Advertisement

Alfalfa

  • Fabio Veronesi
  • E. Charles Brummer
  • Christian Huyghe
Part of the Handbook of Plant Breeding book series (HBPB, volume 5)

Abstract

Cultivated alfalfa (Medicago sativa L., 2n = 4x = 32), often called “Queen of the forages” (Barnes et al. 1988), is a tetraploid perennial, open pollinated legume with polysomic inheritance. Native to the Middle East, alfalfa belongs to the M. sativa–falcata complex, where interfertile diploid and tetraploid forms coexist (Quiros and Bauchan, 1988). In modern agricultural production systems, alfalfa can be harvested for up to 4–5 years before the stand deteriorates, although rotation to other crops after 2–3 years is common. In northern areas, seeding can be performed in spring or early autumn; autumn seedings are most common in southern production regions. Recommended seeding rates are very variable across locations and soil types, typically from 10 to 25 kg ha–1 in pure stand.

Keywords

Quantitative Trait Locus Simple Sequence Repeat Marker Seed Yield Single Nucleotide Polymorphism Genome Selection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Alarcón-Zúñiga, B., Brummer, E.C., Scott, P., Moore, K. and Luth D. 2004. Quantitative Trait Loci Mapping of Winter Hardiness Metabolites in Autotetraploid Alfalfa. In: A. Hopkins, Z. Y. Wang, R. Mian, M. Sledge, and R.E. Barker (eds.), Molecular breeding of forage and turf. Kluwer, Dordrecht, The Netherlands, pp. 97–104.Google Scholar
  2. Ameline-Torregrosa, C., Cazaux, M., Danesh, D., Chardon, F., Cannon, S.B., Esquerré-Tugayé, M.T., Dumas, B., Young, N.D., Samac, D.A., Huguet, T. and Jacquet C. 2008. Genetic dissection of resistance to anthracnose and powdery mildew in Medicago truncatula. Mol. Plant Microbe. Interact. 21:61–69.PubMedGoogle Scholar
  3. Andueza, D., Munoz, F. and Garrido, A. 2001. The prediction of the nutritive value of Mediterranean alfalfa forage by NIRS. In: I. Delgado and J. Lloveras (eds.), Quality in Lucerne and medics for animal production. Proceedings of the XIV Eucarpia medicago spp- Group Meeting, Zaragoza and Lleida, Spain, September 12–15 2001. Options Méditerranéennes. Série A, Séminaires Méditerranéens 45:199–203.Google Scholar
  4. Annichiarico, P. 1999. Variety x location interaction and its implications on breeding of lucerne: a case study. Results of the experimentation and cultivation of lucerne in Albania. In: F. Veronesi, and D. Rosellini (eds.), Lucerne and medics for the XXI century. Proceedings of the XIII Eucarpia Medicago spp. Group Meeting. Perugia, Italy, September 13–16, 1999, pp. 35–43.Google Scholar
  5. Annichiarico, P. and Piano, E. 2005. The use of artificial environments to reproduce and exploit genotype × location interaction for lucerne in northern Italy. Theor. Appl. Genet. 110:217–227.Google Scholar
  6. Ariss, J.J. and Vandemark, G.J. 2007. Assessment of genetic diversity among nondormant and semidormant alfalfa populations using sequence-related amplified polymorphisms. Crop Sci. 47:2274–2284.Google Scholar
  7. Armour, D.J., Mackie, J.M., Musial, J.M. and Irwin, J.A.G. 2008. Transfer of anthracnose resistance and pod coiling traits from Medicago arborea to M. sativa by sexual reproduction. Theor. Appl. Genet. 117:149–156.PubMedGoogle Scholar
  8. Aziz, N., Paiva ,N.L., May, G.D. and Dixon, R.A. 2005. Transcriptome analysis of alfalfa gladular trichomes. Planta. 221:28–38.PubMedGoogle Scholar
  9. Babinec, J., Kozova, Z. and Zapletalova E. 2003. The characteristics of some lucerne (Medicago sativa L.) varieties. In: J. Nedelnik, and B. Cagas (eds.), Biodiversity and genetic resources as the bases for future breeding. Proceedings of the XXV Eucarpia Fodder Crops and Amenity Grasses Section and XV Eucarpia Medicago spp. Group Meeting. Brno, Czech republic, September 1–4 2003. Czech J. Genet. Breed. 39(Special Issue): 188–193.Google Scholar
  10. Baquerizo-Audiot, E., Desplanque, B., Prosperi, J.M. and Santoni, S. 2001. Characterization of microsatellite loci in the diploid legume Medicago truncatula (barrel medic). Mol. Ecol. Notes. 1:1–3.Google Scholar
  11. Barcaccia, G., Albertini, E., Tavoletti, S., Falcinelli, M. and Veronesi F. 1999. AFLP Fingerprinting in Medicago spp.: Its Development and Application in Linkage Mapping. Plant Breed. 118:335–340.Google Scholar
  12. Barcaccia G., Tavoletti S., Mariani A., Veronesi F. 2003. Occurence, inheritance and use of reproductive mutants in alfalfa. Euphytica 133:37–56.Google Scholar
  13. Barnes, D.K., Bingham, E.T., Murphy, R.P., Hunt, O.J., Beard, D.F., Skrdla, W.H. and Teuber, L.R. 1977. Alfalfa germplasm in the United States: Genetic vulnerability, use, improvement, and main-tenance. Tech. Bull. 1571. USDA-ARS, U.S. Gov. Print. Office, Washington, DC.Google Scholar
  14. Barnes, D.K., Goplen, R.P. and Baylor, J.E. 1988. Highlights in US and Canada. In: A.A. Hanson (ed.), Alfalfa and alfalfa improvement. Agronomy: n. 29. ASA, CSSA, SSSA Publishers, Madison, Wisconsin, USA, pp. 1–23.Google Scholar
  15. Bernardo, R. 2008. Molecular markers and selection for complex traits in plants: Learning from the last 20 years. Crop Sci. 48:1649–1664.Google Scholar
  16. Bernardo, R. and Yu, J. 2007. Prospects for genomewide selection for quantitative traits in maize. Crop Sci. 47:1082–1090.Google Scholar
  17. Bhandari, H.S., Pierce, C.A., Murray, L.W. and Ray I.M. 2007. Combining abilities and heterosis for forage yield among high-yielding accessions of the alfalfa core collection. Crop Sci. 47:665–673.Google Scholar
  18. Bingham, E.T. 1980. Maximizing heterozygosity in autotetraplods. In: W.H. Lewis (ed.), Polyploidy. Biological Relevance. Plenum Press, New York and London, pp. 471–489.Google Scholar
  19. Bingham, E.T. 2005. Medicago arborea project at University of Wisconsin. Medicago Genet Rep 5:1–7. Available on-line at http://www.medicago-reports.org Accessed 14 January 2008.
