 1961. An evaluation of effects of mass selection and seed irradiation with thermal neutrons on yields of corn. Crop Sci. 1:241–45.CrossRefGoogle Scholar
  38. Gardner, C. O., and S. A. Eberhart. 1966. Analysis and interpretation of the variety cross diallel and related populations. Biometrics 22:439–52.PubMedCrossRefGoogle Scholar
  39. Geldermann, H. 1975. Investigations on inheritance in quantitative characters in animals by gene markers. I. Methods. Theor. Appl. Genet. 46:319–30.CrossRefGoogle Scholar
  40. Geraldi, I. O., J. B. Miranda Fo., and E. Paterniani. 1975. Estimativas de parâmetros genéticos e fenotipicos em caracteres do pendão de milho (Zea mays L.). Rel. Cient. Inst. Genét. (ESALQ–USP) 9:87–91.Google Scholar
  41. Good, R. L. 1990. Experiences with recurrent selection in a commercial seed company. Annu. Corn Sorghum Res. Conf. Proc. 45:80–92.Google Scholar
  42. Goulas, C. K., and J. H. Lonnquist. 1976. Combined half-sib and S1 family selection in a maize composite population. Crop Sci. 16:461–64.CrossRefGoogle Scholar
  43. Guzman, P. S., and K. R. Lamkey. 2000. Effective population size and genetic variability in the BS11 maize population. Crop Sci. 40:338–46.CrossRefGoogle Scholar
  44. Hallauer, A. R. 1967. Development of single-cross hybrids from two-eared maize populations. Crop Sci. 7:192–95.CrossRefGoogle Scholar
  45. Hallauer, A. R. 1974. Heritability of prolificacy in maize. J. Hered. 65:163–68.Google Scholar
  46. Hallauer, A. R. 1985. Compendium of recurrent selection methods and their application. Crit. Rev. Plant Sci. 3:1–33.CrossRefGoogle Scholar
  47. Hallauer, A. R. 1990. Germplasm sources and breeding strategies for line development in the 1990’s. Annu. Corn Sorghum Res. Conf. Proc. 45:64–79.Google Scholar
  48. Hallauer, A. R. 1992. Recurrent selection in maize. Plant Breed. Rev. 9:115–79.Google Scholar
  49. Hallauer, A. R. 1999. Temperate maize and heterosis. In The Genetics and Exploitation of Heterosis in Crops. J. G. Coors, and S. Pandey (eds.), pp. 353–61. ASA, CSSA, and SSSA, Madison, WI.Google Scholar
  50. Hallauer, A. R., and M. J. Carena. 2009. Maize breeding. In Handbook of Plant Breeding: Cereals, M. J. Carena (ed.), pp. 3–98. Springer, New York, NY.Google Scholar
  51. Hallauer, A.R., and S.A. Eberhart. 1970. Reciprocal full-sib selection. Crop Sci. 10:315–16.CrossRefGoogle Scholar
  52. Hallauer, A. R., and J. H. Sears. 1969. Mass selection for yield in two varieties of maize. Crop Sci. 9:47–50.CrossRefGoogle Scholar
  53. Hallauer, A. R., W. A. Russell, and K.R. Lamkey. 1988. Corn Breeding. In Corn and Corn Improvement, 3rd Ed., G. F. Sprague and J.W. Dudley (ed.), pp. 469–64. ASA-CSSA-SSSA, Madison, Wisconsin, WI.Google Scholar
  54. Hayes, H. K., and R. J. Garber. 1919. Synthetic production of high protein corn in relation to breeding. J. Am. Soc. Agron. 11: 308–18.Google Scholar
  55. Hazel, L. N. 1943. The genetic basis for constructing selection indexes. Genetics 28:476–90.PubMedGoogle Scholar
  56. Hazel, L. N., and J. L. Lush. 1942. The efficiency of three methods of selection. J. Hered. 33:393–99.Google Scholar
  57. Heffner, E. L., M. E. Sorrells, and J. J. Jannink. 2009. Genomic selection for crop improvement. Crop Sci. 49:1–12.CrossRefGoogle Scholar
  58. Hopkins, C. G. 1899. Improvement in the chemical composition of the corn kernel. Bull. Ill. Agric. Exp. Stn. 55:205–40.Google Scholar
  59. Horner, E. S. 1956. Recurrent selection. Annu. Corn Sorghum Res. Conf. Proc. 11:75–9.Google Scholar
  60. Hull, F. H. 1945. Recurrent selection and specific combining ability in corn. J. Am. Soc. Agron. 37:134–45.CrossRefGoogle Scholar
  61. Hunter, R. B., C. G. Mortimore, and L. W. Kannenberg. 1973. Inbred maize performance following tassel and leaf removal. Agron. J. 65:471–72.CrossRefGoogle Scholar
  62. Hunter, R. R., T. B. Daynard, L. J. Hume, J. W. Tanner, J. L. Curtis, and L. W. Kannenberg. 1969. Effect of tassel removal on grain yield of corn (Zea mays L.). Crop Sci. 9:405–6.CrossRefGoogle Scholar
  63. Jenkins, M. T. 1940. The segregation of genes affecting yield of grain in maize. J. Am. Soc. Agron. 32:55–63.CrossRefGoogle Scholar
  64. Johnson, R. 2004. Marker-assisted selection. Plant Breed. Rev. 24:293–309.Google Scholar
  65. Jones, L. P., W. A. Compton, and C. O. Gardner. 1971. Comparisons of full-and half-sib reciprocal recurrent selection. Theor. Appl. Genet. 41:36–39.Google Scholar
  66. Jumbo, M.B., and Carena, M.J. 2008. Combining ability, maternal, and reciprocal effects of elite early-maturing maize population hybrids. Euphytica 162:325–33.CrossRefGoogle Scholar
  67. Kauffman, K. D., and J. W. Dudley. 1979. Selection indices for corn grain yield, percent protein, and kernel depth. Crop Sci. 19:583–88.CrossRefGoogle Scholar
  68. Kearsey, M. J. 1993. Biometrical genetics in breeding. In. Plant Breeding: Principles and Prospects, 1st edition, M.D. Hayward, N.O. Bosemark, and I. Romagosa (eds.) pp. 163–83. Chapman & Hall, London, UK.CrossRefGoogle Scholar
  69. Kempthorne, O. 1952. Design and analysis of experiments. Wiley, New York, NY.Google Scholar
  70. Kempthorne, O. 1957. An Introduction to genetic statistics. Wiley, New York, NY.Google Scholar
  71. Kempthorne, O., and A.W. Nordskog. 1959. Restricted selection indices. Biometrics 15:10–19.CrossRefGoogle Scholar
  72. Laible, C. A., and V. A. Dirks. 1968. Genetic variances and selection value of ear number in corn (Zea mays L.). Crop Sci. 8:540–43.CrossRefGoogle Scholar
  73. Lerner, I. M. 1958. The genetic basis of selection. Wiley, New York, NY.Google Scholar
  74. Lonnquist, J. H. 1949. The development and performance of synthetic varieties of corn. Agron. J. 41:153–56.CrossRefGoogle Scholar
  75. Lonnquist, J. H. 1952. Recurrent selection. Annu. Corn Sorghum Res. Conf. Proc. 7:20–32.Google Scholar
  76. Lonnquist, J. H. 1963. Gene action and corn yields. Annu. Corn Sorghum Res. Conf. Proc. 18:37–44.Google Scholar
  77. Lonnquist, J. H. 1964. Modification of the ear-to-row procedure for the improvement of maize populations. Crop Sci. 4:227–28.CrossRefGoogle Scholar
  78. Lonnquist, J. H. 1967a. Mass selection for prolificacy in maize. Züchter 37:185–87.Google Scholar
  79. Lonnquist, J. H. 1967b. Intra-population improvement: combination S1 and HS selection. Maize 5, CIMMYT.Google Scholar
  80. Lonnquist, J. H. 1967c. Inter-population improvement: combined S1, mass, and reciprocal recurrent selection. Maize 6, CIMMYT.Google Scholar
  81. Lonnquist, J. H., and M. Castro G. 1967. Relation of intra-population genetic effects to performance of S1 lines of maize. Crop Sci. 7:361–64.Google Scholar
  82. Lonnquist, J. H., and N. E. Williams. 1967. Development of maize hybrids through selection among full-sib families. Crop Sci. 7:369–70.CrossRefGoogle Scholar
  83. Lynch, M., and B. Walsh. 1998. Genetics and analysis of quantitative traits. Sinauer Associates, Sunderland, MA.Google Scholar
  84. Marquez-Sanchez, F. 1982. Modifications to cyclic hybridization in maize with single-eared plants. Crop Sci. 22:314–19.CrossRefGoogle Scholar
  85. Martin, G. O., and R. A. Salvioli. 1973. A study of the association between yield components and a selection index in maize (Zea mays L.). Plant Breed. Abstr. 43:216.Google Scholar
  86. Mather, K. 1941. Variation and selection of polygenic characters. J. Genetics 41:159–93.CrossRefGoogle Scholar
  87. Melani, M. D., and M. J. Carena. 2005. Alternative heterotic patterns for the northern Corn Belt. Crop Sci. 45:2186–94.CrossRefGoogle Scholar
  88. Meuwissen, T. H. E., B. J. Hayes, and M. E. Goddard. 2001. Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–29.PubMedGoogle Scholar
  89. Mickelson, H. R., H. Cordova, K.V. Pixley, and M. S. Bjarnason. 2001. Heterotic relationships among nine temperate and subtropical maize populations. Crop Sci. 41:1012–20.CrossRefGoogle Scholar
  90. Mock, J. J., and S. Schuetz. 1974. Inheritance of tassel branch number in maize. Crop Sci. 14:885–88.CrossRefGoogle Scholar
  91. Mode, C. J., and H. F. Robinson. 1959. Pleiotropism and the genetic variance and covariance. Biometrics 15:518–37.CrossRefGoogle Scholar
  92. Moll, R. H., and C. W. Stuber. 1971. Comparisons of response to alternative selection procedures initiated with two populations of maize (Zea mays L.). Crop Sci. 11:706–11.CrossRefGoogle Scholar
  93. Moll, R. H., and C. W. Stuber. 1974. Quantitative genetics: Empirical results relevant to plant breeding. Adv. Agron. 26:277–13.CrossRefGoogle Scholar
  94. Moll, R. H., J. H. Lonnquist, J. V. Fortuno, and E. C. Johnson. 1965. The relationship of heterosis and genetic divergence in maize. Genetics 52: 139–44.PubMedGoogle Scholar
  95. Moreno-Gonzalez, J. and J. I. Cubero. 1993. Selection strategies and choice of breeding methods. In. Plant Breeding: Principles and Prospects, 1st edn, M.D. Hayward, N.O. Bosemark, and I. Romagosa (eds.), pp. 282–13. Chapman & Hall, London.Google Scholar
  96. Mulamba, N. N., and J. J. Mock. 1978. Improvement of yield potential of the Eto Blanco maize (Zea mays L.) population by breeding for plant traits. Egypt. J. Genet. Cytol. 7:40–51.Google Scholar
  97. Osorno, J., and M. J. Carena. 2008. Creating groups of maize genetic diversity for grain quality: Implications for breeding. Maydica 53:131–41.Google Scholar
  98. Paterniani, E. 1967a. Inter-population improvement: Reciprocal recurrent selection variations. Maize 8, CIMMYT.Google Scholar
  99. Paterniani, E. 1967b. Selection among and within families in a Brazilian population of maize (Zea mays L.). Crop Sci. 7:212–16.CrossRefGoogle Scholar
  100. Paterniani, E. 1973. Recent studies on heterosis. In Agricultural Genetics, R. Moav (ed.), pp. 1–22. Natl. Counc. Res. Dev., Jerusalem, Israel.Google Scholar
  101. Paterniani, E., and R. Vencovsky. 1977. Reciprocal recurrent selection in maize (Zea mays L.) based on testcrosses of half-sib families. Maydica 22:141–52.Google Scholar
  102. Paterniani, E. 1978. Reciprocal recurrent selection based on half-sib progenies and prolific plants in maize (Zea mays L.). Maydica 23:209–19.Google Scholar
  103. Paterniani, E. A. Ando, J. B. Miranda, and R. Vencovsky. 1973. Efeitos de raios gama no comportamento e na variância de progênies de meios irmaõs em milho. Rel. Cient. Inst. Genét. (ESALQ-USP) 7:161–67.Google Scholar
  104. Penny, L. H., and S. A. Eberhart. 1971. Twenty years of reciprocal recurrent selection with two synthetic varieties of maize (Zea mays L.). Crop Sci. 11:900–903.CrossRefGoogle Scholar
  105. Penny, L. H., W. A. Russell, G. F. Sprague, and A. R. Hallauer. 1963. Recurrent selection. In Statistical Genetics and Plant Breeding, W. D. Hanson and H. F. Robinson (eds.), pp. 352–67. NAS-NRC Publ. 982.Google Scholar
  106. Pesek, J., and R. J. Baker. 1969. Desired improvement in relation to selection indices. Canadian J. Plant Sci. 49:803–4.CrossRefGoogle Scholar
  107. Pesek, J., and R. J. Baker. 1970. An application of index selection to improvement of self pollinated species. Canadian J. Plant Sci. 50:267–76.CrossRefGoogle Scholar
  108. Ramalho, M.A.P. 1977. Eficiência relativa de alguns processos de selecão intrapopulacional no milho baseados em familias não endógamas. Tese de Doutoramento, ESALQ-USP, Piracicaba, Brazil.Google Scholar
  109. Rawlings, J. O. 1970. Present status of research on long and short term recurrent selection in finite populations–choice of population size. Proc. Second Meet. Work. Group Quant. Genet., sect. 22. IUFRO: 1–15. Raleigh, NC.Google Scholar
  110. Robertson, A. 1960. A theory of limits in artificial selection. Proc. R. Soc. 153:234–49.CrossRefGoogle Scholar
  111. Robinson, H. F., R. E. Comstock, and P. H. Harvey. 1951. Genotypic and phenotypic correlations in corn and their implications in selection. Agron. J. 43:282–87.CrossRefGoogle Scholar
  112. Robinson, H. F., R. E. Comstock, and P. H. Harvey. 1955. Genetic variances in open pollinated varieties of corn. Genetics 40:45–60.PubMedGoogle Scholar
  113. Russell, W. A. 1972. Registration of B70 and B73 parental lines of maize. Crop Sci. 12:721.CrossRefGoogle Scholar
  114. Russell, W. A., and S. A. Eberhart. 1975. Hybrid performance of selected maize lines from reciprocal recurrent and testcross selection programs. Crop Sci. 15:1–4.CrossRefGoogle Scholar
  115. Sanchez-Monge, E. 1993. Introduction: Plant Breeding and the Vavilov concept. In. Plant Breeding: Principles and Prospects, 1st edin, M.D. Hayward, N.O. Bosemark, and I. Romagosa (ed.), pp. 3–5. Chapman & Hall, London.CrossRefGoogle Scholar
  116. Sezegen, B., and M. J. Carena. 2009. Divergent recurrent selection for cold tolerance in two improved maize populations. Euphytica 167: 237–44.CrossRefGoogle Scholar
  117. Shull, G. H. 1909. A pure line method of corn breeding. Am. Breeders’ Assoc. Rep. 5:51–59.Google Scholar
  118. St. Martin, S. K. 1980. Selection indices for the improvement of opaque-2 maize. Ph.D. dissertation, Iowa State University., Ames, IA.Google Scholar
  119. Smith, H. F. 1936. A discriminant function for plant selection. Ann. Eugen. London 7:240–50.CrossRefGoogle Scholar
  120. Smith S., 2007. Pedigree background changes in U.S. hybrid maize between 1980 and 2004. Crop Sci. 47:1914–926.CrossRefGoogle Scholar
  121. Smith, O. S., A. R. Hallauer, and W. A. Russell. 1981. Use of index selection in recurrent selection programs in maize. Euphytica 30:611–618.CrossRefGoogle Scholar
  122. Sprague, G. F., 1946. Early testing of inbred lines of maize. J. Am. Soc. Agron. 38:108–117.CrossRefGoogle Scholar
  123. Sprague, G. F. and L. A. Tatum. 1942. General vs. specific combining ability in single crosses of corn. J. Am. Soc. Agron. 34:923–32.CrossRefGoogle Scholar
  124. Suwantaradon, K., S. A. Eberhart, J. J. Mock, J. C. Owens, and W. D. Guthrie. 1975. Index selection for several agronomic traits in the BSSS2 maize population. Crop Sci. 15:827–33.CrossRefGoogle Scholar
  125. Tabanao, D. A., and R. Bernardo. 2005. Genetic variation in maize breeding populations with different number of parents. Crop Sci. 45:2301–306.CrossRefGoogle Scholar
  126. Tallis, G. M. 1962. A selection index for optimum genotype. Biometrics 18: 120–22.CrossRefGoogle Scholar
  127. Turner, H.N., and S.S.Y. Young. 1969. Quantitative Genetics in Sheep Breeding. Cornell Univ. Press, Ithaca, New York, NY.Google Scholar
  128. Vasal, S. K., G. Srinivasan, F. Gonzalez, G. C. Han, S. Pandey, D. L. Beck, and J. Crossa 1992. Heterosis and combining ability of CIMMYT’s tropical and subtropical maize germplasm. Crop Sci. 32:1483–1489.CrossRefGoogle Scholar
  129. Vencovsky, R. 1969. Genética quantitativa. In Melhoramento e Genética, W. E. Kerr (ed.), pp. 17–38. University. São Paulo, São Paulo, Brazil.Google Scholar
  130. Vencovsky, R. 1977. Effective size of monoecious populations submitted to artificial selection. Institute de Genetica, ESALQ-USP, Piracicaba, Brazil.Google Scholar
  131. Vencovsky, R., and C. R. M. Godoi. 1976. Immediate response and probability of fixation of favorable alleles in some selection schemes. Proc. Int. Biom. Conf. pp: 292–97 Boston, MA.Google Scholar
  132. Weatherspoon, J. H., 1973. Usefulness of recurrent selection schemes in a commercial corn breeding program. Annu. Corn Sorghum Res. Conf. Proc. 28:137–43.Google Scholar
  133. Webel, O. D., and J. H. Lonnquist. 1967. An evaluation of modified ear-to-row selection in a population of corn (Zea mays L.). Crop Sci. 7:651–55.CrossRefGoogle Scholar
  134. Williams, J. S. 1962. The evaluation of a selection index. Biometrics 18:375–93.CrossRefGoogle Scholar
  135. Wolff, F. 1972. Mass selection in maize composites by means of selection indices. Meded. Landbouwhogesch. Wageningen 72:1–80.Google Scholar
  136. Yang, J., and M. J. Carena. 2008. Genetics of field dry down rate and test weight in early-maturing elite by elite maize hybrids. 50 th Maize Genetics Conference Proceedings P189 (Section Quantitative Traits/Breeding). Feb 27 – March 1. Washington, D.C.Google Scholar
  137. Young, S. S. Y. 1961. A further examination of the relative efficiency of three methods of selection for genetic gains under less restricted conditions. Genet. Res. 2:106–21.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Arnel R. Hallauer
    • 1
  • Marcelo J. Carena
    • 2
  • J. B. Miranda Filho
    • 3
  1. 1.Department of AgronomyIowa State UniversityAmesUSA
  2. 2.Department of Plant Sciences #7670North Dakota State UniversityFargoUSA
  3. 3.University of São PauloSão PauloBrazil

Personalised recommendations