Cortical Plasticity and Reorganization in Severe Vision Loss



Blind individuals make striking adjustments to their loss of sight. Current experimental evidence suggests that these behavioral adaptations are based on dramatic neurophysiological changes at the level of the brain. In particular, is the fact that the occipital cortex (the area of the brain normally ascribed with visual processing) is functionally recruited to process non-visual sensory modalities. The impact of these neuroplastic changes on the success of implementing a rehabilitative strategy such as a visual based neuroprosthesis remains unknown. Here we discuss several factors such as potential limits of plasticity, potential mechanisms and methods to modulate neuroplasticity so as to promote rehabilitative potential. We should thus remain aware that some of the impediments to future progress in visual neuroprosthesis development are not only technical, engineering and surgical issues, but are also related to the development and implementation of strategies designed to interface with the visually deprived brain. New evidence regarding experience-dependent plasticity in the adult brain together with the achievements in other neuroprosthesis efforts allows cautious optimism that some degree of functional vision can be restored in profoundly blind individuals. However, it is essential that future research explore the mechanisms underlying brain plasticity following the loss of vision. These new findings should be integrated in order to enhance the development of suitable rehabilitative strategies for each particular type of visual neuroprosthesis and achieve the best possible behavioral outcome for a given person using these devices.


Transcranial Magnetic Stimulation Auditory Cortex Occipital Cortex Brain Plasticity Blind Subject 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Age-related macular degeneration




Repetitive transcranial magnetic stimulation


Single photon emission computerized tomography


Transcranial direct current stimulation


Transcranial magnetic stimulation


  1. 1.
    Adachi K, Lee JC, Hu JW, et al. (2007), Motor cortex neuroplasticity associated with lingual nerve injury in rats. Somatosens Mot Res, 24(3): p. 97–109.CrossRefGoogle Scholar
  2. 2.
    Alfaro A, Concepcion L, Merabet L, Fernandez E (2006), An atypical presentation of visual hallucinatory experiences following prolonged blindness. Neurocase, 12(4): p. 212–5.CrossRefGoogle Scholar
  3. 3.
    Alonso-Alonso M, Fregni F, Pascual-Leone A (2007), Brain stimulation in poststroke rehabilitation. Cerebrovasc Dis, 24(Suppl 1): p. 157–66.CrossRefGoogle Scholar
  4. 4.
    Amedi A, Floel A, Knecht S, et al. (2004), Transcranial magnetic stimulation of the occipital pole interferes with verbal processing in blind subjects. Nat Neurosci, 7(11): p. 1266–70.CrossRefGoogle Scholar
  5. 5.
    Amedi A, Raz N, Pianka P, et al. (2003), Early ‘visual’ cortex activation correlates with superior verbal memory performance in the blind. Nat Neurosci, 6(7): p. 758–66.CrossRefGoogle Scholar
  6. 6.
    Anderson SW, Rizzo M (1994), Hallucinations following occipital lobe damage: the pathological activation of visual representations. J Clin Exp Neuropsychol, 16(5): p. 651–63.CrossRefGoogle Scholar
  7. 7.
    Bach-y-Rita P (2004), Tactile sensory substitution studies. Ann N Y Acad Sci, 1013: p. 83–91.CrossRefGoogle Scholar
  8. 8.
    Baker CI, Peli E, Knouf N, Kanwisher NG (2005), Reorganization of visual processing in macular degeneration. J Neurosci, 25(3): p. 614–8.CrossRefGoogle Scholar
  9. 9.
    Bao S, Chan VT, Merzenich MM (2001), Cortical remodelling induced by activity of ventral tegmental dopamine neurons. Nature, 412(6842): p. 79–3.CrossRefGoogle Scholar
  10. 10.
    Barbay S, Zoubina EV, Dancause N, et al. (2006), A single injection of d -amphetamine facilitates improvements in motor training following a focal cortical infarct in squirrel monkeys. Neurorehabil Neural Repair, 20(4): p. 455–8.CrossRefGoogle Scholar
  11. 11.
