Findings from Chronic Optic Nerve and Cortical Stimulation

  • Edward M. Schmidt


This chapter reviews the experiments that have produced visual sensations in humans through electrical stimulation of the central nervous system. Initially, surface stimulation of the visual cortex, provided insight into how electrical stimulation of V1 could possibly provide a visual prosthesis for the blind. Intracortical microstimulation was then investigated that would allow lower power stimulation and increased density of microelectrodes. The stimulation of the optic nerve has also been investigated as a possible site for a visual prosthesis.

The next section is dedicated to what is known and what needs to be done for the development of a visual prosthesis.

The following section examines current research efforts directed towards the development of a visual prosthesis. They include optic nerve stimulation, cortical surface stimulation and intracortical stimulation of visual cortex. The CORTIVIS Program is a comprehensive development of an intracortical visual prosthesis. The lateral geniculate nucleus is also being studied as a site for a visual prosthesis.

The final section of this chapter deals with the developments that are needed for a functional visual prosthesis. They include microelectrode arrays, stimulation hardware, and low power image sensing and processing circuitry that can control the stimulators.


Optic Nerve Visual Cortex Electrode Array Lateral Geniculate Nucleus Microelectrode Array 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Two dimensional


Three dimensional


EIC laboratories


Huntington Medical Research Institute


Intracortical microstimulation


Illinois Institute of Technology


Lateral geniculate nucleus


Multimode digital image sensor


Massachusetts Institute of Technology


National Institutes of Health


New York


University of Chicago


  1. 1.
    Ahnelt P, Ammermuller J, Pelayo F, et al. (2002), Neuroscientific basis for the design and development of a bioinspired visual processing front-end. EMBEC Abstract, p. 1692–3.Google Scholar
  2. 2.
    Asanuma H, Stoney SD Jr, Abzug C (1968), Relationship between afferent input and motor outflow in cat motorsensory cortex. J Neurophysiol, 31(5): p. 670–81.Google Scholar
  3. 3.
    Bak M, Girvin JP, Hambrecht FT, et al. (1990), Visual sensations produced by intracortical microstimulation of the human occipital cortex. Med Biol Eng Comput, 28: p. 257–9.CrossRefGoogle Scholar
  4. 4.
    Bartlett JR, Doty RW (1980), An exploration of the ability of macaques to detect microstimulation of striate cortex. Acta Neurobiol Exp (Wars), 40(4): p. 713–27.Google Scholar
  5. 5.
    Bartlett JR, DeYoe EA, Doty RW, et al. (2005), Psychophysics of electrical stimulation of striate cortex in macaques. J Neurophysiol, 94: p. 3430–42.CrossRefGoogle Scholar
  6. 6.
    Bradley DC, Troyk PR, Berg JA, et al. (2005), Visuotopic mapping through a multichannel stimulating implant in primate V1. Neurophysiol, 93(3): p. 1659–70.CrossRefGoogle Scholar
  7. 7.
    Branner A, Stein RB, Normann RA (2001), Selective stimulation of cat sciatic nerve using an array of varying-length microelectrodes. J Neurophysiol, 85(4): p. 1585–94.Google Scholar
  8. 8.
    Brelen ME, DePotter P, Gersdorff M, et al. (2006), Intraorbital implantation of a stimulating electrode for an optic nerve visual prosthesis. Neurosurg, 104(4): p. 593–7.CrossRefGoogle Scholar
  9. 9.
    Brindley GS, Lewin WS (1968) The sensations produced by electrical stimulation of the visual cortex. J Physiol (London), 196: p. 479–93.Google Scholar
  10. 10.
    Buffoni LX, Coulombe J, Sawan M (2005), Image processing strategies dedicated to visual cortical stimulators: a survey. Artif Organs, 29(8): p. 658–64.CrossRefGoogle Scholar
  11. 11.
    Button J, Putnam T (1962), Visual response to cortical stimulation in the blind. J Iowa Med Soc, 52: p. 17–21.Google Scholar
  12. 12.
    Chai X, Li L, Wu K, et al. (2008), C-Sight visual prosthesis for the blind. IEEE BMES, 27(5): p. 20–8.Google Scholar
