Skip to main content

Findings from Chronic Optic Nerve and Cortical Stimulation

Abstract

This chapter reviews the experiments that have produced visual sensations in humans through electrical stimulation of the central nervous system. Initially, surface stimulation of the visual cortex, provided insight into how electrical stimulation of V1 could possibly provide a visual prosthesis for the blind. Intracortical microstimulation was then investigated that would allow lower power stimulation and increased density of microelectrodes. The stimulation of the optic nerve has also been investigated as a possible site for a visual prosthesis.

The next section is dedicated to what is known and what needs to be done for the development of a visual prosthesis.

The following section examines current research efforts directed towards the development of a visual prosthesis. They include optic nerve stimulation, cortical surface stimulation and intracortical stimulation of visual cortex. The CORTIVIS Program is a comprehensive development of an intracortical visual prosthesis. The lateral geniculate nucleus is also being studied as a site for a visual prosthesis.

The final section of this chapter deals with the developments that are needed for a functional visual prosthesis. They include microelectrode arrays, stimulation hardware, and low power image sensing and processing circuitry that can control the stimulators.

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
EUR   29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR   85.59
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR   105.49
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
EUR   105.49
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

2D:

Two dimensional

3D:

Three dimensional

EIC:

EIC laboratories

HMRI:

Huntington Medical Research Institute

ICMS:

Intracortical microstimulation

IIT:

Illinois Institute of Technology

LGN:

Lateral geniculate nucleus

MIPS:

Multimode digital image sensor

MIT:

Massachusetts Institute of Technology

NIH:

National Institutes of Health

NY:

New York

UC:

University of Chicago

References

  1. Ahnelt P, Ammermuller J, Pelayo F, et al. (2002), Neuroscientific basis for the design and development of a bioinspired visual processing front-end. EMBEC Abstract, p. 1692–3.

    Google Scholar 

  2. Asanuma H, Stoney SD Jr, Abzug C (1968), Relationship between afferent input and motor outflow in cat motorsensory cortex. J Neurophysiol, 31(5): p. 670–81.

    Google Scholar 

  3. Bak M, Girvin JP, Hambrecht FT, et al. (1990), Visual sensations produced by intracortical microstimulation of the human occipital cortex. Med Biol Eng Comput, 28: p. 257–9.

    Article  Google Scholar 

  4. Bartlett JR, Doty RW (1980), An exploration of the ability of macaques to detect microstimulation of striate cortex. Acta Neurobiol Exp (Wars), 40(4): p. 713–27.

    Google Scholar 

  5. Bartlett JR, DeYoe EA, Doty RW, et al. (2005), Psychophysics of electrical stimulation of striate cortex in macaques. J Neurophysiol, 94: p. 3430–42.

    Article  Google Scholar 

  6. Bradley DC, Troyk PR, Berg JA, et al. (2005), Visuotopic mapping through a multichannel stimulating implant in primate V1. Neurophysiol, 93(3): p. 1659–70.

    Article  Google Scholar 

  7. Branner A, Stein RB, Normann RA (2001), Selective stimulation of cat sciatic nerve using an array of varying-length microelectrodes. J Neurophysiol, 85(4): p. 1585–94.

    Google Scholar 

  8. Brelen ME, DePotter P, Gersdorff M, et al. (2006), Intraorbital implantation of a stimulating electrode for an optic nerve visual prosthesis. Neurosurg, 104(4): p. 593–7.

    Article  Google Scholar 

  9. Brindley GS, Lewin WS (1968) The sensations produced by electrical stimulation of the visual cortex. J Physiol (London), 196: p. 479–93.

    Google Scholar 

  10. Buffoni LX, Coulombe J, Sawan M (2005), Image processing strategies dedicated to visual cortical stimulators: a survey. Artif Organs, 29(8): p. 658–64.

    Article  Google Scholar 

  11. Button J, Putnam T (1962), Visual response to cortical stimulation in the blind. J Iowa Med Soc, 52: p. 17–21.

    Google Scholar 

  12. Chai X, Li L, Wu K, et al. (2008), C-Sight visual prosthesis for the blind. IEEE BMES, 27(5): p. 20–8.

    Google Scholar 

  13. Chai X, Yu W, Wang J, et al. (2006), Recognition of pixelized Chinese characters using simulated prosthetic vision. Artif Organ, 31: p. 175.

    Article  Google Scholar 

  14. Chai X, Zhang L, Li W, et al. (2007), Tactile based phosphene positioning system for visual prosthesis. Invest Opthalmol Vis Sci, 48(5): p. 662, E-Abstract.