    Barker AT, Jalinous R, Freeston IL (1985), Non-invasive magnetic stimulation of human motor cortex. Lancet, 1: p. 1106–7.CrossRefGoogle Scholar
  12. 12.
    Bavelier D, Neville HJ (2002), Cross-modal plasticity: where and how? Nat Rev Neurosci, 3(6): p. 443–52.Google Scholar
  13. 13.
    Bernabeu A, Alfaro A, Garcia M, Fernandez E (2009), Proton magnetic resonance spectroscopy (1H-MRS) reveals the presence of elevated myo-inositol in the occipital cortex of blind subjects. Neuroimage, 47(4): p. 1172–6.CrossRefGoogle Scholar
  14. 14.
    Bouccara D, Avan P, Mosnier I, et al. (2005), Auditory rehabilitation. Med Sci (Paris), 21(2): p. 190–7.Google Scholar
  15. 15.
    Breitenstein C, Wailke S, Bushuven S, et al. (2004), d -Amphetamine boosts language learning independent of its cardiovascular and motor arousing effects. Neuropsychopharmacology, 29(9): p. 1704–14.CrossRefGoogle Scholar
  16. 16.
    Buonomano DV, Merzenich MM (1998), Cortical plasticity: from synapses to maps. Annu Rev Neurosci, 21: p. 149–86.CrossRefGoogle Scholar
  17. 17.
    Burton H, Snyder AZ, Conturo TE, et al. (2002), Adaptive changes in early and late blind: a fMRI study of Braille reading. J Neurophysiol, 87(1): p. 589–607.Google Scholar
  18. 18.
    Cajal SR (1904), Textura del sistema nervioso del hombre y de los vertebrados. Imprenta y librería de Nicolás Moya: Madrid.Google Scholar
  19. 19.
    Calford MB, Chino YM, Das A, et al. (2005), Neuroscience: rewiring the adult brain. Nature, 438(7065): p. E3; discussion E3–4.CrossRefGoogle Scholar
  20. 20.
    Celesia GG (2005), Visual plasticity and its clinical applications. J Physiol Anthropol Appl Human Sci, 24(1): p. 23–7.CrossRefGoogle Scholar
  21. 21.
    Celnik P, Hummel F, Harris-Love M, et al. (2007), Somatosensory stimulation enhances the effects of training functional hand tasks in patients with chronic stroke. Arch Phys Med Rehabil, 88(11): p. 1369–76.CrossRefGoogle Scholar
  22. 22.
    Cheung SH, Legge GE (2005), Functional and cortical adaptations to central vision loss. Vis Neurosci, 22(2): p. 187–201.CrossRefGoogle Scholar
  23. 23.
    Cogan DG (1973), Visual hallucinations as release phenomena. Albrecht Von Graefes Arch Klin Exp Ophthalmol, 188(2): p. 139–50.CrossRefGoogle Scholar
  24. 24.
    Cohen LG, Celnik P, Pascual-Leone A, et al. (1997), Functional relevance of cross-modal plasticity in blind humans. Nature, 389(6647): p. 180–3.CrossRefGoogle Scholar
  25. 25.
    Cohen LG, Ziemann U, Chen R, et al. (1998), Studies of neuroplasticity with transcranial magnetic stimulation. J Clin Neurophysiol, 15(4): p. 305–24.CrossRefGoogle Scholar
  26. 26.
    Dagnelie G (2006), Visual prosthetics 2006: assessment and expectations. Expert Rev Med Devices, 3(3): p. 315–25.CrossRefGoogle Scholar
  27. 27.
    Dilks DD, Serences JT, Rosenau BJ, et al. (2007), Human adult cortical reorganization and consequent visual distortion. J Neurosci, 27(36): p. 9585–94.CrossRefGoogle Scholar
  28. 28.
    Dreher B, Burke W, Calford MB (2001), Cortical plasticity revealed by circumscribed retinal lesions or artificial scotomas. Prog Brain Res, 134: p. 217–46.CrossRefGoogle Scholar
  29. 29.
