• Marc Ghesquière
  • Michael W. Humphreys
  • Zbigniew Zwierzykowski
Part of the Handbook of Plant Breeding book series (HBPB, volume 5)


Festulolium refers to natural or synthetic intergeneric hybrids between obligate outbreeding species of the Festuca (fescue) and the Lolium (ryegrass) genera, species considered frequently as ideal components of agricultural or turf-grass systems. While it is highly unlikely in the near future that any extensive use of Festulolium cultivars will occur throughout Europe, they provide specialist function and novel alternatives to existing grass cultivars that may either lack the quality of Festulolium or their resilience against abiotic or biotic stresses. They may be viewed as possible alternatives to the use of seed mixtures, or for a specialist use. In the longer term, should our climates become consistently warmer and drier during the summer and/or liable to flooding due to extreme incidents of rainfall during autumn and winter, then their use may well increase. Although dispersed throughout the world, Festulolium breeding has considerably stimulated research on genetics of the grasses and has contributed to the development of new technologies. Obviously, there is a gap between Festulolium breeding, which is currently applied on a plant material of essentially polyploid nature and future precision breeding aimed at the transfer and introgression of selected genes into diploid Lolium spp. However, provided that regulation for registration in national lists still allows acknowledgment of the originality and agronomic advances of future Festulolium cultivars, it would seem very likely that polyploid Festulolium could play a role for a better understanding of genome evolution in the grasses. In this respect, it is not unrealistic that breeding polyploid Festulolium could also benefit from the genomic advances achieved in diploids particularly if stress tolerance is genetically controlled by many co-adapted genes, physically and functionally organized at the scale of the chromosomes.


Seed Yield Freezing Tolerance Tall Fescue Neutral Detergent Fibber Crown Rust 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adomako, B., Thorogood, D. and Clifford, B.C. 1997. Plant reaction types to crown rust (Puccinia coronata Corda) disease inoculations in meadow fescue (Festuca pratensis Huds.), perennial ryegrass (Lolium perenne L.) and L. perenne L. introgression lines. Int. Turfgrass Res. J. 8: 823–831.Google Scholar
  2. Arakawa, A., Fujimori, M., Sugita, S., Uchiyama K., and Komatsu, T. 2004. Characteristics and breeding strategy of F1 hybrid Festulolium. In T. Yamada, Takamizo, T. (eds.), Development of a novel grass with environmental stress tolerance and high forage quality through intergeneric hybridization between Lolium and Festuca. National Agriculture Bio-oriented Research Organization, Tsukuba, Japan, pp. 63–67.Google Scholar
  3. Buckner, R.C., Boling, J.A., Burrus, II, P.B., Bush, L.P., and Hemken, R.A. 1983. Registration of “Johnstone” tall fescue. Crop. Sci. 23:399–400CrossRefGoogle Scholar
  4. Buckner, R.C., Burrus, II, P.B., and Bush, L.P. 1977. Registration of “Kenhy” tall fescue. Crop Sci. 17:672–673.CrossRefGoogle Scholar
  5. Buckner, R.C., Bush, L.P., and Burrus, P.B., Jr. 1979. Succulence as a selection criterion for improved forage quality in Lolium-Festuca hybrids. Crop Sci. 19:93–96.CrossRefGoogle Scholar
  6. Bundessortenamt. 2001. Beschreibende Sortenliste, Gräser, Klee, Luzerne, p. 50. Lundbach-Verlag (in German).Google Scholar