  20. Bingham, E.T. and McCoy, T.J. 1979. Cultivated alfalfa at the diploid level: origin, reproductive stability and yield of seed and forage. Crop Sci. 19:97–100.Google Scholar
  21. Bingham, E.T., Groose, R.W., Woodfield, D.R. and Kidwell K.K. 1994. Complementary gene interaction in alfalfa are greater in autotetraploids than in diploids. Crop Sci. 34:823–829.Google Scholar
  22. Bolanos-Aguilar, E.D. 2001. Study of physiology and genetics of seed production in lucerne. Search for selection criteria (in French, original title : Etude physiologique et génétique de la production grainière chez la luzerne. Recherche de critères de sélection). PhD Thesis, University of Rennes, France, 130 pp.Google Scholar
  23. Bolanos-Aguilar, E.D., Huyghe, C., Djukic, D., Julier, B. and Ecalle, C. 2000. Genetic inheritance of alfalfa seed yield and its components. Plant Breed. 120:67–72.Google Scholar
  24. Bolanos-Aguilar, E.D., Huyghe, C., Ecalle, C., Hacquet, J. and Julier B. 2002. Effect of variety and environment on seed yield in alfalfa (Medicago sativa L.). Crop Sci. 42:45–50.PubMedGoogle Scholar
  25. Bolton, J.L. 1948. A study of combining ability in alfalfa in relation to certain methods of selection. Sci. Agric. 28:97–126.Google Scholar
  26. Bournoville, R., Julier, B., Landre, B., Ecalle C. and Carré S. 2001. Diallel analysis of pea aphid resistance in alfalfa seedlings. Proceedings of the XIV Eucarpia Medicago spp. Group Meeting, Zaragoza and Lleida, Spain, 12–15 September 2001. Options Méditerranéennes. Série A, Séminaires Méditerranéens 45:77–80Google Scholar
  27. Bouton, J.H. 2001. Alfalfa. In: Arnaldo Machado Camargo Filho ed. Grassland Ecosystems: an Outlook into the 21st Century. Proceeding of the XIX Grassland Congress, Sao Paulo, Brasil, 11–21 February 2001. Brazilian Society of Animal Husbandry, 545–547.Google Scholar
  28. Bouton, J.H. 2007. The economic benefits of forage improvement in the United States. Euphytica. 154:263–270.Google Scholar
  29. Bouton, J.H. and Smith S.R. Jr. 1998. Standard test to characterize alfalfa cultivar tolerance to intensive grazing with continuous stocking. Page A-8. In: Standard tests to characterize alfalfa cultivars. 3rd ed. [online]. Available at http://www.naaic.org/stdtests/Grazing.html Accessed 17 May 2006; verified 17 May 2006. North American Alfalfa Improvement Conference, Beltsville, MD.
  30. Bouton, J.H., Smith, S.R. Jr., Wood, D.T., Hoveland, C.S. and Brummer E.C. 1991. Registration of ‘Alfagraze’ alfalfa. Crop Sci. 31:479.Google Scholar
  31. Brouwer, D.J. and Osborn, T.C. 1997. Identification of RFLP Markers Linked to the Unifoliate Leaf, Cauliflower Head Mutation in Alfalfa. J. Hered. 88:150–152.Google Scholar
  32. Brouwer, D.J. and Osborn, T.C. 1999. A Molecular Marker Linkage Map of Tetraploid Alfalfa (Medicago sativa L.). Theor. Appl. Genet. 99:1194–1200.Google Scholar
  33. Brouwer, D.J., Duke, S.H. and Osborn, T.C. 2000. Mapping Genetic Genetic Factors Associated with Winter Hardiness, Fall Growth, and Freezing Injury in Autotetraploid Alfalfa. Crop Sci. 40:1387–1396.Google Scholar
  34. Brummer, E.C., Bouton, J.H. and Kochert G. 1991. RFLP variation in diploid and tetraploid alfalfa. Theor. Appl. Gen. 83:89–96.Google Scholar
  35. Brummer, E.C., Bouton, J.H. and Kochert G. 1993. Development of an RFLP map in diploid alfalfa. Theor. Appl. Genet. 86:329–332.Google Scholar
  36. Brummer, E.C. 1999. Capturing heterosis in forage crop cultivar development. Crop Sci. 33:943–954.Google Scholar
  37. Brummer, E.C., Shah, M.M. and Luth D. 2000. Re-examining the relationship between fall dormancy and winter hardiness in alfalfa. Crop Sci. 40:971–977.Google Scholar
  38. Brummer, E.C., Bouton, J.H., Sledge, M. and Kochert, G. 2001. Molecular mapping in alfalfa and related species. In: I.K. Vasil, and R. Phillips (eds.), DNA-based markers in plants. Kluwer, Dordrecht, pp. 169–180.Google Scholar
  39. Brummer, E.C. 2004. Genomics research in alfalfa. In: R. Wilson, T. Stalker, and E.C. Brummer (eds.), Legume genomics. AOCS Press. Champaign, IL, pp. 110–142.Google Scholar
  40. Brummer, E.C. 2005. Thoughts on breeding for increased forage yield. In: F.P. O’Mara, R.J. Wilkins, L. ‘t Mannetje, D.K. Lovett, P.A.M. Rogers, T.M. and Boland (eds.), XX International grassland congress: offered papers. Wageningen Academic Publishers, Wageningen, The Netherlands, p. 63.Google Scholar
  41. Busbice, T.H. and Wilsie, C.P. 1966. Inbreeding depression and heterosis in autotetraploids with application to Medicago sativa L. Euphytica. 15:52–67.Google Scholar
  42. Carelli, M., Gnocchi, G. and Scotti, C. 2009. Alfalfa germplasm from a Sahara oasis: characterisation by means of bio-agronomic traits and SSR markers. Plant Breed. (in press)Google Scholar
  43. Carnahan, H.L. 1960. Some theoretical considerations of the consequences of multiple alleles in relation to inbreeding and testing procedures in autopolyploids. In: Rept 17th Nat. Alfalfa Improvement Conference.Google Scholar
  44. Casler, M.D. and Brummer, E.C. 2008. Theoretical expected genetic gains for among-and-within-family selection methods in perennial forage crops. Crop Sci. 48:890–902.Google Scholar
  45. Castonguay, Y., Laberge, S., Brummer, E.C. and Volenec, J.J. 2006. Alfalfa winter hardiness: A research retrospective and integrated perspective. Adv. Agron. 90:203–265.Google Scholar
  46. Castonguay, Y., Michaud, R., Nadeau, P. and Bertrand, A. 2009. An indoor screening method for improvement of freezing tolerance in alfalfa. Crop Sci. 49:809–818.Google Scholar
