Skip to main content

Apricot

  • Chapter
  • First Online:
Fruit Breeding

Part of the book series: Handbook of Plant Breeding ((HBPB,volume 8))

  • 5732 Accesses

Abstract

Apricot is in the Rosaceae family within the genus Prunus L., subgenus Prunophora Focke, and the section Armeniaca (Lam.) Koch. Depending on the classification system, the number of apricot species ranges from 3 to 12. Six distinct species are usually recognized: P. brigantina Vill., P. holosericeae Batal, P. armeniaca L., P. mandshurica (Maxim), P. sibirica L., Japanese apricot P. mume (Sieb.) Sieb. & Succ. Vavilov placed apricot in three centers of origin: the Chinese center (Central and Western China), the Central Asiatic center (Afghanistan, northwest India and Pakistan, Kashmir, Tajikistan, Uzbekistan, Xinjing province in China and western Tien-Shan), and the Near-Eastern center (interior of Asia Minor). Kostina further divided the cultivated apricot according to their adaptability into four major ecogeographical groups: (1) the Central Asian group, (2) the Iran-Caucasian group, (3) the European group, and (4) the Dzhungar-Zailij group. Many local cultivars are grown in the different areas and producing countries; however, these cultivars lack important traits that needed by modern production and marketing systems. Breeding programs have and continue to develop cultivars with improved adaptability to the environment (temperature requirements, water deficit), extension of the harvest ­season, fruit quality for fresh consumption and processing, productivity, adequate tree size, and resistance to biotic stresses. The major objectives in apricot breeding ­programs are resistance to sharka caused by Plum Pox Virus, brown rot caused by Monilinia spp., bacterial diseases caused by Pseudomonas spp. and Xanthomonas arboricola pv. pruni (Smith), Chlorotic Leaf Roll Phytoplasma, and Apricot Decline Syndrome. Among these, PPV is the most limiting factor in Europe and much work has to be invested in developing PPV-resistant apricot cultivars. Molecular markers have been developed in apricot and used mainly for construction of linkage maps and genetic diversity studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aksogan S, Basturk A, Yuksel E, Akgiray O (2003) On the use of crushed shells of apricot as the upper layer in dual media filters. Water Science and Technology 48: 497–503

    PubMed  CAS  Google Scholar 

  • Alburquerque N, Egea J, Pérez-Tornero O, Burgos L (2002) Genotyping apricot cultivars for self-(in) compatibility by means of RNAses associated with S alleles. Plant Breed 121: 343–347

    Article  CAS  Google Scholar 

  • Alt-Mörbe J, Kühlmann H, Schröder J (1989) Differences in induction of Ti plasmid virulence genes virG and virD and continued control of virD expression by four external factors. Mol Plant-Microbe Interact 2: 301–308

    Article  Google Scholar 

  • Arbeloa A, Daorden ME, García E, Marín JA (2003) Successful establishment of in vitro cultures of Prunus cerasifera hybrids by embryo culture of immature fruits. Acta Hort 616: 375–378

    Google Scholar 

  • Arbeloa A, Daorden ME, Garcia E, Wunsch A, Hormaza JI and others (2006) Significant effect of accidental pollinations on the progeny of low setting Prunus interspecific crosses. Euphytica 147: 389–394

    Google Scholar 

  • Arús P, Yamamoto T, Dirlewanger E, Abbott AG (2006) Synteny in the Rosaceae. In: J. Janick (ed) Plant Breeding Reviews, v 27, John Wiley & Sons, Inc, pp 175–211

    Google Scholar 

  • Asma BM and Ozturk K (2005) Analysis of morphological, pomological and yield characteristics of some apricot germplasm in Turkey. Genetic Resources and Crop Evolution 52: 305–313

    Article  Google Scholar 

  • Asma BM, Kan T, Birhanlı O (2007) Characterization of Promising Apricot ( Prunus armeniaca L.) Genetic Resources in Malatya, Turkey. Genetic Resources and Crop Evolution 54: 205–212

    Article  Google Scholar 

  • Audergon JM, Blanc A, Gilles F, Gouble G, Grotte M, Reich M, Bureau S, Clauzel G, Pitiot C, Lafond S, Broquaire JM (2009) New recent selections from INRA’s apricot breeeding program. Acta Hort 814: 221–226

    Google Scholar 

  • Audergon JM, Duffillol JM, Gilles F, Giard A, Blanc A, Clauzel G, Chauffour D, Broquaire JM, Moulon B (2006b) ‘Soledane’, ‘Florilege’ and ‘Bergarouge (R)’ Avirine: Three new apricot cultivars for French country. Acta Hort 701: 395–398

    Google Scholar 

  • Audergon JM, Giard A, Lambert P, Blanc A, Gilles F, Signoret V, Richard JC, Albagnac G, Bureau S, Gouble B, Grotte M, Reich M, Legave JM, Clauzel G, Dicenta F, Scortichini M, Simeone AM, Guerriero R, Viti R, Monteleone P, Bartolini S, Martins JMS, Tsiantos J, Psallidas P (2006a) Optimisation of apricot breeding by a joint conventional and molecular approach applied to the main agronomic traits - ABRIGEN project. Acta Hort 701: 317–320

    Google Scholar 

  • Avdeev VI (1992) On the centers of provenance of cultivated apricot. Bulletin of applied botany, genetics and plant breeding 146: 33–35 (in Russian)

    Google Scholar 

  • Badenes MA, Asins MJ, Carbonell EA, Llácer G (1996) Genetic diversity in apricot, Prunus armeniaca, aimed at improving resistance to plum pox viruw. Plant Breeding 115: 133–139

    Article  CAS  Google Scholar 

  • Badenes ML, Llácer G (2006) Breeding for resistance: breeding for Plum pox virus resistant apricots in Spain. Bulletin OEPP/EPPO Bulletin 36: 323–326

    Google Scholar 

  • Badenes ML, Llácer G, Crisosto C (2006) Mejora de la calidad de frutales de hueso. p 551–578. In: G Llácer, MJ Díez, JM Carrillo and ML Badenes (eds), Mejora Genética de la Calidad en Plantas. Sociedad Española de Ciencias Hortícolas y Sociedad Española de Genética. Ed Universidad Politécnica de Valencia

    Google Scholar 

  • Badenes ML, Martínez-Calvo J, Llácer G (1998) Analysis of apricot germplasm from the European ecogeographical group. Euphytica 102: 93–99

    Article  Google Scholar 

  • Badenes ML, Pastor I, Martínez-Calvo J, Llácer G (2000) Improved efficiency in apricot breeding: earlier assessment of seedling progeny for resistance to Plum pox virus. J Hort Sci & Biotechnol 75 (4): 459–464

    Google Scholar 

  • Bailey CH, Hough LF (1975) Apricots. In: J. Janick and JN Moore (eds). Advances in fruit breeding. Purdue University Press, West Lafayette, IN. pp. 367–383