  7. Burner, D.M., Eizenga, G.C., Buckner, R.C., and Burrus, P.B., Jr. 1991. Genetic variability of seed yield and agronomic characters in Festuca hybrids and amphiploids. Crop Sci. 31:56–60.CrossRefGoogle Scholar
  8. Canter, P.H., Pašakinskiene, I., Jones, R.N., and Humphreys, M.W. 1999. Chromosome substitutions and recombination in the amphiploid Lolium perenne × Festuca pratensis cv. Prior (2n = 4x = 28). Theor. Appl. Genet. 98:809–814.CrossRefGoogle Scholar
  9. Cao, M.S., Chen, W.P. and Liu, D.J. 1994. Cytogenetics studies of intergeneric hybrids F1 and amphiploid between Lolium multiflorum Lam. and Festuca arundinacea var. glaucescens Boiss. Scientia Agricultura Sinica 27:69–76.Google Scholar
  10. Casler, M.D., Pitts, P.G., Rose-Fricker, C., Bilkey, P.C. and Wipff, J.K. 2001. Registration of “Spring Green” Festulolium. Crop. Sci. 41:1365–1366.CrossRefGoogle Scholar
  11. Casler, M.D., Peterson, P.R., Hoffman, L.D., Ehlke, N.J., Brummer, E.C., Hansen, J.L., Mlynarek, M.J., Sulc, M.R., Henning, J.C., Undersander, D.J., Pitts, P.G., Bilkey, P.C. and Rose-Fricker, C.A. 2002. Natural selection for survival improves freezing tolerance, forage yield and persistency of Festulolium. Crop. Sci. 42:1421–1426.CrossRefGoogle Scholar
  12. Chen, C., Sleper, D.A. and West, C.P. 1995. RFLP and cytogenetic analyses of hybrids between Festuca mairei and Lolium perenne. Crop. Sci. 35:720–725.CrossRefGoogle Scholar
  13. Durand, J.L., Bariac, T., Ghesquière, M., Biron, P., Richard, P., Humphreys, M. and Zwierzykowski, Z. 2007. Ranking of the depth water extraction by individual grass plants using natural 18O isotope abundance. Environ. Exp. Bot. 60:137–144.CrossRefGoogle Scholar
  14. Eizenga, G.C., Burrus, P.B., Jr., Pedersen, J.F. and Cornelius, P.L. 1991. Meiotic stability of 56-chromosome tall fescue hybrid derivatives. Crop. Sci. 31:1532–1535.CrossRefGoogle Scholar
  15. Fojtik, A. 1994. Methods of grass improvement used at the Plant Breeding Station Hladké Životice. Genet. Pol. 35A: 25–31.Google Scholar
  16. Fournier, D., Ghesquière, M. and Poisson, C. 1996. Plant regeneration from cell suspension cultures of tetraploid tall fescue. Plant Cell Tissue & Organ Cult. 46:165–168.CrossRefGoogle Scholar
  17. Ghesquière, M., Barre, P., Marhadour, S. and Kerlan, M.C. 2000. Estimation of introgression rate of a fescue isozymic marker into tetraploid Italian ryegrass at early generations of backcross. Euphytica. 114:223–231.CrossRefGoogle Scholar
  18. Ghesquière, M. and Bourgoin, T. 2009. Seed yield of new Festulolium varieties bred from F. a. var. glaucescens. Proceedings of the 18th Eucarpia Fodder Crops and Amenity Grasses Section Meeting, La Rochelle, France, 11–14 May 2009 (in press).Google Scholar
  19. Ghesquière, M., Emile, J.-C., Jadas-Hécart, J., Mousset, C., Traineau, R. and Poisson, C. 1996. First in vivo assessment of feeding value of Festulolium hybrids derived from Festuca arundinacea var. glaucescens and selection for palatability. Plant Breed. 115:238–244CrossRefGoogle Scholar
  20. Ghesquière, M., Mi, F., Hazard, L. and Poisson, C. 1994. Leaf growth genetic variability among various polyploid ryegrass × fescue hybrids involving Festuca arundinacea var. glaucescens. In O.A. Rognli, Solberg, E., Schjelderup, I., (eds.), Breeding fodder crops for marginal conditions. Proceedings of the 18th Eucarpia Fodder Crops Section Meeting. Loen, Norway, 25–28 August 1993. Kluwer Academic Publishers, Dordrecht, pp. 293–294.Google Scholar
  21. Ghesquière, M., Zwierzykowski, Z., Poisson, C. and Jadas-Hécart, J. (1993). Amphitetraploid Festulolium: chromosome stability and fertility over intercrossing generations. In Proc. XVIIth International Grassland Cong. Palmerston North, New Zealand, February 1993, pp. 451–453.Google Scholar