    Duque J, Mazzocchio R, Stefan K, et al. (2008), Memory formation in the motor cortex ipsilateral to a training hand. Cereb Cortex, 18: p. 1395–406.Google Scholar
  30. 30.
    Dyck RH, Chaudhuri A, Cynader MS (2003), Experience-dependent regulation of the zincergic innervation of visual cortex in adult monkeys. Cereb Cortex, 13(10): p. 1094–109.CrossRefGoogle Scholar
  31. 31.
    Fallon JB, Irvine DR, Shepherd RK (2008), Cochlear implants and brain plasticity. Hear Res, 238(1–2): p. 110–7.CrossRefGoogle Scholar
  32. 32.
    Fernandez E, Alfaro A, Tormos JM, et al. (2002), Mapping of the human visual cortex using image-guided transcranial magnetic stimulation. Brain Res Protoc, 10: p. 115–24.CrossRefGoogle Scholar
  33. 33.
    Fernandez E, Pelayo F, Romero S, et al. (2005), Development of a cortical visual neuroprosthesis for the blind: the relevance of neuroplasticity. J Neural Eng, 2(4): p. R1–12.CrossRefGoogle Scholar
  34. 34.
    Ferrandez JM, Alfaro A, Bonomini P, et al. (2003), Brain plasticity: feasibility of a cortical visual prosthesis for the blind. In Engineering in Medicine and Biology Society. Proceedings of the 25th Annual International Conference of the IEEE.Google Scholar
  35. 35.
    Fine I, Wade AR, Brewer AA, et al. (2003), Long-term deprivation affects visual perception and cortex. Nat Neurosci, 6(9): p. 915–6.CrossRefGoogle Scholar
  36. 36.
    Finney EM, Fine I, Dobkins KR (2001), Visual stimuli activate auditory cortex in the deaf. Nat Neurosci, 4(12): p. 1171–3.CrossRefGoogle Scholar
  37. 37.
    Froemke RC, Merzenich MM, Schreiner CE (2007), A synaptic memory trace for cortical receptive field plasticity. Nature, 450(7168): p. 425–9.CrossRefGoogle Scholar
  38. 38.
    Gizewski ER, Gasser T, de Greiff A, et al. (2003), Cross-modal plasticity for sensory and motor activation patterns in blind subjects. Neuroimage, 19(3): p. 968–75.CrossRefGoogle Scholar
  39. 39.
    Gregory RL (2003), Seeing after blindness. Nat Neurosci, 6(9): p. 909–10.CrossRefGoogle Scholar
  40. 40.
    Hamilton R, Keenan JP, Catala M, Pascual-Leone A (2000), Alexia for Braille following bilateral occipital stroke in an early blind woman. Neuroreport, 11(2): p. 237–40.CrossRefGoogle Scholar
  41. 41.
    Hebb DO (1947), The effects of early experience on problem solving at maturity. Am Psychol, 2: p. 737–45.Google Scholar
  42. 42.
    Hernandez Muela S, Mulas F, Mattos L (2004), Functional neuronal plasticity. Rev Neurol, 38(Suppl 1): p. 58–68.Google Scholar
  43. 43.
    Hummel FC, Cohen LG (2005), Drivers of brain plasticity. Curr Opin Neurol, 18(6): p. 667–74.CrossRefGoogle Scholar
  44. 44.
    Hummel FC, Cohen LG (2006), Non-invasive brain stimulation: a new strategy to improve neurorehabilitation after stroke? Lancet Neurol, 5(8): p. 708–12.CrossRefGoogle Scholar
  45. 45.
    Iwai Y, Fagiolini M, Obata K, Hensch TK (2003), Rapid critical period induction by tonic inhibition in visual cortex. J Neurosci, 23(17): p. 6695–702.Google Scholar
  46. 46.
    Johansson BB (2000), Brain plasticity and stroke rehabilitation. The Willis lecture. Stroke, 31(1): p. 223–30.Google Scholar
  47. 47.