    Google Scholar 

  • Bala A, Kaushal BBL, Joshi VK (2005) Utilization of plum and apricot fruits in tomato based sauces. Acta Hort 696: 541–545

    CAS  Google Scholar 

  • Balan V, Tudor V, Petrisor C (2006) Providing the quality features variability of apricot descendants: F-1, F-2, back-cross and V-2. Acta Hort 717: 175–178

    Google Scholar 

  • Bassi D, Andalò G, Bartolozzi F (1995) Tolerance of apricot to winter temperature fluctuation and spring frost in northern Italy. Acta Hort 384: 315–321

    Google Scholar 

  • Bassi D, Audergon JM (2006) Apricot breeding: update and perspectives. Acta Hort 701: 279–294

    Google Scholar 

  • Bassi D, Pirazzoli C (1998) The stone fruit industry in the Mediterranean region: agronomical and commercial overview. Options Méditerranéennes, Série B/n°19, Stone fruit viruses and certification in the Mediterranean: problems and prospects. P. 3–38

    Google Scholar 

  • Benedikova D (2006) Gene pool utilisation in apricot breeding in Slovak Republic. Acta Hort 717: 173–174

    Google Scholar 

  • Bortiri E, Oh S-H, Jiang J, Baggett S, Granger A, Weeks C, Buckingham M, Potter D, Parfitt DE (2001) Phylogeny and Systematics of Prunus (Rosaceae) as Determined by Sequence Analysis of ITS and the Chloroplast trnL-trnF Spacer DNA. Systematic Botany 26: 797–807

    Google Scholar 

  • Bureau S, Reich M, Marfisi C, Audergon JM, Albagnac G (2006) Application of Fourier-transform infrared (FT-IR) spectroscopy for the evaluation of quality traits in apricot fruits. Acta Hort 717: 347–349

    CAS  Google Scholar 

  • Burgos L, Alburquerque N (2003) Low kanamycin concentration and ethylene inhibitors improve adventitious regeneration from apricot leaves. Plant Cell Rep 21: 1167–1174

    Article  PubMed  CAS  Google Scholar 

  • Burgos L, Ledbetter CA (1993) Improved Efficiency in Apricot Breeding - Effects of Embryo Development and Nutrient Media on In-Vitro Germination and Seedling Establishment. Plant Cell Tissue and Organ Culture 35: 217–222

    Article  Google Scholar 

  • Burgos L, Ledbetter CA (1994) Observations on inheritance of male sterility in apricot. Hortscience 29: 127

    Google Scholar 

  • Burgos L, Ledbetter CA, Pérez-Tornero O, Ortín-Párraga F, Egea J (1997) Inheritance of sexual incompatibility in apricot. Plant Breeding 116: 383–386

    Article  Google Scholar 

  • Burgos L, Pérez-Tornero O, Ballester J, Olmos E (1998) Detection and inheritance of stylar ribonucleases associated with incompatibility alleles in apricot. Sex Plant Reproduction 11: 153–158

    Article  CAS  Google Scholar 

  • Byrne DH (1990) Isozyme variability in four diploid stone fruits compared with other woody plants. J Heredity 81: 68–71

    Google Scholar 

  • Byrne DH (2002) Peach breeding trends: a worlwide perspective. Acta Hort 592: 49–59

    Google Scholar 

  • Byrne DH (2005) Trends in stone fruit cultivar development. Horttechnology 15: 494–500

    Google Scholar 

  • Byrne DH, Littleton TG (1989) Interspecific hybrid verification of Plum x Apricot hybrids via isozyme analyses. HortScience 24: 132–134

    Google Scholar 

  • Byrne DH, Ramming DW, Topp B (2000) China germplasm collection trip report. August7-August 25, 2000

    Google Scholar 

  • Cambra M, Capote N, Myrta A, Llácer G (2006a) Plum pox virus and the estimated costs associated with sharka disease. Bulletin OEPP/EPPO Bulletin 36: 202–204

    Google Scholar 

  • Cambra MA, Serra J, Cano A, Cambra M (2006b) Plum pox virus in Spain. Bulletin OEPP/EPPO Bulletin 36: 215

    Google Scholar 

  • Cervera M, López MM, Navarro L, Peña L (1998) Virulence and supervirulence of Agrobacterium tumefaciens in woody fruit plants. Physiol Mol Plant P 52: 67–78

    Article  Google Scholar 

  • Chen XS, Wu Y, Chen MX, He TM, Feng JR and others (2006) Inheritance and correlation of self-compatibility and other yield components in the apricot hybrid F1 populations. Euphytica 150: 69–74

    Google Scholar 

  • Chen Y, Gong Z, Ye M (1997) Sugar-free instant powder for asthma and cough due to lung-heat in children. Patent Num CN1097320-A

    Google Scholar 

  • Cociu V (2006) 50 years of apricot breeding in Romania. Acta Hort 701: 355–358

    Google Scholar 

  • Coneva E (2003) New apricot germplasm selected by ten characteristics. Acta Hort 622: 465–472

    Google Scholar 

  • Conte L, Nicotra A, Corazza L (2004) New apricot selections resistant to Monilinia laxa (Aderh. et Ruhl.). Acta Hort 663: 245–249

    Google Scholar 

  • Costes E, Lauri PE, Laurens F, Moutier N, Belouin A, Delort F, Legave JM, Regnard JL (2004) Morphological and architectural traits on fruit trees which could be relevant for genetic studies: a review. Acta Hort 663: 349–356

    Google Scholar 

  • Couranjou J (1995) Genetic-Studies of 11 Quantitative Characters in Apricot. Scientia Horticulturae 61: 61–75

    Article  Google Scholar 

  • Culver DJ, Ramming DW, McKenry MV(1989) Procedures for field and greenhouse screening of Prunus genotypes for resistance and tolerance to root-lesion nematode. J Amer Soc Hort Sci 114: 30–35

    Google Scholar 

  • Day LH (1953) Rootstocks for stone fruits. Observations and experiments with plum, peach, apricot and almond roots for stone fruits. California Agricultural Experiment Station Extension Service. Bulletin 736

    Google Scholar 

  • Day LH, Serr EF (1951) Comparative resistance of rootstocks of fruit and nut trees to attach by a root-lesion or meadow nematode. Proc Amer Soc Hort Sci 57: 150–154

    Google Scholar 

  • De Candolle A (1886) Origin of cultivated plants. D. Appleton and Company, 1, 3 and 5 bond street, New York, USA, 468 pp

    Google Scholar 

  • De Nettancourt D (2001) Incompatibility and Incongruity in Wild and Cultivated Plants. 2nd totally rev, Springer, New York, pp 322

    Google Scholar 

  • De Vicente MC, Truco MJ, Egea J, Burgos L, Arús P (1998) RFLP variability in apricot (Prunus armeniaca L) Plant Breeding 117: 153–158