  22. Grønnerød, S., Fjelldheim, S., Grieg, Z., Jørgensen, Ø., Larsen, A., Østrem, L., Humphreys, M.W. and Rognli, O.A. 2004. Application of AFLP and GISH techniques for identification of Festuca chromosome segments conferring winter hardiness in a Lolium perenne × Festuca pratensis population. In A. Hopkins, Wang, Z.Y., Mian, R., Sledge, M., Backer, R.E. (eds.), Molecular Breeding of Forage and Turf. Developments in Plant Breeding 11:81–86.Google Scholar
  23. Gutmane, I. and Adamovich, A. 2005. Use of Festulolium and Lolium X boucheanum for forage and seed production. In R. Lillak, R. Viiralt,, A. Linke, V. Geherman (eds.), Integrating efficient grassland farming and biodiversity. Proceedings of the 13th International Occasional Symposium of the European Grassland Federation. Tartu, Estonia, 29–31 August 2005, pp. 503–506.Google Scholar
  24. Houdek, I. 2005. X Festulolium ‘Perseus’. Czech J. Genet. Plant Breed. 41:35–36.Google Scholar
  25. Hubbard, C.E. 1992. Grasses. A guide to their structure, identification, uses, and distribution in the British Isles. Revised edition. Pubs. Penguin 25th June 1992.Google Scholar
  26. Humphreys, J., Harper, J.A., Armstead, I.P. and Humphreys, M.W. 2005. Introgression-mapping of genes for drought resistance transferred from Festuca arundinacea var. glaucescens into Lolium multiflorum. Theor. Appl. Genet. 110:579–787.CrossRefPubMedGoogle Scholar
  27. Humphreys, M.W. 1989. The controlled introgression of Festuca arundinacea genes into Lolium multiflorum. Euphytica. 42:105–116.CrossRefGoogle Scholar
  28. Humphreys, M.W., Gasior, D., Lesniewska-Bocianowska, A., Zwierzykowski, Z. and Rapacz, M. 2006. Androgenesis as a means of dissecting complex genetic and physiological controls: selecting useful gene combinations for breeding freezing tolerant grasses. Euphytica 158:337–345.CrossRefGoogle Scholar
  29. Humphreys, M.W. and Ghesquière, M. 1994. Assessing success in gene transfer between Lolium multiflorum and Festuca arundinacea. Euphytica. 77:283–289.CrossRefGoogle Scholar
  30. Humphreys, M.W. and Pašakinskiene, I. 1996. Chromosome painting to locate genes for drought resistance transferred from Festuca arundinacea into Lolium multiflorum. Heredity 77: 530–534.CrossRefGoogle Scholar
  31. Humphreys, M.W., Pašakinskiene, I., James, A.R. and Thomas, H. 1998. Physically mapping quantitative traits for stress-resistance in the forage grasses. J. Exp. Bot. 49:1611–1618.CrossRefGoogle Scholar
  32. Humphreys, M.W. and Thomas, H. 1993. Improved drought resistance in introgression lines derived from Lolium multiflorum × Festuca arundinacea hybrids. Plant Breed. 111:151–161CrossRefGoogle Scholar
  33. Humphreys, M.W., Thomas, H.M., Harper, J.A., Morgan, W.G., James, A.R., Zare, A.G. and Thomas, H. 1997. Dissecting drought- and cold-tolerance traits in the Lolium-Festuca complex by introgression mapping. New Phytol. 137:55–60.CrossRefGoogle Scholar
  34. Jauhar, P.P. 1975. Chromosome relationships between Lolium and Festuca (Gramineae). Chromosoma (Berl.) 52:103–121.CrossRefGoogle Scholar
  35. Jenkin, T.J. 1933. Interspecific and intergeneric hybrids in herbage grasses. Initial crosses. J. Genet. 28:205–264.CrossRefGoogle Scholar
  36. Joks, W., Zwierzykowski, Z. and Naganowska, B. 1994. Agronomic value of Festulolium (Festuca pratensis × Lolium multiflorum) strains. In D. Reheul, A. Ghesquière (eds.), Breeding for quality. Proceedings of the 19th Eucarpia Fodder Crops Section Meeting. Brugge, Belgium, 5–8 October 1994, pp. 265–266.Google Scholar