  13. 13.
    Chai X, Yu W, Wang J, et al. (2006), Recognition of pixelized Chinese characters using simulated prosthetic vision. Artif Organ, 31: p. 175.CrossRefGoogle Scholar
  14. 14.
    Chai X, Zhang L, Li W, et al. (2007), Tactile based phosphene positioning system for visual prosthesis. Invest Opthalmol Vis Sci, 48(5): p. 662, E-Abstract.Google Scholar
  15. 15.
    Chai X, Zhang L, Li W, et al. (2008), Study of tactile perception based on phosphene positioning using simulated prosthetic vision. Artif Organs, 32(2): p. 110–5.CrossRefGoogle Scholar
  16. 16.
    Chowdhury V, Morley JW, Coroneo MT (2004), Surface stimulation of the brain with a prototype array for a visual cortex prosthesis. J Clin Neurosci, 11(7): p. 750–5.CrossRefGoogle Scholar
  17. 17.
    Chowdhury V, Morley JW, Coroneo MT (2004), An in-vivo paradigm for the evaluation of stimulating electrodes for use with a visual prosthesis. ANZ J Surg, 74: p. 372–8.CrossRefGoogle Scholar
  18. 18.
  19. 19.
    Coulombe J, Carniguian S, Sawan M (2005), A power efficient electronic implant for a visual cortical prosthesis. Artif Organs, 29(3): p. 233–8.CrossRefGoogle Scholar
  20. 20.
    Delbeke J, Wanet-Defalque MC, Gerard B, et al. (2002), The microsystems based visual prosthesis for optic nerve stimulation. Artif Organs, 26(3): p. 232–4.CrossRefGoogle Scholar
  21. 21.
    DeYoe EA, Lewine JD, Doty RW (2005), Laminar variations in threshold for detection of electrical excitation of striate cortex by macaques. J Neurophysiol, 94: p. 3443–50.CrossRefGoogle Scholar
  22. 22.
    Dobelle WH, Mladejovsky MG (1974), Phosphenes produced by electrical stimulation of the visual cortex, and their application to the development of a prosthesis for the blind. J Physiol (London), 243: p. 553–76.Google Scholar
  23. 23.
    Dobelle WH, et al. (1976) Braille reading by a blind volunteer by visual cortex stimulation. Nature (London), 259: p. 111–2.CrossRefGoogle Scholar
  24. 24.
    Dobelle WH (2000), Artificial vision for the blind by connecting a television camera to the visual cortex. ASAIO J, 46: p. 3–9.CrossRefGoogle Scholar
  25. 25.
    Duret F, Brelen M, Lambert V, et al. (2006), Object localization, discrimination, and grasping with the optic nerve visual prosthesis. Restor Neurol Neurosci, 24: p. 31–40.Google Scholar
  26. 26.
    Fang X, Sakaguchi H, Fujikado T, et al. (2006), Electrophysiological and histological studies of chronically implanted intrapapillary microelectrodes in rabbit eyes. Graefe’s Arch Clin Exp Ophthalmol, 244(3): p. 364–75.CrossRefGoogle Scholar
  27. 27.
    Foerster O (1929), Beitrage zur Pathophysiologie der Sehbahn und der Sehsphare. J Psychol Neurol Lpz, 39: p. 463–85.Google Scholar
  28. 28.
    Grill WM Jr, Mortimer JT (1996), Quantification of recruitment properties of multiple contact cuff electrodes. IEEE Trans Rehabil Eng, 4(2): p. 49–62.CrossRefGoogle Scholar
  29. 29.
    Hambrecht FT (1995), Visual prostheses based on direct interfaces with the visual system. Brailliere’s Clin Neurol, 4(1): p. 147–65.Google Scholar
  30. 30.
    Heiduschka P, Fischer D, Thanos S (2005), Recovery of visual evoked potentials after regeneration of cut retinal ganglion cell axons within the ascending visual pathway in adult rats. Restor Neurol Neurosci, 23: p. 303–12.Google Scholar
  31. 31.
    House PA, MacDonald JD, Tresco PA, Normann RA (2006), Acute microelectrode array implantation into human neocortes: preliminary technique and histological considerations. Neurosurg Focus, 20(5): p. E4.Google Scholar
  32. 32.
  33. 33.
    Kim S, Tathireddy P, Norman RA, Solzbacher F (2007), Thermal impact of an active microelectrode array implanted in the brain. IEEE Trans Neural Syst Rehabil Eng, 15(4): p. 493–501.CrossRefGoogle Scholar
  34. 34.
    Krause F (1924), Die Sehbahnen in chirurgischer Beziehung und die faradische Reizung des Sehzentrums. Klin Wochenschr, 3: p. 1260–5.CrossRefGoogle Scholar
  35. 35.