    Google Scholar 

  15. Chai X, Zhang L, Li W, et al. (2008), Study of tactile perception based on phosphene positioning using simulated prosthetic vision. Artif Organs, 32(2): p. 110–5.

    Article  Google Scholar 

  16. Chowdhury V, Morley JW, Coroneo MT (2004), Surface stimulation of the brain with a prototype array for a visual cortex prosthesis. J Clin Neurosci, 11(7): p. 750–5.

    Article  Google Scholar 

  17. Chowdhury V, Morley JW, Coroneo MT (2004), An in-vivo paradigm for the evaluation of stimulating electrodes for use with a visual prosthesis. ANZ J Surg, 74: p. 372–8.

    Article  Google Scholar 

  18. CORTIVIS http://cortivis.umh.es/.

  19. Coulombe J, Carniguian S, Sawan M (2005), A power efficient electronic implant for a visual cortical prosthesis. Artif Organs, 29(3): p. 233–8.

    Article  Google Scholar 

  20. Delbeke J, Wanet-Defalque MC, Gerard B, et al. (2002), The microsystems based visual prosthesis for optic nerve stimulation. Artif Organs, 26(3): p. 232–4.

    Article  Google Scholar 

  21. DeYoe EA, Lewine JD, Doty RW (2005), Laminar variations in threshold for detection of electrical excitation of striate cortex by macaques. J Neurophysiol, 94: p. 3443–50.

    Article  Google Scholar 

  22. Dobelle WH, Mladejovsky MG (1974), Phosphenes produced by electrical stimulation of the visual cortex, and their application to the development of a prosthesis for the blind. J Physiol (London), 243: p. 553–76.

    Google Scholar 

  23. Dobelle WH, et al. (1976) Braille reading by a blind volunteer by visual cortex stimulation. Nature (London), 259: p. 111–2.

    Article  Google Scholar 

  24. Dobelle WH (2000), Artificial vision for the blind by connecting a television camera to the visual cortex. ASAIO J, 46: p. 3–9.

    Article  Google Scholar 

  25. Duret F, Brelen M, Lambert V, et al. (2006), Object localization, discrimination, and grasping with the optic nerve visual prosthesis. Restor Neurol Neurosci, 24: p. 31–40.

    Google Scholar 

  26. Fang X, Sakaguchi H, Fujikado T, et al. (2006), Electrophysiological and histological studies of chronically implanted intrapapillary microelectrodes in rabbit eyes. Graefe’s Arch Clin Exp Ophthalmol, 244(3): p. 364–75.

    Article  Google Scholar 

  27. Foerster O (1929), Beitrage zur Pathophysiologie der Sehbahn und der Sehsphare. J Psychol Neurol Lpz, 39: p. 463–85.

    Google Scholar 

  28. Grill WM Jr, Mortimer JT (1996), Quantification of recruitment properties of multiple contact cuff electrodes. IEEE Trans Rehabil Eng, 4(2): p. 49–62.

    Article  Google Scholar 

  29. Hambrecht FT (1995), Visual prostheses based on direct interfaces with the visual system. Brailliere’s Clin Neurol, 4(1): p. 147–65.

    Google Scholar 

  30. Heiduschka P, Fischer D, Thanos S (2005), Recovery of visual evoked potentials after regeneration of cut retinal ganglion cell axons within the ascending visual pathway in adult rats. Restor Neurol Neurosci, 23: p. 303–12.

    Google Scholar 

  31. House PA, MacDonald JD, Tresco PA, Normann RA (2006), Acute microelectrode array implantation into human neocortes: preliminary technique and histological considerations. Neurosurg Focus, 20(5): p. E4.

    Google Scholar 

  32. http://neural.iit.edu/technology.htm

  33. Kim S, Tathireddy P, Norman RA, Solzbacher F (2007), Thermal impact of an active microelectrode array implanted in the brain. IEEE Trans Neural Syst Rehabil Eng, 15(4): p. 493–501.

    Article  Google Scholar 

  34. Krause F (1924), Die Sehbahnen in chirurgischer Beziehung und die faradische Reizung des Sehzentrums. Klin Wochenschr, 3: p. 1260–5.

    Article  Google Scholar 

  35. Maynard EM, Fernandez E, Normann RA (2000), A technique to prevent dural adhesions to chronically implanted microelectrode arrays. J Neurosci Methods, 97(2): p. 93–101.

    Article  Google Scholar 

  36. Najafi K, Ghovanloo M (2004), A multichannel monolithic wireless microstimulator. Conf Proc IEEE Eng Med Biol Soc, 6: p. 4197–200.