  37. King, I.P. Morgan, W.G., Harper, J.A. and Thomas, H.M. 1999. Introgression mapping in the grasses. II. Meiotic analysis of the Lolium perenne/Festuca pratensis triploid hybrid. Heredity 82:107–112.CrossRefGoogle Scholar
  38. King, J., Armstead, I.P., Donnison, I.S., Harper, J.A., Roberts, L.A., Thomas, H., Ougham, H., Thomas, A., Huang, L. and King, I.P. 2007. Introgression mapping in the grasses. Chromosome Res. 15:105–113.CrossRefPubMedGoogle Scholar
  39. King, J., Armstead, I.P., Donnison, I.S., Thomas, H.M., Jones, R.N., Kearsey, M.J., Robersts, L.A., Thomas, A., Morgan, W.G. and King, I.P. 2002. Physical and genetic mapping in the grasses Lolium perenne and Festuca pratensis. Genetics 161:315–324.PubMedGoogle Scholar
  40. Kleijer, G. 1987. Cytogenetic studies of crosses between Lolium multiflorum Lam. and Festuca arundinacea Schreb. III. The generations C1, C2 and C3. Plant Breed. 99:144–150.CrossRefGoogle Scholar
  41. Komatsu, T. 1987. Male sterility found in Italian ryegrass (Lolium multiflorum Lam.). Jpn. J. Grassl. Sci. 33:289–290 (in Japanese with English summary).Google Scholar
  42. Kopecký, D., Kilian, A., Lukaszewski, A.J., Bartos, J., Baird, J.H., Cernoch, V., Blois, H., Caig, V. and Doležel, J. 2009. Development and mapping of DArT markers within the Festuca-Lolium complex. Proceedings of the XVIIth Intern. Plant and Animal Genome Conference. San Diego, CA, USA, January 10–14, 2009.Google Scholar
  43. Kopecký, D., Loureiro, J., Zwierzykowski, Z., Ghesquière, M. and Doležel, J. 2006. Genome constitution and evolution in Lolium × Festuca hybrid cultivars (Festulolium). Theor. Appl. Genet. 113:731–742.CrossRefPubMedGoogle Scholar
  44. Kopecký, D., Lukaszewski, A.J. and Doležel, J. 2008. Meiotic behaviour of individual chromosomes of Festuca pratensis in tetraploid Lolium multiflorum. Chromosome Res. 16:987–998.CrossRefPubMedGoogle Scholar
  45. Kosmala, A., Skibinska, M., Zwierzykowski, Z., Humphreys, M.W., Rapacz, M. and Joks, W. 2003. Introgression of genes for abiotic stress resistance from Festuca pratensis and F. arundinacea into Lolium multiflorum germplasm. Vortr. Pflanzenzüchtg. 59:225–231.Google Scholar
  46. Kosmala, A., Zwierzykowski, Z., Gasior, D., Rapacz, M., Zwierzykowska, E. and Humphreys, M.W. 2006. GISH/FISH mapping of genes for freezing tolerance transferred from Festuca pratensis to Lolium multiflorum. Heredity 96:243–251.CrossRefPubMedGoogle Scholar
  47. Kosmala, A., Zwierzykowski, Z., Zwierzykowska, E., Luczak, M., Rapacz, M., Gasior, D. and Humphreys, M.W. 2007. Introgression-mapping of the genes for winter hardiness and frost tolerance from Festuca arundinacea into Lolium multiflorum. J. Heredity 98:311–316.CrossRefGoogle Scholar
  48. Lesniewska, A., Ponitka, A., Slusarkiewicz-Jarzina, A., Zwierzykowska, E., Zwierzykowski, Z., James, A.R., Thomas, H. and Humphreys, M.W. 2001. Androgenesis from Festuca pratensis × Lolium multiflorum amphidiploid cultivars in order to select and stabilise rare gene combinations for grass breeding. Heredity 86:167–176.CrossRefPubMedGoogle Scholar
  49. Lewis, E.J., Tyler, B.F. and Chorlton, K.H. 1973. Development of Lolium-Festuca hybrids. Report Welsh Plant Breeding Station for 1972, pp. 34–37.Google Scholar
  50. Momotaz, A., Forster, J.W. and Yamada, T. 2004. Identification of cultivars and accessions of Lolium, Festuca and Festulolium hybrids through the detection of simple sequence repeat polymorphism. Plant Breed. 123:370–376.CrossRefGoogle Scholar
  51. Morgan, W.G., Thomas, H. and Lewis, E.J. 1988. Cytogenetic studies of hybrids between Festuca gigantea Vill. and Lolium multiflorum Lam. Plant Breed. 101:335–343.CrossRefGoogle Scholar