  47. Charrier, X., Emile, J.C. and Guy, P. 1993. Recherche de génotypes de luzerne adaptés au pâturage. Fourrages. 135:507–510.Google Scholar
  48. Chase, S.S. 1964. Analytic breeding of amphypolyploid plant varieties. Crop Sci. 4:334–337.Google Scholar
  49. Chen, D., Liang, M.X., DeWald, D., Weimer, B., Peel, M.D., Bugbee, B., Michaelson, J., Davis, E. and Wu, Y. 2008. Identification of dehydration responsive genes from two non-nodulated alfalfa cultivars using Medicago truncatula microarrays. Acta Physiol. Plant. 30:183–199.Google Scholar
  50. Chloupek, O. and Skácel, M. 1999. Field selection for root system size of Lucerne. In: F. Veronesi, and D. Rosellini (eds.), Lucerne and medics for the XXI century. Proceedings of the XIII Eucarpia Medicago spp. Group Meeting. Perugia, Italy, September 13–16, 1999, pp. 100–106.Google Scholar
  51. Choi, H.K., Kim, D., Uhm, T., Limpens, E., Lim, H., Mun, J.H., Kalo, P., Penmetsa, R.V., Seres, A., Kulikova, O., Roe, B.A., Bisseling, T., Kiss, G.B. and Cook, D.R. 2004. A sequence-based genetic map of Medicago truncatula and comparison of marker colinearity with M. sativa. Genetics. 166:1463–1502.PubMedGoogle Scholar
  52. Corsi, G., dal Re, L., Laffi, G. and Lagibue, M. 2001. Field response and quality evaluation of alfalfa varieties for dehydrated forage production. In: I. Delgado, and J. Lloveras (eds.), Quality in Lucerne and medics for animal production. Proceedings of the XIV Eucarpia medicago spp- Group Meeting, Zaragoza and Lleida, Spain, September 12–15, 2001. Options Méditerranéennes. Série A, Séminaires Méditerranéens. 45:225–229.Google Scholar
  53. Crochemore, M.L., Huyghe, C., Kerlan, M.C., Durand, F. and Julier, B. 1996. Partitioning and Distribution of RAPD Variation in a Set of Populations of the Medicago sativa Complex. Agronomie. 16:421–432.Google Scholar
  54. Deavours, B.E. and Dixon, R.A. 2005. Metabolic engineering of isoflavonoid biosynthesis in alfalfa. Plant Physiol. 138:2245–2259.PubMedGoogle Scholar
  55. Delgado Enguita, I. 1989. Estudio de la variabilidad de las mielgas aragonesas (Medicago sativa L.) en áreas de precipitation anual inferior a 600 mm. Tesis Doctoral Universidad Politécnica Madrid, Spain. p. 168.Google Scholar
  56. Delgado, I., Andueza, D. and Munoz, F. 2003. Forage yield and persistence of lucerne cultivars in two harvest frequencies. In: J. Nedelnik, and B. Cagas (eds.), Biodiversity and genetic resources as the bases for future breeding. Proceedings of the XXV Eucarpia Fodder Crops and Amenity Grasses Section and XV Eucarpia Medicago spp. Group Meeting, Brno, Czech republic, September 1–4, 2003. Czech J. Genet. Breed. 39(Special Issue): 278–280.Google Scholar
  57. Demarly, Y. 1963. Genetique des tetraploids et amelioration des plantes. Ann. Amélior. Plantes. 13:307–400.Google Scholar
  58. Demarly, Y. 1979. The concept of linkat. In:A.C. Zeven ,A.M. van Harten (eds.), Proceedings Conference Broadening Genetic Base of Crops. Pudoc. Wageningen, The Netherlands, 257–265.Google Scholar
  59. De Serres, O. 1600. Théâtre d’Agriculture et Ménage des Champs. 1042 pp.Google Scholar
  60. Dudley, J.W. 1964. A genetic evaluation ofo methods of utilizing heterozygosis and dominance in autotetraploids. Crop Sci. 4:410–413.Google Scholar
  61. Dunbier, M.W. 1974. The use of haploid-derived autotetraploids to study maximum heterozygosity in alfalfa. Ph.D. Thesis, University of Wisconsin, USA.Google Scholar
  62. Echt, C.S., Kidwell, K.K., Knapp, S.J., Osborn, T.C. and McCoy, T.J. 1994. Linkage Mapping in Diploid Alfalfa (Medicago sativa L.). Genome. 37:61–71.PubMedGoogle Scholar
  63. Endre, G., Kaló, P., Kevei, Z., Kiss, P., Mihacea, S., Szakál, B., Kereszt, A. and Kiss, G.B. 2002. Genetic mapping of the non-nodulation phenotype of the mutant MN-1008 in tetraploid alfalfa Medicago sativa. Mol. Gen. Genet. 266:1012–1019.Google Scholar
  64. Eujayl, I., Sledge, M.K., Wang, L., May, G.D., Chekhovskiy, K., Zwonitzer, J.C. and Mian, M.A.R. 2004. Medicago truncatula EST-SSRs Reveal Cross-Species Genetic Markers for Medicago spp. Theor. Appl. Genet. 108:414–422.PubMedGoogle Scholar
  65. Fehr, W.R. 1987. Principles of Cultivar Development. Vol. 1. Theory and Technique. Macmillan, New York.Google Scholar
  66. Flajoulot, S., Ronfort, J., Baudoin, P., Barre, P., Huguet, T., Huyghe, C. and Julier, B. 2005. Genetic diversity among alfalfa (Medicago sativa) cultivars coming from a breeding program, using SSR markers. Theor. Appl. Genet. 111:1420–1429.PubMedGoogle Scholar
  67. Galitski, T., Saldanha, A.J., Styles, C.A., Lander, E.S. and Fink, G.R. 1999. Ploidy regulation of gene expression. Science. 285:251–254.PubMedGoogle Scholar
  68. Gen, H.Z., Wu, Y.F. and Cao, Z.Z. 1995. Chinese alfalfa. China Agriculture Press, Beijing, pp. 1–6 (in Chinese).Google Scholar
  69. Ghérardi, M., Mangin, B., Goffinet, B., Bonnet, D. and Huguet, T. 1998. A Method to Measure Genetic Distance between Allogamous Populations of Alfalfa (Medicago sativa) Using Rapd Molecular Markers, Theor. Appl. Genet. 96:406–412.Google Scholar
  70. Gilbert, M. 1789. Traité sur les prairies artificielles. Société Royale d’Agriculture, Paris, 310 pp.Google Scholar
  71. Gillies, C.B. 1972. Pachytene chromosomes of perennial species. II Species closely related to M. sativa. Heredity. 72:277–288.Google Scholar