    Kaas JH (2002), Sensory loss and cortical reorganization in mature primates. Prog Brain Res, 138: p. 167–76.CrossRefGoogle Scholar
  48. 48.
    Kaas JH, Krubitzer LA, Chino YM, et al. (1990), Reorganization of retinotopic cortical maps in adult mammals after lesions of the retina. Science, 248(4952): p. 229–31.CrossRefGoogle Scholar
  49. 49.
    Komitova M, Johansson BB, Eriksson PS (2006), On neural plasticity, new neurons and the postischemic milieu: an integrated view on experimental rehabilitation. Exp Neurol, 199(1): p. 42–55.CrossRefGoogle Scholar
  50. 50.
    Kral A, Tillein J, Heid S, et al. (2006), Cochlear implants: cortical plasticity in congenital deprivation. Prog Brain Res, 157: p. 283–313.CrossRefGoogle Scholar
  51. 51.
    Kujala T, Alho K, Paavilainen P, et al. (1992), Neural plasticity in processing of sound location by the early blind: an event-related potential study. Electroencephalogr Clin Neurophysiol, 84(5): p. 469–72.CrossRefGoogle Scholar
  52. 52.
    Lee DS, Lee JS, Oh SH, et al. (2001), Cross-modal plasticity and cochlear implants. Nature, 409(6817): p. 149–50.CrossRefGoogle Scholar
  53. 53.
    Loeb GE (1990), Cochlear prosthetics. Annu Rev Neurosci, 13: p. 357–71.CrossRefGoogle Scholar
  54. 54.
    Maeda K, Yasuda H, Haneda M, Kashiwagi A (2003), Braille alexia during visual hallucination in a blind man with selective calcarine atrophy. Psychiatry Clin Neurosci, 57(2): p. 227–9.CrossRefGoogle Scholar
  55. 55.
    Mahncke HW, Bronstone A, Merzenich MM (2006), Brain plasticity and functional losses in the aged: scientific bases for a novel intervention. Prog Brain Res, 157: p. 81–109.CrossRefGoogle Scholar
  56. 56.
    Mahncke HW, Connor BB, Appelman J, et al. (2006), Memory enhancement in healthy older adults using a brain plasticity-based training program: a randomized, controlled study. Proc Natl Acad Sci USA, 103(33): p. 12523–8.CrossRefGoogle Scholar
  57. 57.
    Manford M, Andermann F (1998), Complex visual hallucinations. Clinical and neurobiological insights. Brain, 121(Pt 10): p. 1819–40.CrossRefGoogle Scholar
  58. 58.
    Masuda Y, Dumoulin SO, Nakadomari S, Wandell BA (2008), V1 projection zone signals in human macular degeneration depend on task, not stimulus. Cereb Cortex, 18: p. 2483–93.Google Scholar
  59. 59.
    McDermott HJ (2004), Music perception with cochlear implants: a review. Trends Amplif, 8(2): p. 49–82.CrossRefGoogle Scholar
  60. 60.
    Merabet LB, Pascual-Leone A (2010), Neural reorganization following sensory loss: the opportunity of change. Nat Rev Neurosci, 11(1): p. 44–52.CrossRefGoogle Scholar
  61. 61.
    Merabet LB, Rizzo JF, Amedi A, et al. (2005), What blindness can tell us about seeing again: merging neuroplasticity and neuroprostheses. Nat Rev Neurosci, 6(1): p. 71–7.CrossRefGoogle Scholar
  62. 62.
    Merabet LB, Rizzo JF, III, Pascual-Leone A, Fernandez E (2007), ‘Who is the ideal candidate?’: decisions and issues relating to visual neuroprosthesis development, patient testing and neuroplasticity. J Neural Eng, 4(1): p. S130–5.CrossRefGoogle Scholar
  63. 63.
    Merabet L, Thut G, Murray B, et al. (2004), Feeling by sight or seeing by touch? Neuron, 42(1): p. 173–9.CrossRefGoogle Scholar
  64. 64.
    Middlebrooks JC, Bierer JA, Snyder RL (2005), Cochlear implants: the view from the brain. Curr Opin Neurobiol, 15(4): p. 488–93.CrossRefGoogle Scholar
  65. 65.
    Mitchell TV, Maslin MT (2007), How vision matters for individuals with hearing loss. Int J Audiol, 46(9): p. 500–11.CrossRefGoogle Scholar
  66. 66.
    Nair DG, Hutchinson S, Fregni F, et al. (2007), Imaging correlates of motor recovery from cerebral infarction and their physiological significance in well-recovered patients. Neuroimage, 34(1): p. 253–63.CrossRefGoogle Scholar
  67. 67.
    Normann RA, Maynard E, Guillory KS, Warren DJ (1996), Cortical implants for the blind. IEEE Spectrum, 33(5): p. 54–9.CrossRefGoogle Scholar
  68. 68.
    Nudo RJ (2003), Adaptive plasticity in motor cortex: implications for rehabilitation after brain injury. J Rehabil Med, 41(Suppl): p. 7–10.CrossRefGoogle Scholar
  69. 69.
    Nudo RJ (2003), Functional and structural plasticity in motor cortex: implications for stroke recovery. Phys Med Rehabil Clin N Am, 14(1 Suppl): p. S57–76.Google Scholar
  70. 70.
    Nudo RJ (2006), Plasticity. NeuroRx, 3(4): p. 420–7.CrossRefGoogle Scholar
  71. 71.
    Nudo RJ, Jenkins WM, Merzenich MM (1990), Repetitive microstimulation alters the cortical representation of movements in adult rats. Somatosens Mot Res, 7(4): p. 463–83.CrossRefGoogle Scholar
  72. 72.
    Pascual-Leone A, Amedi A, Fregni F, Merabet LB (2005), The plastic human brain cortex. Annu Rev Neurosci, 28: p. 377–401.CrossRefGoogle Scholar
  73. 73.
    Pascual-Leone A, Hamilton R, Tormos JM, et al. (1999), Neuroplasticity in the adjustment to blindness. In Neuronal Plasticity: Building a Bridge from the Laboratory to the Clinic, J. Grafman, Christen Y, Editors. Springer: Berlin.Google Scholar
  74. 74.
    Pena C, Bowsher K, Samuels-Reid J (2004), FDA-approved neurologic devices intended for use in infants, children, and adolescents. Neurology, 63(7): p. 1163–7.Google Scholar
  75. 75.
    Plautz EJ, Barbay S, Frost SB, et al. (2003), Post-infarct cortical plasticity and behavioral recovery using concurrent cortical stimulation and rehabilitative training: a feasibility study in primates. Neurol Res, 25(8): p. 801–10.CrossRefGoogle Scholar
  76. 76.
    Ptito M, Kupers R (2005), Cross-modal plasticity in early blindness. J Integr Neurosci, 4(4): p. 479–88.CrossRefGoogle Scholar
  77. 77.
    Ptito M, Moesgaard SM, Gjedde A, Kupers R (2005), Cross-modal plasticity revealed by electrotactile stimulation of the tongue in the congenitally blind. Brain, 128(Pt 3): p. 606–14.CrossRefGoogle Scholar
  78. 78.
    Ramos-Estebanez C, Merabet LB, Machii K, et al. (2007), Visual phosphene perception modulated by subthreshold crossmodal sensory stimulation. J Neurosci, 27(15): p. 4178–81.CrossRefGoogle Scholar
  79. 79.
    Rauschecker JP (1995), Compensatory plasticity and sensory substitution in the cerebral cortex. Trends Neurosci, 18(1): p. 36–43.CrossRefGoogle Scholar
  80. 80.
    Roder B, Stock O, Bien S, et al. (2002), Speech processing activates visual cortex in congenitally blind humans. Eur J Neurosci, 16(5): p. 930–6.CrossRefGoogle Scholar
  81. 81.
    Roder B, Teder-Salejarvi W, Sterr A, et al. (1999), Improved auditory spatial tuning in blind humans. Nature, 400(6740): p. 162–6.CrossRefGoogle Scholar
  82. 82.