  52. Nekrošas, S., Sliesaravicius, A. and Dapkiene, R. 1995. Festulolium variety ‘Punia’ (in Lithuanian, original title: Eraicinu ir svidriu hybridine vesile ‘Punia’). Žemdirbyste (Agriculture) t. 50, pp. 203–208.Google Scholar
  53. Nekrošas, S., Tarakanovas, P. and Sliesaravicius, A. 2007. The new Festulolium varieties (in Lithuanian, original title: Naujos eraicinsvidriu veisles). Žemdirbyste t. 94, pp. 150–159.Google Scholar
  54. Netzband, K. 1991. Breeding of tetraploid Festulolium fodder grasses with different maturity, In A.P.M. den Nijs, A.Elgersma (eds.), Fodder crops breeding: Achievements, novel strategies and biotechnology. Proceedings of the 16th Eucarpia Fodder Crops. Section Meeting. Wageningen, The Netherlands, 18–22 November 1990, pp. 47–48.Google Scholar
  55. Oertel, C. and Matzk, F. 1999. Introgression of crown rust resistance from Festuca spp. into Lolium multiflorum. Plant Breed. 118:491–496.CrossRefGoogle Scholar
  56. Opitz von Boberfeld, W. and Banzhaf, K. 2006. Yield and forage quality of different × Festulolium cultivars in winter. J. Agron. Crop Sci. 192:239–247.CrossRefGoogle Scholar
  57. Østrem, L. and Larsen, A. 2008. Winter survival, yield performance and forage quality of Festulolium cvs. for Norwegian farming. Proceedings of the 22nd General Meeting of the European Grassland Federation. Uppsala, Sweden, 9–12 June 2008.Google Scholar
  58. Pedersen, J.F., Eizenga, G.C. and Burrus, P.B., Jr. 1990. Registration of “KY-2N56” tall fescue germplasm. Crop. Sci. 30:1163.CrossRefGoogle Scholar
  59. Roderick, H.W., Morgan, W.G., Harper, J.A. and Thomas, H.M. 2003. Introgression of crown rust (Puccinia coronata) resistance from meadow fescue (Festuca pratensis) into Italian ryegrass (Lolium multiflorum) and physical mapping of the locus. Heredity 9:396–400.CrossRefGoogle Scholar
  60. SAGES. 2004. Sustainable Grasslands Withstanding Environmental Stresses, 5th PCRDT shared cost project QLK5-CT-2000-00764 for 2001–2003. Key-Action 5.1.1. Sustainable Agriculture, Technological Implementation Plan. European Commission, Brussels, Belgium, 42p. (
  61. Skibinska, M., Kosmala, A., Humphreys, M. and Zwierzykowski Z. 2002. Application of GISH and AFLP techniques for identification of Lolium-Festuca introgressions. Cell. Mol. Biol. Lett. 7(2A): 493–498.PubMedGoogle Scholar
  62. Suter, D., Briner, H., Mosimann, E., Demenga, M. and Jeangros, B. 2007. Official testing of × Festulolium braunii varieties. Agrarforschung 14:294–299.Google Scholar
  63. Takamizo, T., Suginobu, K., Potrykus, I. and Spangenberg G., 1991. Somatic hybridization in gramineae: intergeneric somatic hybrid between tall fescue (Festuca arundineacea Schreb.) and Italian ryegrass (Lolium multiflorum Lam.). Mol. Genet. Genomics 231:1–6.CrossRefGoogle Scholar
  64. Thomas, H., Evans, C., Thomas, H.M., Humphreys, M.W., Morgan, W.G., Hauk, B. and Donnison, I. 1997. Introgression, tagging and expression of a leaf senescence gene in Festulolium. New Phytol. 137:29–34.CrossRefGoogle Scholar
  65. Thomas, H. and Humphreys, M.O. 1991. Progress and potential of interspecific hybrids of Lolium and Festuca. J. Agric. Sci. Camb. 117:1–8.CrossRefGoogle Scholar
  66. Touno, E., Shingu, H., Kushibiki, S., Shinoda, M., Oshibe, A. and Saiga, S. 2006. Changes in feeding value of the first crop with advancing growth in FestuloliumFestulolium braunii) cultivars. Jpn. J. Grassl. Sci. 52:176–182.Google Scholar
  67. Turner, L.B., Cairns, A.J., Armstead, I.P., Thomas, H., Humphreys, M.W. and Humphreys, M.O. 2008. Does fructan have a functional role in physiological traits? Investigation by quantitative trait locus mapping. New Phytol. 179:765–775.CrossRefPubMedGoogle Scholar
  68. Ushiyama, K., Arakawa, A. and Komatsu, T. 2004. Breeding and evaluation of Festulolium cultivars in warm region of Japan. In T. Yamada, T. Takamizo (eds.), Development of a novel grass with environmental stress tolerance and high forage quality through intergeneric hybridization between Lolium and Festuca. National Agriculture and Bio-oriented Research Organization, Tsukuba, Japan, pp. 69–74.Google Scholar
  69. Wang, J.P., Bughrara, S.S., Mian, R.M.A., Saha, M.C. and Sleper, D.A. 2009. Parental genome composition and genetic classifications of derivatives from intergeneric crosses of Festuca mairei and Lolium perenne. Mol. Breed. 23:299–309.CrossRefGoogle Scholar
  70. Yamada, T., Forster, J.W., Humphreys, M.W. and Takamizo, T. 2005. Genetics and molecular breeding in Lolium/Festuca grass species complex. Grassl. Sci. 51:89–106.CrossRefGoogle Scholar
  71. Yonemaru, J., Kubota, A. and Ueyama, Y. 2004. Individual variation and selection effectiveness on regrowth after summer of the Festulolium cultivars in cold climates. Grassl. Sci. 50:415–420.Google Scholar
  72. Zare, A.G., Humphreys, M.W., Rogers, W.J. and Collin, H.A. 1999. Androgenesis from a Lolium multiflorum × Festuca arundinacea hybrid to generate extreme variation for freezing-tolerance. Plant Breed. 118:497–501.CrossRefGoogle Scholar
  73. Zwierzykowski, Z. 1980. Hybrid of Lolium multiflorum Lam. (2n = 14) × Festuca arundinacea Schreb. (2n = 42) and its alloploid derivatives. I. Morphology, fertility and chromosome number of F1 hybrids and C0 and C1 derivatives. Genet. Pol. 21:259–273.Google Scholar
  74. Zwierzykowski, Z., Joks, W. and Naganowska, B. 1993. Amphitetraploid hybrids Festuca pratensis Huds. × Lolium multiflorum Lam. [= ×Festulolium braunii (K. Richter) A. Camus)] (in Polish, original title: Mieszance amfitetraploidalne Festuca pratensis Huds. × Lolium multiflorum Lam. [=×Festulolium braunii (K. Richter) A. Camus]. Biuletyn IHAR 188:61–69.Google Scholar
  75. Zwierzykowski, Z., Kosmala, A., Zwierzykowska, E., Jones, N., Joks, W. and Bocianowski, J. 2006. Genome balance in six successive generations of the allotetraploid Festuca pratensis × Lolium perenne. Theor. Appl. Genet. 113:539–547.CrossRefPubMedGoogle Scholar
  76. Zwierzykowski, Z., Lukaszewski, A.J., Lesniewska, A. and Naganowska, B. 1998a. Genomic structure of androgenic progeny of pentaploid hybrids Festuca arundinacea × Lolium multiflorum. Plant Breed. 117:457–462.CrossRefGoogle Scholar
  77. Zwierzykowski, Z., Lukaszewski, A.J., Naganowska, B. and Lesniewska, A. 1999. The pattern of homoeologous recombination in triploid hybrids of Lolium multiflorum with Festuca pratensis. Genome 42:720–726.CrossRefGoogle Scholar
  78. Zwierzykowski, Z., Tayyar, R., Brunell, M. and Lukaszewski, A.J. 1998b. Genome recombination in intergeneric hybrids between tetraploid Festuca pratensis and Lolium multiflorum. J. Hered. 89:324–328.CrossRefGoogle Scholar
  79. Zwierzykowski, Z., Zwierzykowska, E., Taciak, M., Jones, N., Kosmala, A. and Krajewski, P. 2008. Chromosome pairing in allotetraploid hybrids of Festuca pratensis × Lolium perenne revealed by genomic in situ hybridization (GISH). Chromosome Res. 16:575–585.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Marc Ghesquière
    • 1
  • Michael W. Humphreys
    • 2
  • Zbigniew Zwierzykowski
    • 3
  1. 1.National Institute for Agronomical Sciences, INRA/URP3FLusignanFrance
  2. 2.Institute for Biological, Environmental and Rural Sciences, (IBERS), Aberystwyth UniversityWalesUK
  3. 3.Institute of Plant Genetics, Polish Academy of SciencesPoznańPoland

Personalised recommendations