    Google Scholar 

  37. Normann RA, Maynard EM, Rousche PJ, Warren DJ (1999), A neural interface for a cortical vision prosthesis. Vision Res, 39(15): p. 2577–87.

    Article  Google Scholar 

  38. Penfield W, Rasmussen T (1952), The Cerebral Cortex of Man. New York: Macmillan, p. 135–47, 165–6.

    Google Scholar 

  39. Penfield W, Jasper H (1954), Epilepsy and functional anatomy of the human brain. London: Churchill, p. 116–6, 404–40.

    Google Scholar 

  40. Pezaris JS, Reid RC (2007), Demonstration of artificial percepts generated through thalamic stimulation. Proc Natl Acad Sci USA, 104(18): p. 7670–5.

    Article  Google Scholar 

  41. Ren Q, Zhang L, Shao F, et al. (2007), Development of C-Sight visual prosthesis based on optic nerve stimulation with penetrating electrode array. Invest Ophthalmol Vis Sci, 48: p. 661, E-Abstract.

    Article  Google Scholar 

  42. Rousche PJ, Norman RA (1992), A method for pneumatically inserting an array of penetrating electrodes into cortical tissue. Ann Biomed Eng, 20(4): p. 413–22.

    Article  Google Scholar 

  43. Sawan M, Trepanier A, Trepanier J-L, et al. (2006), A new CMOS multimode digital pixel sensor dedicated to an implantable visual cortical stimulator. Anal Integ Cir Sig Proc, 49(2): p. 925–1030.

    Google Scholar 

  44. Schmidt EM, Bak MJ, Hambrecht, FT, Kufta CV, et al. (1996), Feasibility of a visual prosthesis for the blind based on intracortical microstimulation of the visual cortex. Brain, 119: p. 507–22.

    Article  Google Scholar 

  45. Shaw JD (1955), Method and mean for aiding the blind. United States Patent Number 2,721,316.

    Google Scholar 

  46. Stoney SD Jr, Thompson WD, Asanuma H (1968), Excitation of pyramidal tract cells by intracortical microstimulation: effective extent of stimulating current. J Neurophysiol, 31(5): p. 659–69.

    Google Scholar 

  47. Tehovnik EJ, Slocum WM, Carvey CE, et al. (2005), Phosphene induction and the generation of saccadic eye movements by striate cortex. J Neurophysiol, 93: 1–19.

    Article  Google Scholar 

  48. Tehovnik EJ, Slocum WM (2007), Phosphene induction by microstimulation of macaque V1. Brain Res Rev, 53(2): p. 337–43.

    Article  Google Scholar 

  49. Troyk PR, Bak M, Berg J, Bradley D, et al. (2003), A model for intracortical visual prosthesis research. Artif Organs, 27(11): p. 1005–15.

    Article  Google Scholar 

  50. Troyk PR, Detiefsen DE, Cogan SF, et al. (2004), “Safe” charge-injection waveforms for iridium oxide (AIROF) microelectrodes. Conf Proc IEEE Eng Med Bio Soc, 6: p. 4141–4.

    Google Scholar 

  51. Veraart C, Grill WM, Mortimer, JT (1993), Selective control of muscle activation with a multipolar nerve cuff electrode. IEEE Trans Biomedical Eng, 40(7): p. 649–53.

    Article  Google Scholar 

  52. Veraart C, Raftopoulos C, Mortimer JT, et al. (1998), Visual sensations produced by optic nerve stimulation using an implanted self-sizing spiral cuff electrode. Brain Res, 813: p. 181–6.

    Article  Google Scholar 

  53. Veraart C, Wanet-Defalque MC, Gerard B, et al. (2003), Pattern recognition with the optic nerve visual prosthesis. Artif Organs, 27: p. 996–1004.

    Article  Google Scholar 

  54. Yao Y, Gulari M, Hetke J, Wise K (2004), A low-profile neural stimulating array with on-chip current generation. Conf Proc IEEE Eng Med Soc, 3: p. 1994–7.

    Google Scholar 

  55. Yao Y, Gulari MN, Ghimire S, et al. (2005), A low-profile three-dimensional silicon/parylene stimulating electrode array for neural prosthesis applications. Conf Proc IEEE Eng Med Soc, 2: p. 1293–6.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward M. Schmidt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Schmidt, E.M. (2011). Findings from Chronic Optic Nerve and Cortical Stimulation. In: Dagnelie, G. (eds) Visual Prosthetics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0754-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0754-7_15

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-0753-0

  • Online ISBN: 978-1-4419-0754-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics