Skip to main content

Breeding Objectives in Forages

  • Chapter

Part of the book series: Handbook of Plant Breeding ((HBPB,volume 5))

Abstract

All breeding programs share one common objective – to improve a species for use within a target population of environments and a particular agricultural context. Beyond this common goal, the objectives of forage breeding programs are as varied as the species upon which they are based and the breeders who develop and implement them. Many breeding objectives are determined a priori by the choice of a species with one or more obvious trait limitations or deficiencies, such as poor seedling vigor, synthesis of toxic alkaloids, or severe susceptibility to a major pest. For species without such limitations, breeders have the luxury of defining less stringent and/or more flexible breeding objectives.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abberton, M.T. and Marshall, A.H. 2005. Progress in breeding perennial clovers for temperate agriculture. J. Agric. Sci. Camb. 143:117–135.

    Article  Google Scholar 

  • Basso, C.F., Hurkman, M.M., Riedeman, E.S. and Tracy, W.F. 2008. Divergent selection for vegetative phase change in maize and indirect effects on response to Puccinia sorghi. Crop Sci. 48:992–999.

    Article  Google Scholar 

  • Bouton, J.H. and Gates, R.N. 2003. Grazing-tolerant alfalfa cultivars perform well under rotational stocking and hay management. Agron. J. 95:1461–1464.

    Article  Google Scholar 

  • Casler, M.D. 2001. Breeding forage crops for increased nutritional value. Advan. Agron. 71:51–107.

    Article  Google Scholar 

  • Casler, M.D. 2005. Agricultural fitness of smooth bromegrass populations selected for divergent fiber concentration. Crop Sci. 45:36–43.

    Article  Google Scholar 

  • Casler, M.D., Pedersen, J.F., Eizenga, G.C. and Stratton, S.D. 1996. Germplasm and cultivar development. In: L.E. Moser et al. (eds.) Cool-season forage grasses. American Society of Agronomy, Madison, WI, pp. 413–469.

    Google Scholar 

  • Casler, M.D. and Pederson, G.A. 1996. Host resistance and tolerance and its deployment. In: S. Chakraborty et al. (eds.) Pasture and forage crop pathology. American Society of Agronomy, Madison, WI, pp. 475–507.

    Google Scholar 

  • Casler, M.D. and Vogel, K.P. 1999. Accomplishments and impact from breeding for increased forage nutritional value. Crop Sci. 39:12–20.

    Article  Google Scholar 

  • Cockram, J., Jones, H., Leigh, F.J. et al. 2007. Control of flowering time in temperate cereals: genes, domestication, and sustainable productivity. J. Exp. Bot. 58:1231–1244.

    Article  CAS  PubMed  Google Scholar 

  • Elgin, J.H. 1985. The alfalfa anthracnose resistance success story. In: Proceedings of XV International Grassland Congress, 24–31 August 1985, Kyoto, Japan. Japanese Soc. Grassl. Sci. Natl. Grassl. Res. Inst., Nishi-nasumo, Tochigi-ken, Japan, pp. 237–238.

    Google Scholar 

  • Gates, R.N., Hill, G.M. and Burton, G.W. 1999. Response of selected and unselected bahiagrass populations to defoliation. Agron. J. 91:787–795.

    Article  Google Scholar 

  • Hides, D.H. 1979. Winter hardiness in Lolium multiflorum Lam. III. Selection for improved cold tolerance and its effect on agronomic performance. Grass Forage Sci. 34:119–124.

    Article  Google Scholar 

  • Humphreys, M.O. 1989. Water-soluble carbohydrates in perennial ryegrass breeding. I. Genetic differences among cultivars and hybrid progeny grown as spaced plants. Grass Forage Sci. 44:231–236.

    Article  Google Scholar 

  • Humphreys, M.O. 1999. The contribution of conventional plant breeding to forage crop improvement. In; J.G. Buchanan-Smith et al. (eds.) Proc XVIII Intl Grassl Congr, 8–19 June 1997, Winnipeg and Saskatoon, Canada. Assoc. Mgmt. Centre, Calgary, AB, pp. 71–78.

    Google Scholar 

  • Humphreys, M.O. 2005. Genetic improvement of forage crops – past, present, and future. J. Agric. Sci. Camb. 143:441–448.

    Article  Google Scholar 

  • Jensen, K.B., Peel, M.D., Waldron. B.L., et al. 2005. Persistence after three cycles of selection in New-Hy RS-wheatgrass (Elymus hoffmannii K.B. Jensen & Asay) at increased salinity levels. Crop Sci. 45:1717–1720.

    Article  Google Scholar 

  • Johnson, D.A. and Asay, K.H. 1993. Viewpoint: Selection for improved drought response in cool-season grasses. J. Range Mgmt. 46:194–202.

    Article  Google Scholar 

  • Jones, T.A. and Nielson, D.C. 1999. Intrapopulation genetic variation for seed dormancy in Indian ricegrass. J. Range Mgmt. 52:646–650.

    Article  Google Scholar 

  • Lamb, J.F.S., Sheaffer, C.C., Rhodes, L.H., et al. 2006. Five decades of alfalfa cultivar improvement: impact on forage yield, persistence, and nutritive value. Crop Sci. 46:902–909.

    Article  Google Scholar 

  • Marten, G.C. 1989. Breeding forage grasses to maximize animal performance. In: D.A. Sleper, et al. (eds.) Contributions from breeding forage and turf grasses. Crop Science Society of America Spec. Publ. 15, Madison, WI, pp. 71–104.

    Google Scholar 

  • McDonald, M.F., Anwar, M. and Keogh, R.G. 1994. Reproductive performance of ewes after grazing on G27 red clover, a low formononetin selection in cultivar Pawera. Proc. NZ Soc. Anim. Prod. 54:231–234.

    Google Scholar 

  • Moseley, G. and Baker, D.H. 1991. The efficacy of a high magnesium grass cultivar in controlling hypomagnasaemia in grazing animals. Grass Forage Sci. 46:375–380.

    Article  CAS  Google Scholar 

  • Narasimhamoorthy, B., Bouton, J.H., Olsen, K.M. and Sledge, M.K. 2007. Quantitative trait loci and candidate gene mapping of aluminum tolerance in diploid alfalfa. Theor. Appl. Genet. 114:901–913.

    Article  CAS  PubMed  Google Scholar 

  • Paynel, F., Lesuffleur, F., Bigot, J., Diquélou, S. and Cliquet, J-B. 2008. A study of 15N transfer between legumes and grasses. Agron. Sustain. Dev. 28:281–290.

    Article  CAS  Google Scholar 

  • Pedersen, J.F. and Sleper, D.A. 1988. Considerations in breeding endophyte-free tall fescue forage cultivars. J. Prod. Agric. 1:127–133.

    Google Scholar 

  • Poethig, R.S. 2003. Phase change and the regulation of developmental timing in plants. Science 301:334–336.

    Article  CAS  PubMed  Google Scholar 

  • Rapacz, M., Gasior, D., Zwierzykowski, Z., et al. 2004. Changes in cold tolerance and the mechanisms of acclimation of photosystem II to cold hardening generated by anther culture of Festuca pratensis * Lolium multiflorum cultivars. New Phytol. 162:105–114.

    Article  CAS  Google Scholar 

  • Smith, K.F. and Casler, M.D. 2004. The use of spatially adjusted herbage yields during the analysis of perennial forage grass trials across locations. Crop Sci. 44:56–62.

    Article  Google Scholar 

  • Smith, R.R. and Kretschmer, A.E. Jr. 1989. Breeding and genetics of legume persistence. In: G.C. Marten, et al. (eds.) Persistence of forage legumes. American Society of Agronomy, Madison, WI, pp. 541–552.

    Google Scholar 

  • Thomas, H.M., Morgan, W.G. and Humphreys, M.O. 2003. Designing grasses with a future – combining the attributes of Lolium and Festuca. Euphytica 133:19–26.

    Article  Google Scholar 

  • Tilley, J.M.A. and Terry, R.A. 1963. A two-stage technique for in vitro digestion of forage crops. J. Br. Grassl. Soc. 18:104–111.

    Article  CAS  Google Scholar 

  • Walters, R.J.K. 1984. D-value: the significance of small differences on animal performance. In: The grass ley today. Proceedings of 18th NIAB Crop Conference, 12–13 December 1984, Cambridge, UK. Natl. Inst. Agric. Bot. Camb, pp. 60–68.

    Google Scholar 

  • Wilkins, P.W. and Humphreys, M.O. 2003. Progress in breeding perennial forage grasses for temperature agriculture. J. Agric. Sci. Camb. 140:129–150.

    Article  CAS  Google Scholar 

  • Woodfield, D.R. and Caradus, J.R. 1994. Genetic improvement in white clover representing six decades of plant breeding. Crop Sci. 34:1205–1213.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael D. Casler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Casler, M.D., van Santen, E. (2010). Breeding Objectives in Forages. In: Boller, B., Posselt, U.K., Veronesi, F. (eds) Fodder Crops and Amenity Grasses. Handbook of Plant Breeding, vol 5. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0760-8_5

Download citation

Publish with us

Policies and ethics