  72. Greene, S.L., Kisha, T.J. and Dzyubenko, N.I. 2008. Conserving alfalfa wild relatives: Is past introgression with Russian varieties evident today? Crop Sci. 48:1853–1864.Google Scholar
  73. Groose, R.W., Kojis, W.P. and Bingham, E.T. 1988. Combining ability differences between isogenic diploid and tetraploid alfalfa. Crop Sci. 28:7–10.Google Scholar
  74. Groose, R.W., Talbert, L.E., Kojis, W.R. and Bingham, E.T. 1989. Progressive heterosis in autotetraploid alfalfa: studies using two types of inbreds. Crop Sci. 29:1173–1177.Google Scholar
  75. Guines, F., Julier, B., Ecalle, C. and Huyghe, C. 2002a. Genetic control of quality traits of Lucerne (Medicago sativa L.). Aust. J. Agr. Res. 53:401–407.Google Scholar
  76. Guines, F., Julier, B., Ecalle, C. and Huyghe, C. 2002b. Among and within-cultivar variability for histological traits of lucerne (Medicago sativa L.) stems. Euphytica. 130:293–301.Google Scholar
  77. Hackett, C.A., Milne, I., Bradshaw, J.E. and Luo, Z. 2007. Tetraploid Map for Windows: Linkage map construction and QTL mapping in autotetraploid species. J. Hered. 98:727–729.PubMedGoogle Scholar
  78. Hauptvogel, P. 1999. Possibility of genetic improvement of tolerance to soil acidity and aluminium toxicity. In: F. Veronesi,and D. Rosellini (eds.), Lucerne and medics for the XXI century. Proceedings of the XIII Eucarpia Medicago spp. Group Meeting. Perugia, Italy, September 13-16, 1999, pp. 90–99.Google Scholar
  79. Hefny, M.M. and Dolinski, R. 1999. Response tovarieties (Medicago sativa L.) to saline irrigation. In: F. Veronesi, and D. Rosellini (eds.), Lucerne and medics for the XXI century. Proceedings of the XIII Eucarpia Medicago spp. Group Meeting. Perugia, Italy, September 13–16, 1999, pp. 52–59.Google Scholar
  80. Hendry, G.W. 1923. Alfalfa in history. J. Am. Soc. Agron. 15:171–176.Google Scholar
  81. Herrmann, D., Flajoulot, S., Barre, P., Huyghe, C., Ronfort, J. and Julier, B. 2009. Comparison of morphological traits and SSR to analyse diversity and structure of alfalfa cultivars. BMC Genet. (in revision).Google Scholar
  82. Hill, R.R. Jr. and Kalton, R.R. 1976. Current philosophies in breeding for yield. In: D.K. Barnes (ed.), Sec. Rep 25th Alfalfa Improvement Conference. Ithaca, NY, 13-15 July 1976. USDA SEA, Peoria, IL, p. 51.Google Scholar
  83. Hill, R.R. Jr., Shenk, J.S. and Barnes, R.F. 1988. Breeding for Yield and Quality. In: A.A. Hanson (ed.), Alfalfa and Alfalfa Improvement. Agronomy: n. 29. ASA, CSSA, SSSA Publishers, Madison, Wisconsin, USA, pp. 809–825.Google Scholar
  84. Holland, J.B. and Binham, E.T. 1994. Genetic improvement for yield and fertility of alfalfa cultivars representing different eras of breeding. Crop Sci. 34:953–957.Google Scholar
  85. Hu, B.Z., Liu, D., Hu, F.G., Zhang, A.Y. and Jiang, S.J. 2000. Random amplified polymorphic DNA study of local breeds in Chinese alfalfa. J. Plant Ecol. 24:697–701 (In Chinese with English abstract).Google Scholar
  86. Huyghe, C., Bolanos-Aguilar, E.D., Ecalle, C., Hacquet, J. and Julier, B. 1999. The seed weight per inflorescence as a selection criterion for seed weight in. In: F. Veronesi, and D. Rosellini (eds.), Lucerne and medics for the XXI century. Proceedings of the XIII Eucarpia Medicago spp. Group Meeting, Perugia, Italy, September 13-16, 1999, pp.107-113.Google Scholar
  87. Irwin, J.A.G., Aitken, K.S., Mackie, J.M. and Musial, J.M. 2006. Genetic improvement of lucerne for anthracnose (Colletotrichum trifolii) resistance. Aust. Plant Pathol. 35:573–579.Google Scholar
  88. Ivanov, A.I. 1977. History, origin and evolution of the genus Medicago, subgenus Falcago. Bull Appl. Bot. Genet. Select. 59:3–40.Google Scholar
  89. Jenczewski, E., Prosperi, J.M. and Ronfort, J., 1999a. Differentiation between natural and cultivated populations of Medicago sativa (Leguminosae) from Spain: analysis with random amplified polymorphic DNA (RAPD) markers and comparison to allozymes. Mol. Ecol. 8:1317–1330.PubMedGoogle Scholar
  90. Jenczewski, E., Prosperi, J.M. and Ronfort, J. 1999b. Evidence for gene flow between wild and cultivated Medicago sativa (Leguminosae) based on allozyme markers and quantitative traits. Am. J. Bot. 86:677–687.PubMedGoogle Scholar
  91. Julier, B., Guy, P., Castillo-Acuna, C., Caubel, G., Ecalle, C., Esquibet, M., Furstoss, V., Huyghe, C., Lavaud, C., Porcheron, A., Pracros, P. and Raynal, G. 1996. Genetic variability for pest resistance and forage quality in perennial diploid and tetraploid lucerne populations (Medicago sativa L.). Euphytica. 91:241–250.Google Scholar
  92. Julier, B. and Huighe, C. 1998. Genetic variability of digestibility in lucerne: relationship with dry matter production and leaf proportion (in French, original title: Variabilité génétique pour la digestibilité de la luzerne: relation avec la production de matiére sèche et la proportion de feuilles). Fourrages. 154:261–268.Google Scholar
  93. Julier, B., Huyghe, C. and Ecalle, C. 2000. Within- and among-cultivar genetic variation in alfalfa: forage quality, morphology, and yield. Crop Sci. 40:365–369.Google Scholar
  94. Julier, B., Guines, F., Emile, J.C. and Huyghe, C. 2003a. Variation in protein degradability in dried forage legumes. Animal Res. 52:401–412.Google Scholar
  95. Julier, B., Flajoulot, S., Barre, P., Cardinet, G., Santoni, S., Huguet, T. and Huyghe, C. 2003b. Construction of two genetic linkage maps in cultivated tetraploid alfalfa (Medicago sativa) using microsatellite and AFLP markers. BMC Plant Biol. 3:9 Available at http://www.biomedcentral.com/1471-2229/3/9.
  96. Julier, B., Huguet, T., Chardon, F., Ayadi, R., Pierre, J.-B., Prosperi, J.-M., Barre, P. and Huyghe, C. 2007. Identification of quantitative trait loci influencing aerial morphogenesis in the model legume Medicago truncatula. Theor. Appl Genet. 114:1391–1406.PubMedGoogle Scholar
  97. Jung, H.G. and Lamb, J.F.S. 2006. Stem morphological and cell wall traits associated with divergent in vitro neutral detergent fiber digestibility in alfalfa clones. Crop Sci. 46:2054–2061.Google Scholar
  98. Kaló, P., Endre, G., Zimányi, L., Csanádi, G. and Kiss, G.B. 2000. Construction of an Improved Linkage Map of Diploid Alfalfa (Medicago sativa), Theor. Appl. Genet. 100:641–657.Google Scholar
  99. Kertikova, D. and Scotti, C. 1999. Fall dormancy in lucerne varieties and its relation to performance. In: F. Veronesi, and D. Rosellini (eds.), Lucerne and medics for the XXI century. Proceedings of the XIII Eucarpia Medicago spp. Group Meeting. Perugia, Italy, September 13-16, 1999, pp. 250-253.Google Scholar
  100. Kidwell, K.K. Austin, D.F. and Osborn, T.C. 1994a. RFLP Evaluation of Nine Medicago Accessions Representing the Original Germplasm Sources for North American Alfalfa Cultivars, Crop Sci. 34:230–236.Google Scholar
  101. Kidwell, K.K., Woodfield, D.R., Bingham, E.T. and Osborn, T.C. 1994b. Molecular Marker Diversity and Yield of Isogenic 2x and 4x Single-Crosses of Alfalfa, Crop Sci. 34:784–788.Google Scholar
  102. Kidwell, K.K., Hartweck, L.M., Yandell, B.S., Crump, P.M., Brummer, J.E., Moutray, J. and Osborn, T.C. 1999. Forage Yields of Alfalfa Populations Derived from Parents Selected on the Basis of Molecular Marker Diversity, Crop Sci. 39:223–227.Google Scholar
  103. Kimbeng, C.A. and Bingham, E.T. 1998. Population improvement in alfalfa: Fertility and S1 forage yield performance in original and improved populas. Crop Sci. 38:1509–1513.Google Scholar
  104. Kiss, G.B., Csanádi, G., Kálmán, K., Kaló, P. and ökrész, L. 1993. Construction of a Basic Genetic Map for Alfalfa Using RFLP, RAPD, Isozyme, and Morphological Markers. Mol. Gen. Genet. 238:129–137.PubMedGoogle Scholar
  105. Klinkowski, M. 1933. Lucerne: its ecological position and distribution in the World. Imperial bureau of plant genetics: Herbage plants, Bull 12, Aberystwyth, Wales.Google Scholar
  106. Lamb, J.F.S., Sheaffer, C.C., Rhodes, L.H., Sulc, R.M., Undersander, D.J. and Brummer, E.C. 2006. Five decades of alfalfa cultivar improvement: impact on forage yield, persistence, and nutritive value. Crop Sci. 46:902, 909.Google Scholar
  107. Lenssen, A.W., Sorensen, E.L. and Posler, G.L. 1990. Forage quality of genetically diverse alfalfa germplasm at four phenological growth stages. Euphytica. 51:53–57.Google Scholar
  108. Lesins, K. and Lesins, I. 1979. Genus Medicago (Leguminosae). A taxogenetic study. Junk, The Hague, The Netherlands.Google Scholar
  109. Li, X. and Brummer, C. 2009. Inbreeding Depression for Fertility and Biomass in Advanced Generations on Inter– and intrasubspecific Hybrids of Tetraploid Alfalfa. Crop Sci. 49:13–19.Google Scholar
  110. Lloveras, J., Lopez, A., Betbese, J.A., Baga, M. and Lopez, A. 1998. Evaluacion de variedades de en los regadios del valle del Ebro: analisis de las differencias varietales. Pastos. XXVIII(1): 37–56.Google Scholar
  111. Mackie, J.M., Musial, J.M., Armour, D.J., Phan, H.T.T., Ellwood, S.E., Aitken, K.S. and Irwin ,J.A.G. 2007. Identification of QTL for reaction to three races of Colletotrichum trifolii and further analysis of inheritance of resistance in autotetraploid lucerne. Theor. Appl. Genet. 114:1417–1426.PubMedGoogle Scholar
  112. Madrill, C.M., Pierce, C.A. and Ray, I.M. 2008. Heterosis among hybrids derived from genetically improved and unimproved alfalfa germplasm. Crop Sci. 48:1787–1792.Google Scholar
  113. Maureira, I.J., Ortega, F., Campos, H. and Osborn, T.C. 2004. Population structure and combining ability of diverse Medicago sativa germplasms. Theor. Appl. Genet. 109:775–782.PubMedGoogle Scholar
  114. Maureira-Butler, I.J., Udall, J.A. and Osborn, T.C. 2007. Analyses of a multi-parent population derived from two diverse alfalfa germplasms: testcross evaluations and phenotype-DNA associations. Theor. Appl. Genet. 115:859–867.PubMedGoogle Scholar
  115. McCaslin, M. and Woodward, T. 1995. Winter survival. In: C.C. Fox et al. (ed.), Standard tests to characterize alfalfa cultivars. 3rd ed. North American Alfalfa Improvement Conf., Beltsville, MD, p. A–7.Google Scholar
  116. McCoy, T.J. and Bingham, E.T. 1988. Cytology and cytogenetics of alfalfa. In: Hanson, A.A. (ed.), Alfalfa and alfalfa improvement. Agronomy n. 29 ASA, CSSA, SSSA Publishers, Madison, Wisconsin, USA, pp. 737–776.Google Scholar
  117. Mendiburu A.O. 1971. Significance of 2n gametes in potato breeding and genetics. PhD Thesis, University od Wisconsin.Google Scholar
  118. Michaud, R., Lehman, W.F. and Rumbaugh, M.D. 1988. World Distribution and Historical development. In: Hanson A.A. (ed.), Alfalfa and alfalfa Improvement. Agronomy: n. 29. ASA, CSSA, SSSA Publishers, Madison, Wisconsin, USA, pp. 25–92.Google Scholar
  119. Mizukami, Y., Kato, M., Takamizo, T., Kanbe, M., Inami, S. and Hattori, K. 2006. Interspecific hybrids between Medicago sativa L. and annual Medicago containing alfalfa weevil resistance. Plant Cell Tissue Organ Cult. 84:80–89.Google Scholar
  120. Mok, D.W.S. and Peloquin, S.J. 1975. Three mechanisms of 2n pollen formation in diploid potatoes. Can. J. Genet. Cytol. 25:390–397.Google Scholar
  121. Montegano, B., Gensollen, V. and Lassalvy, S. 2002. Fall dormancy as a descriptor of Lucerne (Medicago sativa L.) varieties. 19th General Meeting of the European Grassland Federation. La Rochelle, France. pp. 452–453.Google Scholar
  122. Muller, M.H., Prosperi, J.M., Santoni, S. and Ronfort J. 2003. Inferences from mitochondrial DNA patterns on the domestication history of alfalfa (Medicago sativa). Mol. Ecol. 12:2187–2199.PubMedGoogle Scholar
  123. Muller, M.H., Poncet, C., Prosperi, J.M., Santoni, S. and Ronfort, J. 2005. Domestication history in the Medicago sativa species complex: inferences from nuclear sequence polymorphism. Mol. Ecol. 15:1589–1602.Google Scholar
  124. Musial, J.M., Basford, K.E. and Irwin, J.A.G. 2002. Analysis of Genetic Diversity within Australian Lucerne Cultivars and Implications for Future Genetic Improvement, Aust. J. Agric. Res. 53:629–636.Google Scholar
  125. Musial, J.M., Aitken, K.S., Mackie, J.M. and Irwin J.A.G. 2005. A genetic linkage map in autotetraploid lucerne adapted to northern Australia, and use of the map to identify DNA markers linked to resistance to Phytophthora medicaginis. Aust. J. Agric. Res. 56:333–344.Google Scholar
  126. Musial, J.M., Lowe, K.F., Mackie, J.M., Aitken, K.S. and Irwin, J.A.G. 2006. DNA markers linked to yield, yield components, and morphological traits in autotetraploid lucerne (Medicago sativa L.). Aust. J. Agric. Res. 57:801–810.Google Scholar
  127. Musial, J.M., Mackie, J.M., Armour, D.J., Phan, H.T.T., Ellwood, S.E., Aitken, K.S. and Irwin J.A.G. 2007. Identification of QTL for resistance and susceptibility to Stagonospora meliloti in autotetraploid lucerne. Theor. Appl. Genet. 114:1427–1435.PubMedGoogle Scholar
  128. Nagy, B. 2003. Breeding for persistence of (Medicago sativa L.) varieties. In: J. Nedelnik, and B. Cagas (eds.), Biodiversity and genetic resources as the bases for future breeding. Proceedings of the XXV Eucarpia Fodder Crops and Amenity Grasses Section and XV Eucarpia Medicago spp. Group Meeting, Brno, Czech republic, September 1–4 2003. Czech J. Genet. Breed. 39(Special Issue): 282–284.Google Scholar
  129. Narasimhamoorthy, B., Bouton, J.H., Olsen, K.M. and Sledge, M.K. 2007. Quantitative trait loci and candidate gene mapping of aluminum tolerance in diploid alfalfa. Theor. Appl. Genet. 114:901–913.PubMedGoogle Scholar
  130. Nenz, E., Pupilli, F., Damiani, F. and Arcioni, S. 1996. Somatic hybrid plants between the forage legumes Medicago sativa L and Medicago arborea L. Theor. Appl. Genet. 93:183–189.Google Scholar
  131. Odoardi, M., Tomasoni, C., Borrelli, L., Pintus, B. and Ursino, A. 2001. NIRS monitoring of quality parameters and digestibility of new lucerne cultivars in Northern Italy. In: I. Delgado,and J. Lloveras (eds.), Quality in Lucerne and medics for animal production. Proceedings of the XIV Eucarpia medicago spp- Group Meeting, Zaragoza and Lleida, Spain, September 12–15 2001. Options Méditerranéennes. Série A, Séminaires Méditerranéens 45:199–203.Google Scholar
  132. Pecetti, L. and Piano, E. 2005. Heritability of morphophysiological traits and inbreeding effects in grazing-type lucerne. Plant Breed. 124:176–179.Google Scholar
  133. Pecetti, L., Berardo, N., Odoardi, M. and Piano E. 2001. Forage quality components in grazing-type lucerne (Medicago sativa L. complex). J.Agron. Crop Sci. 187(3):145–152.Google Scholar
  134. Piano, E. and Veronesi, F. 1996. Plant breeding and varietal synthesis in forage grasses: actual situation and future perspectives [Miglioramento genetico e costituzione varietale nelle foraggere prative: stato attuale e linee evolutive]. Atti del Convegno “Attualitá e prospettive della foraggicoltura da prato e da pascolo”, Lodi, 22–24 maggio 1996, pp. 139–177.Google Scholar
  135. Piano, E., Valentini, P., Precetti, L. and Romani, M. 1996. Evaluation of lucerne germplasm collection in relation to traits conferring grazing tolerance. Euphytica. 89:279–288.Google Scholar
  136. Pierre, J.-B., Huguet, T., Barre, P., Huyghe, C. and Julier, B. 2008. Detection of QTLs for flowering date in three mapping populations of the model legume species Medicago truncatula. Theor. Appl. Genet. 117:609–620.PubMedGoogle Scholar
  137. Pilet-Nayel, M.L., Prospéri, J-M., Hamon, C., Lesné, A., Lecointe, R., Le Goff, I., Hervé, M., Geniot, G., Delalande, M., Huguet, T., Jacquet, C. and Baranger, A. 2009. AER1, a major gene conferring resistance to Aphanomyces euteiches in Medicago truncatula. Phytopath. 99:203–208.Google Scholar
  138. Porceddu, A., Albertini, E., Barcaccia, G., Marconi, G., Bertoli, F.B. and Veronesi, F. 2002. Development of S-SAP Markers Based on an Ltr-Like Sequence from Medicago sativa L. Mol. Genet. Genom. 267:107–114.Google Scholar
  139. Pupilli, F., Labombarda, P., Scotti, C. and Arcioni, S. 2000. RFLP Analysis Allows for the Identification of Alfalfa Ecotypes. Plant Breed. 119:271–276.Google Scholar
  140. Prosperi, J.M., Jenczewski, E., Angevain, M. and Ronfort, J. 2006. Morphologic and agronomic diversity of wild genetic resources of Medicago sativa L. collected in Spain. Genet. Resour. Crop Evol. 53:843–856.Google Scholar
  141. Quiros, C.F. and Morgan, K. 1981. Peroxidase and leucine-aminopeptidase in diploid Medicago species closely related to alfalfa: multiple gene loci, multiple allelism and linkage. Theor. Appl. Genet. 50:221–228.Google Scholar
  142. Quiros, C.F. and Bauchan, G.R. 1988. The genus Medicago and the origin of the Medicago sativa complex. In: A.A. Hanson (ed.), Alfalfa and Alfalfa Improvement. Agronomy n. 29. ASA, CSSA, SSSA Publishers, Madison, Wisconsin, USA, pp. 93–124.Google Scholar
  143. Ray, I.M., Townsend, M.S., Henning, J.A., Currier, C.G. and Melton, B.A. 2000. Registration of NM-9D11A-AN3 anthracnose resistant alfalfa germplasm. Crop Sci. 40:864–864.Google Scholar
  144. Riday, H. and Brummer, E.C. 2002a. Forage yield heterosis in alfalfa. Crop Sci. 42:713–723.Google Scholar
  145. Riday, H. and Brummer, E.C. 2002b. Heterosis of agronomic traits in alfalfa. Crop Sci. 42:1081–1087.Google Scholar
  146. Riday, H., Brummer, E.C., Campbell, T.A., Luth, D. and Cazcarro, P.M. 2003. Comparisons of genetic and morphological distance with heterosis between Medicago sativa subsp. sativa and subsp. falcata. Euphytica. 131:37–45.Google Scholar
  147. Riday H. and Brummer, E.C. 2005. Heterosis in a broad range of alfalfa germplasm. Crop Sci. 45:8–17.Google Scholar
  148. Ritland, K. 1996. Inferring the genetic basis of inbreeding depression in plants. Genome. 39:1–8.PubMedGoogle Scholar
  149. Robins, J.G., Bauchan, G.R. and Brummer, E.C. 2007a. Genetic mapping forage yield, plant height, and regrowth at multiple harvests in tetraploid alfalfa (Medicago sativa L.). Crop Sci. 47:11–16.Google Scholar
  150. Robins, J.G., Luth, D., Campbell, .T.A., Bauchan, G.R., He, C., Viands, D.R., Hansen, J.L. and Brummer,.E.C. 2007b. Mapping biomass production in tetraploid alfalfa (Medicago sativa L.). Crop Sci. 47:1–10.Google Scholar
  151. Robins, J.G. Viands, D.R. and Brummer, E.C. 2008. Genetic mapping of persistence in tetraploid alfalfa. Crop Sci. 48:1780–1786.Google Scholar
  152. Rosellini, D., Ferranti, F., Barone, P. and e Veronesi, F. 2003. Expression of female sterility in alfalfa (Medicago sativa L.). Sexual Plant Reprod. 15:271–279.Google Scholar
  153. Rotili P. and Zannone, L. 1975. Principaux aspects d’une methode de selection de la luzerne basée sur des dispositifs qui utilisent la concurrence entre le plantes. Ann. Amélior. Plantes. 25:29–49.Google Scholar
  154. Rotili, P. and Zannone, L. 1977. Quantitative analysis of fertility in Lucerne at different levels of selfing. Ann. Amélior. Plantes. 27:341–354.Google Scholar
  155. Rowe, D.E. and Hill Jr. R.R. 1985. Theoretical Improvement of Autotetraploid Crops: Interpopulation and Intrapopulation Selection. USDA-ARS Tech. Bull. 1689, 32 p.Google Scholar
  156. Rumbaugh, M.D., Caddel, J.L. and Rowe, D.E. 1988. Breeding and quantitative genetics. In: A.A. Hanson (ed.), Alfalfa and Alfalfa Improvement. Agronomy n. 29. ASA, CSSA, SSSA Publishers, Madison, Wisconsin, USA,pp. 777–808.Google Scholar
  157. Saidon, G., Michaud, R. and Stpierre, C.A. 1991. Breeding for root yield in alfalfa. Can. J. Plant. Sci. 71:727–235.Google Scholar
  158. Sakiroğlu, M. and Brummer, E.C. 2007. Little heterosis between alfalfa populations derived from the Midwestern and Southwestern United States. Crop Sci. 47:2364–2371.Google Scholar
  159. Sakiroğlu, M., Doyle, J.J. and Brummer, E.C. 2009a. Inferring population structure and genetic diversity of a broad range of wild diploid alfalfa (Medicago sativa L.) accessions using SSR markers. (In review).Google Scholar
  160. Sakiroğlu, M., Doyle, J.J. and Brummer, E.C. 2009b. The population genetic structure of diploid Medicago sativa L. germplasm. In: C. Huyghe (ed.), XXVIII Meeting of Eucarpia fodder crops and amenity grasses section. Springer, Berlin, (in press).Google Scholar
  161. Sakiroğlu, M., Moore, K.J. and Brummer, E.C. 2009c. Variation in biomass yield, cell wall components, and agronomic traits in a broad range of diploid alfalfa (Medicago sativa L.) accessions. Crop Sci. (submitted).Google Scholar
  162. Samac, D.A. and Temple, S.J. 2004. Development and utilization of transformation in Medicago species. In: G.H. Liang, D. Skinner (eds.), Genetically modified crops: their development, uses and risks. Haworth Press, Binghamton, NY, pp. 165–202.Google Scholar
  163. Scotti, C., Pupilli, F., Salvi, S. and Arcioni, S. 2000. Variation in Vigour and in RFLP-Estimated Heterozygosity by Selfing Tetraploid Alfalfa: New Perspectives for the Use of Selfing in Alfalfa Breeding, Theor. Appl. Genet. 101:120–125.Google Scholar
  164. Scotti, C. and Brummer, E.C. 2009. Creation of heterotic groups and hybrid varieties. In: C. Huyghe (ed.), XXVIII Meeting of Eucarpia Fodder Crops and Amenity Grasses Section. Springer, Berlin. (in press).Google Scholar
  165. Segovia-Lerma, A., Cantrell, R.G., Conway, J.M. and Ray, I.M. 2003. AFLP-based assessment of genetic diversity among nine alfalfa germplasms using bulk DNA templates. Genome. 46:51–58.PubMedGoogle Scholar
  166. Segovia-Lerma, A., Murray, L.W., Townsend, M.S. and Ray, I.M. 2004. Population-based diallel analyses among nine historically recognized alfalfa germplasms. Theor. Appl. Genet. 109:1568–1575.PubMedGoogle Scholar
  167. Sledge, M.K., Bouton, J.H., Dall’Agnoll, M., Parrott, W.A. and Kochert, G. 2002. Identification and Confirmation of Aluminum Tolerance QTL in Diploid Medicago sativa subsp. Coerulea. Crop Sci. 42:1121–1128.Google Scholar
  168. Sledge, M.K., Ray, I.M. and Jiang, G. 2005. An expressed sequence tag SSR map of tetraploid alfalfa (Medicago sativa L.). Theor. Appl. Genet. 111:980–992.Google Scholar
  169. Smith, D. 1961. Association of fall growth habit and winter survival in alfalfa. Can. J. Plant Sci. 41:224–251.Google Scholar
  170. Smith, S.R. Jr., and Bouton, J.H. 1993. Selection within alfalfa cultivars for persistence under continuous stocking. Crop Sci. 33:1321–1328.Google Scholar
  171. Smith, S.E., Guarino, L., Al-Doss, A. and Conta, D.M. 1995. Morphological and agronomic affinities among Middle Eastern alfalfas accessions from Oman and Yemen. Crop Sci. 35:1188–1194.Google Scholar
  172. Smith, S.R. Jr., Bouton, J.H., Singh, A. and McCaughey, W.P. 2000. Development and evaluation of grazing tolerant alfalfa cultivars: a review. Can. J. Plant Sci. 80:503–512.Google Scholar
  173. Sriwatanapongse, S. and Wilsie, C.P. 1968. Intra- and intervariety crosses of Medicago sativa L. and Medicago falcata L. Crop Sci. 8:465–466.Google Scholar
  174. Sun, P., Velde, M. and Gardner, D.B. 2004. Alfalfa hybrids having at least 75% hybridity. US Patent No. 6,774,280, issued 10 August 2004. Available on-line at http://patft.uspto.gov/ (verified 3 June 2009).