    Sadato N, Pascual-Leone A, Grafman J, et al. (1996), Activation of the primary visual cortex by Braille reading in blind subjects. Nature, 380(6574): p. 526–8.CrossRefGoogle Scholar
  83. 83.
    Sadato N, Pascual-Leone A, Grafman J, et al. (1998), Neural networks for Braille reading by the blind. Brain, 121(Pt 7): p. 1213–29.CrossRefGoogle Scholar
  84. 84.
    Shaw KN, Commins S, O’Mara SM (2003), Deficits in spatial learning and synaptic plasticity induced by the rapid and competitive broad-spectrum cyclooxygenase inhibitor ibuprofen are reversed by increasing endogenous brain-derived neurotrophic factor. Eur J Neurosci, 17(11): p. 2438–46.CrossRefGoogle Scholar
  85. 85.
    Shaw CA, Lanius RA, van den Doel K (1994), The origin of synaptic neuroplasticity: crucial molecules or a dynamical cascade? Brain Res Brain Res Rev, 19(3): p. 241–63.CrossRefGoogle Scholar
  86. 86.
    Smirnakis SM, Brewer AA, Schmid MC, et al. (2005), Lack of long-term cortical reorganization after macaque retinal lesions. Nature, 435(7040): p. 300–7.CrossRefGoogle Scholar
  87. 87.
    Sonde L, Lokk J (2007), Effects of amphetamine and/or l -dopa and physiotherapy after stroke – a blinded randomized study. Acta Neurol Scand, 115(1): p. 55–9.CrossRefGoogle Scholar
  88. 88.
    Stroemer RP, Kent TA, Hulsebosch CE (1998), Enhanced neocortical neural sprouting, synaptogenesis, and behavioral recovery with d -amphetamine therapy after neocortical infarction in rats. Stroke, 29(11): p. 2381–93; discussion 2393–5.Google Scholar
  89. 89.
    Thickbroom GW (2007), Transcranial magnetic stimulation and synaptic plasticity: experimental framework and human models. Exp Brain Res, 180(4): p. 583–93.CrossRefGoogle Scholar
  90. 90.
    Uhl F, Franzen P, Lindinger G, et al. (1991), On the functionality of the visually deprived occipital cortex in early blind persons. Neurosci Lett, 124(2): p. 256–9.CrossRefGoogle Scholar
  91. 91.
    Uhl F, Franzen P, Podreka I, et al. (1993), Increased regional cerebral blood flow in inferior occipital cortex and cerebellum of early blind humans. Neurosci Lett, 150(2): p. 162–4.CrossRefGoogle Scholar
  92. 92.
    Van Boven RW, Hamilton RH, Kauffman T, et al. (2000), Tactile spatial resolution in blind Braille readers (1). Am J Ophthalmol, 130(4): p. 542.CrossRefGoogle Scholar
  93. 93.
    Weeks R, Horwitz B, Aziz-Sultan A, et al. (2000), A positron emission tomographic study of auditory localization in the congenitally blind. J Neurosci, 20(7): p. 2664–72.Google Scholar
  94. 94.
    Whiting E, Chenery HJ, Chalk J, Copland DA (2007), Dexamphetamine boosts naming treatment effects in chronic aphasia. J Int Neuropsychol Soc, 13(6): p. 972–9.CrossRefGoogle Scholar
  95. 95.
    Zepeda A, Sengpiel F, Guagnelli MA, et al. (2004), Functional reorganization of visual cortex maps after ischemic lesions is accompanied by changes in expression of cytoskeletal proteins and NMDA and GABA(A) receptor subunits. J Neurosci, 24(8): p. 1812–21.CrossRefGoogle Scholar
  96. 96.
    Zhou X, Merzenich MM (2007), Intensive training in adults refines A1 representations degraded in an early postnatal critical period. Proc Natl Acad Sci USA, 104(40): p. 15935–40.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Instituto de BioingenieríaUniversidad Miguel HernándezElche (Alicante)Spain

Personalised recommendations