    Maynard EM, Fernandez E, Normann RA (2000), A technique to prevent dural adhesions to chronically implanted microelectrode arrays. J Neurosci Methods, 97(2): p. 93–101.CrossRefGoogle Scholar
  36. 36.
    Najafi K, Ghovanloo M (2004), A multichannel monolithic wireless microstimulator. Conf Proc IEEE Eng Med Biol Soc, 6: p. 4197–200.Google Scholar
  37. 37.
    Normann RA, Maynard EM, Rousche PJ, Warren DJ (1999), A neural interface for a cortical vision prosthesis. Vision Res, 39(15): p. 2577–87.CrossRefGoogle Scholar
  38. 38.
    Penfield W, Rasmussen T (1952), The Cerebral Cortex of Man. New York: Macmillan, p. 135–47, 165–6.Google Scholar
  39. 39.
    Penfield W, Jasper H (1954), Epilepsy and functional anatomy of the human brain. London: Churchill, p. 116–6, 404–40.Google Scholar
  40. 40.
    Pezaris JS, Reid RC (2007), Demonstration of artificial percepts generated through thalamic stimulation. Proc Natl Acad Sci USA, 104(18): p. 7670–5.CrossRefGoogle Scholar
  41. 41.
    Ren Q, Zhang L, Shao F, et al. (2007), Development of C-Sight visual prosthesis based on optic nerve stimulation with penetrating electrode array. Invest Ophthalmol Vis Sci, 48: p. 661, E-Abstract.CrossRefGoogle Scholar
  42. 42.
    Rousche PJ, Norman RA (1992), A method for pneumatically inserting an array of penetrating electrodes into cortical tissue. Ann Biomed Eng, 20(4): p. 413–22.CrossRefGoogle Scholar
  43. 43.
    Sawan M, Trepanier A, Trepanier J-L, et al. (2006), A new CMOS multimode digital pixel sensor dedicated to an implantable visual cortical stimulator. Anal Integ Cir Sig Proc, 49(2): p. 925–1030.Google Scholar
  44. 44.
    Schmidt EM, Bak MJ, Hambrecht, FT, Kufta CV, et al. (1996), Feasibility of a visual prosthesis for the blind based on intracortical microstimulation of the visual cortex. Brain, 119: p. 507–22.CrossRefGoogle Scholar
  45. 45.
    Shaw JD (1955), Method and mean for aiding the blind. United States Patent Number 2,721,316.Google Scholar
  46. 46.
    Stoney SD Jr, Thompson WD, Asanuma H (1968), Excitation of pyramidal tract cells by intracortical microstimulation: effective extent of stimulating current. J Neurophysiol, 31(5): p. 659–69.Google Scholar
  47. 47.
    Tehovnik EJ, Slocum WM, Carvey CE, et al. (2005), Phosphene induction and the generation of saccadic eye movements by striate cortex. J Neurophysiol, 93: 1–19.CrossRefGoogle Scholar
  48. 48.
    Tehovnik EJ, Slocum WM (2007), Phosphene induction by microstimulation of macaque V1. Brain Res Rev, 53(2): p. 337–43.CrossRefGoogle Scholar
  49. 49.
    Troyk PR, Bak M, Berg J, Bradley D, et al. (2003), A model for intracortical visual prosthesis research. Artif Organs, 27(11): p. 1005–15.CrossRefGoogle Scholar
  50. 50.
    Troyk PR, Detiefsen DE, Cogan SF, et al. (2004), “Safe” charge-injection waveforms for iridium oxide (AIROF) microelectrodes. Conf Proc IEEE Eng Med Bio Soc, 6: p. 4141–4.Google Scholar
  51. 51.
    Veraart C, Grill WM, Mortimer, JT (1993), Selective control of muscle activation with a multipolar nerve cuff electrode. IEEE Trans Biomedical Eng, 40(7): p. 649–53.CrossRefGoogle Scholar
  52. 52.
    Veraart C, Raftopoulos C, Mortimer JT, et al. (1998), Visual sensations produced by optic nerve stimulation using an implanted self-sizing spiral cuff electrode. Brain Res, 813: p. 181–6.CrossRefGoogle Scholar
  53. 53.
    Veraart C, Wanet-Defalque MC, Gerard B, et al. (2003), Pattern recognition with the optic nerve visual prosthesis. Artif Organs, 27: p. 996–1004.CrossRefGoogle Scholar
  54. 54.
    Yao Y, Gulari M, Hetke J, Wise K (2004), A low-profile neural stimulating array with on-chip current generation. Conf Proc IEEE Eng Med Soc, 3: p. 1994–7.Google Scholar
  55. 55.
    Yao Y, Gulari MN, Ghimire S, et al. (2005), A low-profile three-dimensional silicon/parylene stimulating electrode array for neural prosthesis applications. Conf Proc IEEE Eng Med Soc, 2: p. 1293–6.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.National Institutes of HealthBethesdaUSA

Personalised recommendations