    Article  Google Scholar 

  • Decroocq V, Favé MG, Hagen L, Bordenave L, Decroocq S (2003) Development and transferability of apricot and grape EST microsatellite markers across taxa. Theor Appl Genet 106: 912–922

    PubMed  CAS  Google Scholar 

  • Decroocq V, Foulongne M, Lambert P, Le Gall O, Martin C, Pascal T, Schurdi-Levraud V, Kervella J (2005) Analogues of virus resistance genes map to QTLs for resistance to sharka disease in Prunus davidiana. Mol Genet Genomics 272: 680–689

    Article  PubMed  CAS  Google Scholar 

  • Dimitrova M (2006) 45 years of apricot rootstock breeding in Bulgaria. Acta Hort 701: 321–323

    Google Scholar 

  • Dirlewanger E, Graziano E, Joobeur T, Garriga-Caldere F, Cosson P, Howad W, Arús P (2004) Comparative mapping and marker-assisted selection in Rosaceae fruit crops. Proc Natl Acad Sci USA. 101: 9891–9896

    Article  PubMed  CAS  Google Scholar 

  • Dondini L, Lain O, Geuna F, Banfi R, Gaiotti F, Tartarini S, Bassi D, Testolin R (2007) Development of a new SSR-based linkage map in apricot and analysis of synteny with existing Prunus maps. Tree Genetics & Genomes 3: 239–249

    Article  Google Scholar 

  • Dragovic-Uzelac V, Levaj B, Mrkic V, Bursac D, Boras M (2007) The content of polyphenols and carotenoids in three apricot cultivars depending on stage of maturity and geographical region. Food Chemistry 102: 966–975

    Article  CAS  Google Scholar 

  • Ebinuma H, Sugita K, Matsunaga E, Yamakado M (1997) Selection of marker-free transgenic plants using the isopentenyl transferase gene. Proc Natl Acad Sci USA 94: 2117–2121

    Article  PubMed  CAS  Google Scholar 

  • Egea J, Dicenta F, Burgos L (2004a) ‘Rojo Pasión’ apricot. HortScience 39: 1490–1491

    Google Scholar 

  • Egea J, Martínez-Gómez P, Dicenta F, Burgos L (2004b) ‘Selene’ apricot. HortScience 39: 1492–1493

    Google Scholar 

  • Egea J, Ruiz D, Burgos L (2005b) ‘Dorada’ apricot. HortScience 40: 1919–1920

    Google Scholar 

  • Egea J, Ruiz D, Dicenta F, Burgos L (2005a). ‘Murciana’ apricot. HortScience 40: 254–255

    Google Scholar 

  • Egea J, Campoy JA, Dicenta F, Burgos L, Patiño JL, Ruiz D (2009) ‘Estrella’ and ‘Sublime’ apricot cultivars. HortScience 44: 469–470

    Google Scholar 

  • Entani T, Iwano M, Shiba H, Che F-S, Isogai A, Takayama S (2003) Comparative analysis of the self-incompatibility (S-) locus region of Prunus mume: identification of a pollen-expressed F-box gene with allelic diversity. Genes Cells 8: 203–213

    Article  PubMed  CAS  Google Scholar 

  • Escalettes V, Dosba F (1993) In vitro adventitious shoot regeneration from leaves of Prunus spp. Plant Sci 90: 201–209

    Article  Google Scholar 

  • Fang Y (1995) Preparation of anticancer drink. Patent Num CN1094923-A

    Google Scholar 

  • FAO (1989) FAO Production Yearbook

    Google Scholar 

  • FAO (2008) http://faostatclassic.fao.org

  • Faust M, Surányi D, Nyujtó F (1998) Origin and dissemination of apricot, p. 225–266. In: J. Janick (ed.), Horticultural Reviews, vol. 22. John Wiley & Sons, Inc., New York, Chichester, Weinheim, Brisbane, Singapore, Toronto

    Google Scholar 

  • Feng J, Chen X, Yuan Z, He T, Zhang L, Wu Y, Liu W, Liang Q (2006) Proteome comparison following self- and across-pollination in self-incompatible apricot (Prunus armeniaca L.). Protein J 25: 1572–3887

    Article  CAS  Google Scholar 

  • Feng JR, Chen XS, Yuan ZH, Zhang LJ, Ci ZJ, Liu XL, Zhang CY (2007) Primary molecular features of self-incompatible and self-compatible F1 seedling from apricot (Prunus armeniaca L.) Katy × Xinshiji. Mol Biol Rep 36: 263–272

    Article  PubMed  CAS  Google Scholar 

  • Geuna F, Banfi R, Bassi D (2005) Identification and characterization of transcripts differently expressed during development of apricot (Prunus armeniaca L.) fruit. Tree Genetics & Genomes 1: 69–78

    Article  Google Scholar 

  • Geuna F, Toschi M, Bassi D (2003) The use of AFLP markers for cultivars identification in apricot. Plant Breeding 122: 526–531

    Article  CAS  Google Scholar 

  • Ghorbel R, La-Malfa S, López MM, Petit A, Navarro L, Peña L (2001) Additional copies of virG from pTiBo542 provide a super-transformation ability to Agrobacterium tumefaciens in citrus. Physiol Mol Plant P 58: 103–110

    Article  CAS  Google Scholar 

  • Goffreda JC, Scopel AL, Fiola JA (1995) Indole butyric acid induces regeneration of phenotypically normal apricot (Prunus armeniaca L.) plants from immature embryos. Plant Growth Regul 17: 41–46

    CAS  Google Scholar 

  • Gogorcena Y, Parfitt DE (1994) Evaluation of RAPD marker consistency for detection of polymorphism in apricot. Sci Hortic: 163–167

    Google Scholar 

  • Gómez E, Burgos L, Soriano C, Marín J (1998) Amygdalin content in the seeds of several apricot cultivars. J Sci Food Agric 77: 184–186

    Article  Google Scholar 

  • Grimplet J, Romieu C, Audergon J-M, Marty I, Albagnac G, Lambert P, Bouchet J-P, Terrier N (2005) Transcriptomic study of apricot fruit (Prunus armeniaca) ripening among 13,006 expressed sequence tags. Physiol Plant 125: 281–292

    Article  Google Scholar 

  • Guerriero R, Viti R, Bartolini S, Iacona C (2006b) Parents for spring frost tolerance in apricot. Acta Hort 717: 153–156

    Google Scholar 

  • Guerriero R, Viti R, Monteleone P, Iacona C, Gentili M (2006a) Pisa University’s contribution to the national apricot breeding programme: Three new apricot cultivars for Tuscan fruit growers. Acta Hort 717: 137–140

    Google Scholar 

  • Guillet-Bellanger I, Saussac P. Audergon JM (2006) Characterization and inheritance of apricot leaf necrosis observed on ‘Manicot’ cultivar after sharka inoculations. Acta Hort 701: 493–496

    Google Scholar 

  • Guillot S, Peytavi L, Bureau S, Boulanger R, Lepoutre JP, Crouzet J, Schorr-Galindo S (2006) Aroma characterization of various apricot varieties using headspace-solid phase microextraction combined with gas chromatography–mass spectrometry and gas chromatography-olfactometry. Food Chemistry 96: 147–155

    Article  CAS  Google Scholar 

  • Hagen LS, Khadari B, Lambert P, Audergon J-M (2002) Genetic diversity in apricot revealed by AFLP markers: species and cultivar comparison. Theor Appl Genet 105: 298–305

    Article  PubMed  CAS  Google Scholar 

  • Hagen S, Chaib J, Fady B, Decroocq V, Bouchet P, Lambert P, Audergon JM (2004) Genomic and cDNA microsatellites from apricot (Prunus armeniaca L.). Mol Ecol Notes 4: 742–745

    Article  CAS  Google Scholar 

  • Halász J, Pedric A, Hegedüs A (2007) Origin and dissemination of the pollen-part mutated Sc haplotype which confers self-compatibility in apricot (Prunus armeniaca). New Phytologist 176: 792–803

    Article  PubMed  CAS  Google Scholar 

  • Han Z (2001) Fruit wine continuous production. Patent Num CN1172851-A

    Google Scholar 

  • Harbeck M (2001) Liquid cleansing composition useful for the treatment of dermatitis. Patent Num US2001014316-A1

    Google Scholar 

  • He T, Chen X, Xu Z, Gao J, Lin P, Liu W, Liang Q, Wu Y (2007) Using SSR markers to determine the population genetic structure of wild apricot (Prunus armeniaca L.) in the Ily Valley of West China. Genetic Resources and Crop Evolution 54: 563–572

    Article  CAS  Google Scholar 

  • Hily JM, Scorza R, Malinowski T, Zawadzka B, Ravelonandro M (2004) Stability of gene silencing-based resistance to Plum pox virus in transgenic plum (Prunus domestica L.) under field conditions. Transgenic Res 13: 427–436

    Article  PubMed  CAS  Google Scholar 

  • Hormaza JI (2002) Molecular characterization and similarity relationships among apricot (Prunus armeniaca L.) genotypes using simple sequence repeats. Theor Appl Genet 104: 321–328

    Article  PubMed  CAS  Google Scholar 

  • Hormaza JI, Yamane H, Rodrigo J (2007) Apricot, p 171–185. In: C. Kole (ed) Genome mapping and molecular breeding in plants. V 4, Fruits and nuts. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  • Howad W, Yamamoto T, Dirlewanger E, Testolin R, Cosson P, Cipriani G, Monforte AJ, Georgi L, Abbott AG, Arús P (2005) Mapping with a few plants: using selective mapping for microsatellite saturation of the Prunus reference map. Genetics 171: 1305–1309

    Article  PubMed  CAS  Google Scholar 

  • Hurtado MA, Romero C, Vilanova S, Abbott AG, Llácer G, Badenes ML (2002b) Genetic linkage map of two apricot cultivars (Prunus armeniaca L.) and mapping of PPV (sharka) resistance. Theor Appl Genet 105: 182–192

    Article  PubMed  CAS  Google Scholar 

  • Hurtado MA, Westman A, Beck E, Abbott A, Llácer G, Badenes ML (2002a) Genetic diversity of apricot based on AFLP markers. Euphytica 127: 297–301

    Article  CAS  Google Scholar 

  • Jung S, Abbott A, Jesudurai C, Tomkins J, Main D (2005) Frequency, type, distribution and annotation of simple sequence repeats in Rosaceae ESTs. Funct Int Genome 5:136–143

    Article  CAS  Google Scholar 

  • Jung S, Staton M, Lee T, Blenda A, Svancara R, Abbott A, Main D (2008) GDR (Genome Database for Rosaceae): integrated web-database for Rosaceae genomics and genetics data. Nucl Acid Res 36: D1034–D1040

    Article  CAS  Google Scholar 

  • Karayiannis I (2006) Breeding for resistance: conventional breeding for Plum pox virus resistant apricots in Greece. Bulletin OEPP/EPPO Bulletin 36: 319–322

    Google Scholar 

  • Karayiannis I, Mainou A, Stylianidis D, Thomidis T, Karayiannis NI, Tsaftaris A(2006) Resistant to sharka disease apricot hybrids of high quality selected in Greece. Acta Hort 701: 337–340

    Google Scholar 

  • Karayiannis I, Thomidis T, Tsaftaris A (2008) Inheritance of resistance to Plum pox virus in apricot (Prunus armeniaca L.). Tree Genetic & Genomes 4: 143–148

    Article  Google Scholar 

  • Kayisi çeşit Kataloğu (1996) Catalog of Turkish apricot cultivars (ed) M. Akçay. Meyvecilik Araştirma Enstitüsu Müdürlüğu, Ankara, Turkey, 93 pp (in Turkish)

    Google Scholar 

  • Khadari B, Krichen L, Lambert P, Marrakchi M, Audergon JM (2006) Genetic structure in Tunisian apricot, Prunus armeniaca L., populations propagated by grafting: a signature of bottleneck effects and ancient propagation by seedlings. Genetic Resources and Crop Evolution 53: 811–819

    Article  Google Scholar 

  • Kita M, Kato M, Ban Y, Honda C, Yaegaki H, Ikoma Y, Moriguchi T (2007) Carotenoid accumulation in Japanese apricot (Prunus mume Siebold & Zucc.): Molecular analysis of carotenogenic gene expression and ethylene regulation. J Agric Food Chem 55: 3414–3420

    Article  PubMed  CAS  Google Scholar 

  • Kitashiba H, Zhang SL, Wu J, Shirasawa K, Nishio T (2008) S-genotyping and S-screening utilizing SFB gene polymorphism in Japanese plum and sweet cherry by dot-blot analysis. Molecular Breeding 21: 339–349

    Article  CAS  Google Scholar 

  • Kostina KF (1936) The Apricot. Bull Appl Bot Genet and Plant Breeding, Suppl. 83. Institute of Plant Industry, Leningrad (in Russian)

    Google Scholar 

  • Kostina KF (1946) The origin and evolution of cultivated apricot. Proceedings (Trudi) of the Nikita Botanical Garden 24: 25–31 (in Russian)

    Google Scholar 

  • Kostina KF (1964) Application the phytogeographical method to apricot classification (in Russian). Proceedings (Trudi) of the Nikita Botanical Garden. Kolos, Moscow, v 24

    Google Scholar 

  • Kovalev N.V. (1963) Apricot.Selkhozizdat, Moskow. 288p (in Russian)

    Google Scholar 

  • Krichen L, Mnejja M, Marrakchi M, Trifi-Farah N (2006) Use mocrosatellite polymorphisms to develop an identification key for Tunisian apricots (2006) Genetic Resources and Crop Evolution 53: 1699–1706

    Article  Google Scholar 

  • Krska B, Vachun Z, Necas T (2006) The apricot breeding programme at the Horticulture Faculty in Lednice. Acta Hort 717: 145–148

    Google Scholar 

  • Kryukova IV (1989) Botanical classification and geographical distribution, p 9–23. In: VK Smykov (ed), Apricot, Agropromizdat, Moscow, USSR (in Russian)

    Google Scholar 

  • Kunkel T, Niu QW, Chan YS, Chua NH (1999) Inducible isopentenyl transferase as a high-efficiency marker for plant transformation. Nat Biotechnol 17: 916–919

    Article  PubMed  CAS  Google Scholar 

  • Laimer da Câmara Machado M, da Câmara Machado A, Hanzer V, Weiss H, Regner F, Steinkeliner H, Mattanovich D, Plail R, Knapp E, Kalthoff B, Katinger HWD (1992) Regeneration of transgenic plants of Prunus armeniaca containing the coat protein gene of plum pox virus. Plant Cell Rep 11: 25–29

    Google Scholar 

  • Lalli DA, Abbott AG, Zhebentyayeva TN, Badenes ML, Damsteegt V, Polák J, Krška B, Salava J (2008) A genetic linkage map for an apricot (Prunus armeniaca L.) BC1 population mapping plum pox virus resistance. Tree Genetics & Genomes 4: 481–493

    Article  Google Scholar 

  • Lalli DA, Decroocq V, Blenda AV, Schurdi-Levraud V, Garay L, Le Gall O, Damsteegt V, Reighard GL, Abbott AG (2005) Identification and mapping of resistance gene analogs (RGAs) in Prunus: a resistance map for Prunus. Theor Appl Genet 111: 1504–1513

    Article  PubMed  CAS  Google Scholar 

  • Lambert P, Dicenta F, Rubio M, Audergon JM (2007) QTL analysis of resistance to sharka disese in the apricot (Prunus armeniaca L.) ‘Polonais’ x ‘Stark Early Orange’ F1 progeny. Tree Genetics & Genomes 3: 299–309

    Article  Google Scholar 

  • Lambert P, Hagen LS, Arús P, Audergon JM (2004) Genetic linkage maps of two apricot cultivars (Prunus armeniaca L.) compared with the almond Texas x peach Earlygold reference map for Prunus. Theor Appl Genet 108: 1120–1130

    Article  PubMed  CAS  Google Scholar 

  • Lane WD, Cossio F (1986) Adventitious shoots from cotyledons of immature cherry and apricot embryos. Can J Plant Sci 66: 953–959

    Article  CAS  Google Scholar 

  • Layne R.E.C., Bailey C.H., Hough L.F (1996) Apricots, p. 79–111. In: J. Janick and J.N. Moore (eds.), Fruit breeding, vol. 1: Tree and Tropical Fruits, John Wiley & Sons, Inc., New York

    Google Scholar 

  • Ledbetter, C.A. and S.J. Peterson. 2004. Utilization of Pakistani apricot (Prunus armeniaca L.) germplasm for improving Brix levels in California adapted apricots. Plant Genetic Resources Newsletter 140: 14–22

    Google Scholar 

  • Legave JM, Garcia G (1988) Radiosensitivity of Apricot Budsticks Exposed to Acute Gamma-Rays and Nursery Observations on the 2nd Vegetative Generation from Irradiated Buds. Agronomie 8: 55–59

    Article  Google Scholar 

  • Li S (1997) Feiyangling medicine for curing infantile virus pneumonia. Patent Num CN1105570-A and CN1048882-C

    Google Scholar 

  • Lichou J. and Audubert A (1989) L’abricotier. Centre Technique Interprofessionnel des Fruits et Légumes. (CTIFL). ISBN : 2-901002-69-2

    Google Scholar 

  • Llácer G (2007) Apricot breeding program from the IVIA: first results (in Spanish). Proc. II Int. Fruit Congress ‘Ciutat de Carlet’, Valencia, Spain, p 13–36

    Google Scholar 

  • Llácer G (2009) Fruit breeding in Spain. Acta Hort 814: 43–56

    Google Scholar 

  • Llácer G, Badenes ML, Romero C (2008) Problens in the determination of inheritance of Plum pox virus resistance in apricot. Acta Hort 781: 263–268

    Google Scholar 

  • López-Noguera S, Petri C, Burgos L (2009) Combining a regeneration-promoting gene and site-specific recombination allows a more efficient apricot transformation and the elimina-tion of marker genes. Plant Cell Rep 28: 1781–1790

    Article  PubMed  CAS  Google Scholar 

  • Mády, R., Klincsek, P., Szani, Z.S., Szabó, T., Erdós, Z. and I. Skola. 2007. Hungarian seedling rootstocks for apricot. Acta Horticulturae (ISHS) 732: 297–302

    Google Scholar 

  • Maghuly F, Fernandez EB, Ruther S, Pedryc A, Laimer M (2005) Microsatellite variability in apricot (Prunus armeniaca L.) reflects their geographic origin and breeding history. Tree Genetics & Genomes 1: 155–163

    Article  Google Scholar 

  • Maikeru Shoji K (1994) Japanese apricot seasoning. Patent Num JP6062790-A

    Google Scholar 

  • Mariniello L, Sommella MG, Sorrentino A, Forlani M (2002) Identification of Prunus armeniaca cultivars by RAPD and SCAR markers. Biotech Letter 24: 749–755

    Article  CAS  Google Scholar 

  • Martínez-Calvo J, Font A, Llácer G, Badenes ML (2009) Apricot and peach breeding programs from the IVIA. Acta Hort (ISHS) 814: 185–188

    Google Scholar 

  • Martínez-Gómez P, Dicenta F, Audergon J-M (2000) Behavior of apricot (Prunus armeniaca L.) cultivars in the presence of sharka (plum pox potyvirus): A review. Agronomie-Paris 20: 407–422

    Article  Google Scholar 

  • Marty I, Bureau S, Sarkissian G, Gouble B, Audergon JM, Albagnac G (2005) Ethylene regulation of carotenoid accumulation and carotenogenic gene expression in colour-contrasted apricot varieties (Prunus armeniaca). J Exp Bot 56: 1877–1886

    Article  PubMed  CAS  Google Scholar 

  • Mbeguie AM, Gouble B, Gomez RM, Audergon JM, Albagnac G, Fils-Lycaon B (2002) Two expansin cDNAs from Prunus armeniaca expressed during fruit ripening are differently regulated by ethylene. Plant Physiology and Biochemistry 40: 445–452

    Article  Google Scholar 

  • Mega K, Tomita E, Kitamura S, Saito S, Mizukami S (1988) Ume, p 289–300. In: Aoba T (ed.) The Grand Dictionary of Horticulture, Shogakukan, Tokyo

    Google Scholar 

  • Miller NF (1999) Agricultural development in western Central Asia in the Chalcolithic and Bronze Ages. Vegetation History and Archaeobotany 8: 13–19

    Article  Google Scholar 

  • Mita S, Nagai Y, Asai T (2006) Isolation of cDNA clones corresponding to genes differentially expressed in pericarp of mume (Prunus mume) in response to ripening, ethylene and wounding signals. Physiologia Plantarum 128: 531–545

    Article  CAS  Google Scholar 

  • Moreau-Rio MA (2006) Perception and consumption of apricots in France Acta Hort 701: 31–37

    Google Scholar 

  • Moser L, Conte L, Nicotra A (1999) A description of some dwarf or compact genotypes of apricot (in Italian). Italus Hortus 6 (3): 33–34

    Google Scholar 

  • Munzuroglu O, Karatas F, Geckil H (2003) The vitamin and selenium contents of apricot fruit of different varieties cultivated in different geographical regions. Food Chemistry 83: 205–212

    Article  CAS  Google Scholar 

  • Nicotra A, Conte L, Moser L, Fantechi P, Barbagiovanni I, Corazza ML, Vitale S, Magnotta A (2006) Breeding programme for Monilinia laxa (Aderh. et Ruhl.) resistance on apricot. Acta Hort 701: 307–311

    Google Scholar 

  • Nyujtó F, Suránui D (1981) Kajszibarack.Mezögazd. Kiadó, Budapest

    Google Scholar 

  • Orero G, Cuenca J, Romero C, Martínez-Calvo J, Badenes ML, Llácer G (2004) Selection of seedling rootstocks for apricot and almond. Acta Hort 658 (2): 529–533

    Google Scholar 

  • Otsuka T, Tsukamoto T, Tanaka H, Inada K, Utsunomiya H and others (2005) Suppressive effects of fruit-juice concentrate of Prunus mume Sieb. et Zucc. (Japanese apricot, Ume) on Helicobacter pylori-induced glandular stomach lesions in Mongolian gerbils. Asian Pac J Cancer Prev 6: 337–341

    Google Scholar 

  • Peace CP, Callahan A, Ogundiwin EA, Potter D, Gradziel TM, Bliss FA, Crisosto CH (2007) Endopolygalacturonase genotypic variation in Prunus. Acta Hort 738: 639–646

    Google Scholar 

  • Peace CP, Crisosto CH, Gradziel TM (2005) Endopolygalacturonase: a candidate gen for freestone and melting flesh in peach. Molecular Breeding 16: 21–31

    Article  CAS  Google Scholar 

  • Peixe A, Barroso J, Potes A, Pais MS (2004) Induction of haploid morphogenic calluses from in vitro cultured anthers of Prunus armeniaca cv. ‘Harcot’. Plant Cell Tissue and Organ Culture 77: 35–41

    Article  CAS  Google Scholar 

  • Pellegrino S (2006) Apricot industry in Italy (in Spanish) ‘Updating the apricot production technology Course’ Escuela Agraria de Cogullada, Zaragoza, Spain

    Google Scholar 

  • Pennone F, Abbate V (2006) Apricot breeding in Caserta: New perspectives of apricot growing in Southern Italy. Acta Hort 717: 157–161

    Google Scholar 

  • Pennone F, Guerriero R, Bassi D, Borraccini G, Conte L, De Michele A, Mattatelli B,Ondradu G, Pellegrino S, Pirazzini P.(2006) Evolution of the apricot industry in Italy and the national program (MIPAF-regions) “List of recommended fruits varieties”. Acta Hort 701: 351–354

    Google Scholar 

  • Pérez-Tornero O, Egea J, Vanoostende A, Burgos L (2000) Assessment of factors affecting adventitious shoot regeneration from in vitro cultured leaves of apricot. Plant Sci 158: 61–70

    Article  PubMed  Google Scholar 

  • Petri C, Alburquerque N, Burgos L (2005a) The effect of aminoglycoside antibiotics on the adventitious regeneration from apricot leaves and selection of nptII-transformed leaf tissues. Plant Cell, Tiss Org Cult 80: 271–276

    Article  CAS  Google Scholar 

  • Petri C, Alburquerque N, García-Castillo S, Egea J, Burgos L (2004) Factors affecting gene transfer efficiency to apricot leaves during early Agrobacterium-mediated transformation steps. J Hortic Sci Biotech 79: 704–712

    CAS  Google Scholar 

  • Petri C, Alburquerque N, Pérez-Tornero O, Burgos L (2005b) Auxin pulses and a synergistic ­interaction between polyamines and ethylene inhibitors improve adventitious regeneration from apricot leaves and Agrobacterium-mediated transformation of leaf tissues. Plant Cell Tissue Organ Cult 82: 105–111

    Article  CAS  Google Scholar 

  • Petri C, Burgos L (2005) Transformation of fruit trees. Useful breeding tool or continued future prospect? Transgenic Res 14: 15–26

    Article  PubMed  CAS  Google Scholar 

  • Petri C, López-Noguera S, Alburquerque N, Burgos L (2006) Regeneration of transformed apricot plants from leaves of a commercial cultivar. Acta Hort 717: 233–235

    CAS  Google Scholar 

  • Petri C, López-Noguera S, Alburquerque N, Egea J, Burgos L (2008a) An antibiotic-based selection strategy to regenerate transformed plants from apricot leaves with high efficiency. Plant Sci 175: 777–783

    Article  CAS  Google Scholar 

  • Petri C, Wang H, Alburquerque N, Faize M, Burgos L (2008b) Agrobacterium-mediated transformation of apricot (Prunus armeniaca L) leaf explants. Plant Cell Rep. 27: 1317–1324

    Article  PubMed  CAS  Google Scholar 

  • Pieterse RE (1989) Regeneration of plants from callus and embryos of ‘Royal’ apricot. Plant Cell Tissue Organ Cult 19: 175–179

    Article  Google Scholar 

  • Poëssel JL, Faurobert M, Esmenjaud, D, Dirlewanger E, Lemoine MC, Gurrieri F, Michelot P, Lafond S (2006) Breeding for compatible apricot rootstocks cumulating resistance to Plum Pox Virus and root-knot nematodes: the P x dasycarpa way. Acta Hort 701: 333–336

    Google Scholar 

  • Radi M, Mahrouz M, Jaouad A, Amiot MJ (2004) Characterization and identification of some phenolic compounds in Apricot fruit (Prunus armeniaca L.). Sciences des Aliments 24: 173–183

    Article  CAS  Google Scholar 

  • Ravelonandro M, Scorza R, Bachelier JC, Labonne G, Levy L, Damsteegt VD, Callahan AM, Dunez J (1997) Resistance of transgenic Prunus domestica to plum pox virus infection. Plant Dis 81: 1231–1235

    Article  CAS  Google Scholar 

  • Rehder A (1940) Manual of cultivated trees and shrubs, 2nd edn. Macmillan, New York

    Google Scholar 

  • Reighard GL, Cain DW, Newall WC (1990) Rooting and survival potential of hardwood cuttings of 406 species, cultivars and hybrids of Prunus. HortScience 25(5): 517–518

    Google Scholar 

  • Rodrigo J, Herrero M (1996) Evaluation of pollination as the cause of erratic fruit set in apricot Moniquí. J Hort. Sci 71 (5): 801–805

    Google Scholar 

  • Romero C, Perdic A, Muñoz V, Llácer G, Badenes ML (2003) Genetic diversity of different apricot geographical groups determined by SSR markers. Genome 46: 244–252

    Article  PubMed  CAS  Google Scholar 

  • Romero C, Vilanova S, Burgos L, Martínez-Calvo J, Vicente M, Llácer G, Badenes ML (2004) Analysis of the S-locus structure in Prunus armeniaca L. Identification of S-haplotype specific S-RNase and F-box genes. Plant Mol Biol 56: 145–157

    CAS  Google Scholar 

  • Rostova IS, Sokolova EA (1992) Variability of anatomical and morphological leaf characters in apricot (Armeniaca Scop.) species and varieties. Bulletin of applied botany, genetics and plant breeding 146: 74–86

    Google Scholar 

  • Rubio M, Audergon JM, Martínez-Gómez P, Dicenta F (2007) Testing genetic control hypothesis for Plum pox virus (sharka) resistance in apricot. Scientia Horticulturae112: 361–365

    Article  CAS  Google Scholar 

  • Rubio M, Dicenta F, Martínez-Gómez P (2003) Susceptibility to sharka (Plum pox virus) in Prunus mandshurica x P. armeniaca seedlings. Plant Breeding 122: 465–466

    Article  Google Scholar 

  • Ruiz D and Egea H (2008) Phenotypic diversity and relationships of fruit quality traits in apricot (Prunus armeniaca L.) germplasm. Euphytica 163: 143–158

    Article  CAS  Google Scholar 

  • Ruiz D, Egea J, Tomás-Barberán FA, Gil MI (2005) Carotenoids from new apricot (Prunus armeniaca L.) varieties and their relationship with flesh and skin color. J Agric Food Chem 53: 6368–6374

    Article  PubMed  CAS  Google Scholar 

  • Scalzo J, Politi A, Pellegrini N, Mezzetti B, Battino M (2005) Plant genotype affects total antioxidant capacity and phenolic contents in fruit. Nutrition 21: 207–213

    Article  PubMed  CAS  Google Scholar 

  • Scorza R, Callahan A, Levy L, Damsteegt VD, Webb K, Ravelonandro M (2001) Post-transcriptional gene silencing in plum pox virus resistant transgenic European plum containing the plum pox potyvirus coat protein gene. Transgenic Res 10: 201–209

    Article  PubMed  CAS  Google Scholar 

  • Sefer F, Misirli A, Gülcan R (2006) A research on phenolic and cyanogenic compounds in sweet and bitter kernelled apricot varieties. Acta Hort 701: 167–169

    CAS  Google Scholar 

  • Semon SFA (2006) Community plant variety rights and new apricot cultivars. Acta Hort 701: 39–42

    Google Scholar 

  • Sicard O, Marandel G, Soriano JM, Lalli DA, Lambert P, Salava J, Badenes ML, Abbott AG, Decroocq V (2008) Flanking the major Plum pox virus resistance locus in apricot with ­co-dominant markers (SSRs) derived from candidate resistance genes. Tree Genetics & Genomes 4: 359–365

    Article  Google Scholar 

  • Signoret V, Bureau S, Reich M, Gouble B, Clauzel G, Albagnac G, Audergon JM (2004) Inheritance of organoleptic quality traits of apricot. Acta Hort 663: 275–282

    Google Scholar 

  • Sinskaya E.N. (1969) Historical geography of cultivated floras (at the dawn of agriculture). Kolos, Leningrad, USSR (in Russian)

    Google Scholar 

  • Slingerland, K., Fisher, H. and D. Hunter. 2002. Apricot cultivars. Factsheet No. 214. Ontario Ministry of Agriculture, Food and Rural Affairs. http://www.omafra.gov.on.ca/english/crops/facts/02-035.htm#f

  • Son L and Küden A (2003) Effects of seedling and GF-31 rootstocks on yield and fruit quality of some table apricot cultivars grown in Mersin. Turkish J Agric Forestry 27 (5): 261–267

    Google Scholar 

  • Soriano J M, Vilanova S, Romero C, Llácer G, Badenes M L (2005) Characterization and mapping of NBS-LRR resistance gene analogs in apricot (Prunus armeniaca L.) Theor Appl Genet 110: 980–989

    Article  PubMed  CAS  Google Scholar 

  • Soriano JM, Vera-Ruiz EM, Vilanova S, Martínez-Calvo J, Llácer G, Badenes ML, Romero C (2008) Identification and mapping of a locus conferring plum pox virus resistance in two apricot-improved linkage maps. Tree Genetics & Genomes 4: 391–402

    Article  Google Scholar 

  • Stachel SE, Messens E, Van Montagu M, Zambryski P (1985) Identification of the signal molecules produced by wounded plant cells that activate T-DNA transfer in Agrobacterium tumefaciens. Nature 318: 624–629

    Article  Google Scholar 

  • Takeda T, Shimada T, Nomura K, Ozaki T, Haji T, Yamaguchi M, Yoshida M (1998) Classification of apricot varieties by RAPD analysis. J Jpn Soc Hort Sci 67: 21–27

    Article  CAS  Google Scholar 

  • Tao R, Habu T, Namba A, Yamane H, Fuyuhiro F, Iwamoto K, Sugiura A (2002) Inheritance of Sf-RNase in Japanese apricot (Prunus mume) and its relation to self-incompatibility. Theor Appl Genet 105: 222–228

    Article  PubMed  CAS  Google Scholar 

  • Tzonev R, Erez A (2003) Inheritance of chilling requirement for dormancy completion in apricot vegetative buds. Acta Hort 622: 429–436

    Google Scholar 

  • Ushijima K, Yamane H, Watari A, Kakehi E, Ikeda K, Hauck NR, Iezzoni AF, Tao R (2004) The S haplotype-specific F-box protein gene, SFB, is defective in self-compatible haplotypes of Prunus avium and P. mume. Plant J 39: 573–586

    Article  PubMed  CAS  Google Scholar 

  • Varveri C (2006) Plum pox virus in Greece. Bulletin OEPP/EPPO Bulletin 36: 209

    Google Scholar 

  • Vaughan SP, Russell K, Sargent DJ, Tobutt KR (2006) Characterization of pollen S alleles in Prunus avium and their application in a novel method suitable for large-scale population studies of self-incompatibility in Prunus species. Theor Appl Genet (2006) 112: 856–866

    Article  PubMed  CAS  Google Scholar 

  • Vavilov NI (1951) The phytogeographic basis of plant breeding. In: Chronica Botanica, an international collection of studies in the method and history of biology and agriculture (Ed) F. Verdoorn, translation from Russian by K.S. Chester, v 13, N1/6, pp 13–54

    Google Scholar 

  • Veberic R, Stampar F (2005) Selected polyphenols in fruits of different cultivars of genus Prunus. Phyton-Annales Rei Botanicae 45: 375–383

    CAS  Google Scholar 

  • Vilanova S, Badenes ML, Burgos L, Martínez-Calvo J, Llácer G, Romero C (2006a) Self-compatibility of two Prunus armeniaca selections is associated with two pollen-part mutations of different nature. Plant Physiology 142: 629–641

    Article  PubMed  CAS  Google Scholar 

  • Vilanova S, Romero C, Abernathy D, Abbott AG, Burgos L, Llácer G, Badenes ML (2003a) Construction and application of a bacterial artificial chromosome (BAC) library of Prunus armeniaca L. for the identification of clones linked to the self-incompatibility locus. Mol Genet Genomics 269: 685–691

    Article  PubMed  CAS  Google Scholar 

  • Vilanova S, Romero C, Burgos L, Llácer G, Badenes ML (2005) Identification of self-(in)compatibility alleles in apricot (Prunus armeniaca L.) by PCR and sequence analysis. J Am Soc Hortic Sci 130: 893–898

    CAS  Google Scholar 

  • Vilanova S, Soriano M, Lalli DA, Romero C, Abbott AG, Llácer G, Badenes M L(2006b) Development of SSR markers located in the G1 linkage of apricot (Prunus armeniaca L.) using a bacterial artificial chromosome library. Mol Ecol Notes 6: 789–791

    Article  CAS  Google Scholar 

  • Vilanova S, Romero C, Abbott AG, Llácer G, Badenes M L (2003b): An apricot (Prunus armeniaca L.) F2 progeny linkage map based on SSR and AFLP markers mapping Plum box virus resistance and self-incompatibility traits. Theor Appl Genet 107: 239–247

    Article  PubMed  CAS  Google Scholar 

  • Walter M, McLlaren GF, Fraser JA, Frampton CM, Boyd-Wilson KSH, Perry JH (2004) Methods of screening apricot fruit for resistance to brown rot caused by Monilinia spp. Australasian Plant Pathology 33: 541–547

    Article  Google Scholar 

  • Wickson EJ (1891) The Apricot. In: The California Fruits and how to grow them. 2nd Edition, Dewey & Co., San Francisco, CA. Chapter XVII pp. 254–271

    Google Scholar 

  • Yamaguchi M, Kyotani H, Yoshida M, Haji T, Nishimura K, Nakamura Y, Miyake M, Yaegaki H, Asakura T (2002a) New Japanese apricot cultivar ‘Kagajizou.’ (in Japanese) Bulletin of the National Institute of Fruit Tree Science 1: 23–33. English abstract: http://sciencelinks.jp/j-east/article/200219/000020021902A0645500.php

  • Yamaguchi M, Kyotani H, Yoshida M, Haji T, Nishimura K, Nakamura Y, Miyake M, Yaegaki H, Asakura T (2002b) New Japanese apricot cultivar ‘Hachirou.’ (in Japanese) Bulletin of the National Institute of Fruit Tree Science 1: 35–46. English abstract: http://sciencelinks.jp/j-east/article/200219/000020021902A0645501.php

  • Yang CD, Zhang YW, Yan XL, Bao MZ (2008) Genetic relatedness an genetic diversity of ornamental mei (Prunus mume Sieb.&Zucc.) as analyzed by AFLP markers. Tree Genetics & Genomes 4: 255–262

    Article  CAS  Google Scholar 

  • Zanetto A, Maggioni L, Tobutt R, Dosba F (2002) Prunus genetic resources in Europe: Achievements and perspectives of a networking activity. Genetic Resources and Crop Evolution 49: 331–337

    Article  Google Scholar 

  • Zeven AC, de Wet JMJ (1982) Dictionary of cultivated plants and their regions of diversity. Excluding most ornamentals, forest trees and lower plants. Center for Agricultural Publishing and Documentation, Wageningen, Netherlands. 263 pp

    Google Scholar 

  • Zohary D. and Hopf M. (2001) Domestication of plants in the Old World. 3 rd ed. Oxford University Press, Oxford, UK. 334 pp

    Google Scholar 

  • Zhang L, Chen X, Chen X-L, Zhang C, Liu X, Ci X, Zhang H, Wu C, Liu C (2008) Identification of self-incompatibility (S-) genotypes of Chinese apricot cultivars. Euphytica 160: 241–248

    Article  CAS  Google Scholar 

  • Zhao F, Liu W, Liu N, Yu X, Sun M, Zhang Y, Zhou Y (2005) Reviews of the apricot germplasm resources and genetic breeding in China. J Fruit Science, 22: 687–690 (in Chinese)

    CAS  Google Scholar 

  • Zhebentyayeva TN, Ageeva NG (2004) Intraspecific component composition of peroxidase in apricots of a different eco-geographical origin. Proceedings of Nikita Botanical Garden 122: 64–70 (in Russian)

    Google Scholar 

  • Zhebentyayeva TN, Ageeva NG, Gorina V (2001) Identification of apricot cultivars by isozyme composition. Cytology and Genetics (Kiev) 35: 46–51

    Google Scholar 

  • Zhebentyayeva TN, Reighard GL, Gorina VM, Abbott AG (2003) Simple sequence repeat (SSR) analysis for assessment of genetic similarity in apricot germplasm. Theor Appl Genet 106: 435–444

    PubMed  CAS  Google Scholar 

  • Zhebentyayeva TN, Reighard GL, Lalli D, Gorina VM, Krška B, Abbott AG (2008) Origin of plum pox virus resistance in apricot: what new AFLP and targeted SSR data analyses tell. Tree Genetics & Genomes 4: 403–417

    Article  Google Scholar 

  • Zhukovsky PM (1971) Cultivated plants and their wild relatives. Systematics, geography, cytogenetics, resistance, ecology, origin and use. Kolos, Leningrad, 751 pp (in Russian)

    Google Scholar 

  • Zuo J, Niu QW, Ikeda Y, Chua NH (2002) Marker-free transformation: increasing transformation frequency by the use of regeneration-promoting genes. Curr Opin Biotechnol 13: 173–180

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatyana Zhebentyayeva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Zhebentyayeva, T., Ledbetter, C., Burgos, L., Llácer, G. (2012). Apricot. In: Badenes, M., Byrne, D. (eds) Fruit Breeding. Handbook of Plant Breeding, vol 8. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0763-9_12

Download citation

Publish with us

Policies and ethics