  175. Svirskis, A. 1997. Plant breeding: theories, achievements and problems. In: V. Ruzgas, E. Lemezis, M. Apanaviciene, A. Basiulis, J. Bilis (eds.), Proceedings of the international conference. Kedainiai, Lithuania, 14–16 July, 1997, pp. 165–172.Google Scholar
  176. Tavoletti, S., Veronesi, F. and Osborn, T.C. 1996a. RFLP Linkage Map of an Alfalfa Meiotic Mutant Based on an F1 Population. J. Hered. 87:167–170.Google Scholar
  177. Tavoletti, S., Bingham, E.T., Yandell, B.S., Veronesi, F. and Osborn, T.C. 1996b. Half Tetrad Analysis in Alfalfa Using Multiple Restriction Fragment Length Polymorphism in Alfalfa, Proc. Natl. Acad. Sci. USA. 93:10918–10922.PubMedGoogle Scholar
  178. Tavoletti, S., Pesaresi, P., Barcaccia, G., Albertini, E. and Veronesi, F. 2000. Mapping the Jp (Jumbo Pollen) Gene and QTLs Involved in Multinucleate Microspore Formation in Diploid Alfalfa. Theor. Appl. Genet. 101:372–378.Google Scholar
  179. Tecle, I.Y., Hansen, J.L., Pell, A.N. and Viands, D.R. 2008. Divergent phenotypic selection for alfalfa cell wall fractions and indirect response in digestibility. Can. J. Plant Sci. 88:891–898.Google Scholar
  180. Tecle, I.Y., Viands, D.R., Hansen, J.L. and Pell, A.N. 2006. Response from selection for pectin concentration and indirect response in digestibility of alfalfa. Crop Sci. 46:1081–1087.Google Scholar
  181. Tesfaye, M., Silverstein, K.A.T., Bucciarelli, B., Samac, D.A. and Vance, C.P. 2006. The Affymetrix Medicago GeneChip (R) array is applicable for transcript analysis of alfalfa (Medicago sativa). Funct. Plant Biol. 33:783–788.Google Scholar
  182. Teuber, L.R.,Taggard, K.L., Gibbs, L.K., McCaslin, M.H., Peterson, M.A. and Barnes, D.K. 1998. Fall Dormancy. In: Standard tests to characterize alfalfa cultivars. 3rd ed. (amended 1998). North American Alfalfa Improvement Conference, Beltsville, MDGoogle Scholar
  183. Torricelli, R., Mazza, L., Schiatti, F. and Veronesi, F. 2001. Quality evaluation of Medicago sativa materials belonging to the Italian ecotype “Romagnola”. In: I. Delgado, and J. Lloveras (eds.), Quality in lucerne and medics for animal production. Proceedings of the XIV Eucarpia Medicago spp. Group Meeting, Zaragoza and Lleida, Spain, 12–15 September 2001. CIHEAM, Zaragoza, Spain, Options méditerranéennes, série A, Séminaires Méditerranéens, Numéro. 45:67–71.Google Scholar
  184. Tysdal, H.M. and Kiesselbach, T.A. 1944. Hybrid alfalfa. J. Am. Soc. Agron. 26:649–667.Google Scholar
  185. Tysdal, H.M., Kiesselbach, T.A. and Westover, H.L. 1942. Alfalfa breeding. Res. Bull. Nebr. Agric. Exp. Sta. 124:46.Google Scholar
  186. Vailleau, F., Sartorel, E., Jardinaud, M.F., Chardon, F., Genin, S., Huguet, T., Gentzbittel, L. and Petitprez, M. 2007. Characterization of the interaction between the bacterial wilt pathogen Ralstonia solanacearum and the model legume plant Medicago truncatula. Mol. Plant-Microbe. Interact. 20:159–167PubMedGoogle Scholar
  187. Vandemark, G.J., Ariss, J.J., Bauchan, G.A., Larsen, R.C. and Huges, T.J. 2006. Estimating genetic relationships among historical sources of alfalfa germplasm and selected cultivars with sequence related amplified polymorphisms. Euphytica. 152:9–16.Google Scholar
  188. Veronesi, F. and Lorenzetti, F. 1983. Productivity and survival of alfalfa hybrid and inbred plants under competitive conditions. Crop Sci. 23:577–580.Google Scholar
  189. Veronesi, F., Mariani, A. and Bingham, E.T. 1986. Unreduced gametes in diploid Medicago and their importance in alfalfa breeding. Theor. Appl. Genet. 72:37–41.Google Scholar
  190. Veronesi, F., Huyghe, C. and Delgado, I. 2006. Lucerne breeding in Europe: results and research strategies for future developments. In: J. Lloveras, A. Gonzalez-Rodriguez, O. Vazquez-Yanez, J. Pineiro, O. Santamaria, L. Olea, M.J. Poblaciones (eds.), Sustainable grassland productivity. Proceedings ot the 21st General Meeting of the European Grassland Federation. Badajoz, Spain, 3–6 April 2006. Grassl. Sci. Eur. 11:232–242.Google Scholar
  191. Viands, D.R. and Teuber, L. 1985. Fall dormancy of alfalfa in transplanted versus direct seeded nurseries. Crop Sci. 24:567–569.Google Scholar
  192. Viands, D.R., Sun, P. and Barnes, D.K. 1988. Pollination control: mechanical and sterility. In: A.A. Hanson (ed.), Alfalfa and alfalfa improvement. Agronomy: n. 29. ASA, CSSA, SSSA Publishers, Madison, Wisconsin, USA, pp. 931–960.Google Scholar
  193. Wei, Z.W. 2004. DNA fingerprint of Medicago sativa variety genomes using SSR, ISSR and RAPD. Acta Pratac. Sci. 13:62–67 (in Chinese with English abstract).Google Scholar
  194. Weishaar, M.A., Brummer, E.C., Volenec, J.J., Moore, K.J. and Cunningham, S. 2005. Improving winter hardiness in nondormant alfalfa germplasm. Crop Sci. 45:60–65.Google Scholar
  195. Wiersma, D.W. 2001. Are hybrids the New Field Force in Alfalfa? Focus on Forages. 3(12):1–4.Google Scholar
  196. Woodfield, D.R., Bingham, E.T. 1995. Improvement in two-allele autotetraploid population of alfalfa explained by accumulation of favourable alleles. Crop Sci. 35:988–994.Google Scholar
  197. Woodfield, D.R. and Brummer, E.C. 2001. Integrating molecular techniques to maximise the genetic potential of forage legumes. In: G. Spangenberg ed. Proc. 2nd International Symposium Molecular Breeding of Forage Crops. Lorne and Hamilton, Victoria, Australia, November. 19–24, 2000. Kluwer, Dordrecht, The Netherlands, pp. 51–65.Google Scholar
  198. Yang, S.M., Gao, M.Q., Deshpande, S., Lin, S.P., Roe, B.A. and Zhu, H.Y. 2007. Genetic and physical localization of an anthracnose resistance gene in Medicago truncatula. Theor. Appl. Genet. 116:45–52.PubMedGoogle Scholar
  199. Yang, S.M., Gao, M.Q., Xu, C.W., Gao, J.C., Deshpande, S., Lin, S.P., Roe, B.A. and Zhu, H.Y. 2008. Alfalfa benefits from Medicago truncatula: The RCT1 gene from M. truncatula confers broad-spectrum resistance to anthracnose in alfalfa. P.N.A.S. 105:12164–12169.PubMedGoogle Scholar
  200. Young, N.D. and Udvardi, M. 2009. Translating Medicago truncatula genomics to crop legumes. Curr. Opinion Plant Biol. 12:193–201.Google Scholar
  201. Zaccardelli, M., Gnocchi, S., Carelli, M. and Scotti, C. 2003. Variation among and within Italian alfalfa ecotypes by means of bio-agronomic characters and amplified fragment length polymorphism analyses. Plant Breed. 122:61–65.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Fabio Veronesi
    • 1
  • E. Charles Brummer
    • 2
  • Christian Huyghe
    • 3
  1. 1.Dipartimento di Biologia ApplicataUniversity of PerugiaPerugiaItaly
  2. 2.Institute for Plant Breeding, Genetics, and Genomics, Crop and Soil Sciences DepartmentUniversity of GeorgiaAthensUSA
  3. 3.INRACentre de Recherche Poitou-CharentesLusignanFrance

Personalised recommendations