Skip to main content

The Human Visual System: An Engineering Perspective

  • Chapter
  • First Online:
Book cover Visual Prosthetics
  • 1613 Accesses

Abstract

This chapter provides a brief introduction to the architecture and function of the healthy visual system. Particular emphasis is placed on the diverse capabilities of the visual system that visual prosthesis researchers may want to emulate, to provide the reader with a realistic sense of the daunting challenges facing workers in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CCD:

Charge-coupled device

COS:

Cone outer segment

HL:

Henle fiber layer

INL:

Inner nuclear layer

LGN:

Lateral geniculate nucleus

NOT:

Nucleus of the optic tract

ONL:

Outer nuclear layer

RPE:

Retinal pigment epithelium

SC:

Superior colliculus

TN:

Terminal nucleus

V1:

Primary visual cortex, striate cortex

V2:

Secondary visual cortex, peristriate/extrastriate cortex

References

  1. Ahnelt PK (1998), The photoreceptor mosaic. Eye (Lond), 12(Pt 3b): p. 531–40.

    Google Scholar 

  2. Ahnelt PK, Kolb H (2000), The mammalian photoreceptor mosaic-adaptive design. Prog Retin Eye Res, 19(6): p. 711–77.

    Article  Google Scholar 

  3. Ahuja AK, Dorn JD, Caspi A, et al. (2010). Subjects Implanted With the Argus™ II Retinal Prosthesis Are Able to Improve Performance in a Spatial-Motor Task. in ARVO Annual Mtg.

    Google Scholar 

  4. Arend LE, Timberlake GT (1986), What is psychophysically perfect image stabilization? Do perfectly stabilized images always disappear? J Opt Soc Am A, 3(2): p. 235–41.

    Article  Google Scholar 

  5. Barry MP, Dagnelie G, Group AIS (2010), Use of the Argus™ II Retinal Prosthesis to Improve Visual Guidance of Fine Hand Motion. in ARVO Annual Mtg.

    Google Scholar 

  6. Battaglini PP, Galletti C, Fattori P (1993), Functional properties of neurons in area V1 of awake macaque monkeys: peripheral versus central visual field representation. Arch Ital Biol, 131(4): p. 303–15.

    Google Scholar 

  7. Baylor DA (1987), Photoreceptor signals and vision. Proctor lecture. Invest Ophthalmol Vis Sci, 28(1): p. 34–49.

    Google Scholar 

  8. Bickford ME, Ramcharan E, Godwin DW, et al. (2000), Neurotransmitters contained in the subcortical extraretinal inputs to the monkey lateral geniculate nucleus. J Comp Neurol, 424(4): p. 701–17.

    Article  Google Scholar 

  9. Birch EE, Swanson WH (2000), Hyperacuity deficits in anisometropic and strabismic amblyopes with known ages of onset. Vision Res, 40(9): p. 1035–40.

    Article  Google Scholar 

  10. Bok D (1993), The retinal pigment epithelium: a versatile partner in vision. J Cell Sci Suppl, 17: p. 189–95.

    Google Scholar 

  11. Brindley GS, Gautier-Smith PC, Lewin W (1969), Cortical blindness and the functions of the non-geniculate fibres of the optic tracts. J Neurol Neurosurg Psychiatry, 32(4): p. 259–64.

    Article  Google Scholar 

  12. Buser P, Imbert M (1992), Vision. Cambridge, MA: MIT Press.

    Google Scholar 

  13. Coleman AL (1999), Glaucoma. Lancet, 354(9192): p. 1803–10.

    Article  Google Scholar 

  14. Cowey A, Johnson H, Stoerig P (2001), The retinal projection to the pregeniculate nucleus in normal and destriate monkeys. Eur J Neurosci, 13(2): p. 279–90.

    Article  Google Scholar 

  15. Cowey A, Stoerig P, Bannister M (1994), Retinal ganglion cells labelled from the pulvinar nucleus in macaque monkeys. Neuroscience, 61(3): p. 691–705.

    Article  Google Scholar 

  16. Curcio CA, Allen KA (1990), Topography of ganglion cells in human retina. J Comp Neurol, 300(1): p. 5–25.

    Article  Google Scholar 

  17. Curcio CA, Sloan KR (1992), Packing geometry of human cone photoreceptors: variation with eccentricity and evidence for local anisotropy. Vis Neurosci, 9(2): p. 169–80.

    Article  Google Scholar 

  18. da Cruz L, Coley B, Christopher P, et al. (2010). Patients Blinded by Outer Retinal Dystrophies Are Able to Identify Letters Using the Argus™ II Retinal Prosthesis System. in ARVO Annual Mtg.

    Google Scholar 

  19. Dagnelie G, Margalit E (2004), The visual system as a neuroprosthesis substrate: Anatomy, physiology, function, in Neuroprosthetics, theory and practice, Horch KW, Dillon G, Editors. World Scientific Press: Singapore. p. 235–59.

    Chapter  Google Scholar 

  20. Daniel PM, Whitteridge D (1961), The representation of the visual field on the cerebral cortex in monkeys. J Physiol, 159: p. 203–21.

    Google Scholar 

  21. Daroff R, Neetens A (1990), Neurological organization of ocular movement. Berkeley, CA: Kugler.

    Google Scholar 

  22. Daw NW (1995), Visual Development. New York, NY: Plenum Press.

    Google Scholar 

  23. Distler C, Hoffmann KP (2001), Cortical input to the nucleus of the optic tract and dorsal terminal nucleus (NOT-DTN) in macaques: a retrograde tracing study. Cereb Cortex, 11(6): p. 572–80.

    Article  Google Scholar 

  24. Dowling JE (1987), The retina: an approachable part of the brain. Cambridge, MA: Belknap Press.

    Google Scholar 

  25. Eckmiller M (1997), Morphogenesis and renewal of cone outer segments. Progr Ret Eye Res, 16: p. 401–41.

    Article  Google Scholar 

  26. Fine EM, Rubin GS (1999), Reading with central field loss: number of letters masked is more important than the size of the mask in degrees. Vision Res, 39(4): p. 747–56.

    Article  Google Scholar 

  27. Fitzgibbon T, Taylor SF (1996), Retinotopy of the human retinal nerve fibre layer and optic nerve head. J Comp Neurol, 375(2): p. 238–51.

    Article  Google Scholar 

  28. Frennesson C, Jakobsson P, Nilsson UL (1995), A computer and video display based system for training eccentric viewing in macular degeneration with an absolute central scotoma. Doc Ophthalmol, 91(1): p. 9–16.

    Article  Google Scholar 

  29. Freund JH (1973), Neuronal mechanisms of the lateral geniculate body, in Handbook of sensory physiology, Jung R, Editor. Springer: Berlin. p. 177–246.

    Google Scholar 

  30. Fulcher T, O’Keefe M, Bowell R, et al. (1995), Intellectual and educational attainment in albinism. J Pediatr Ophthalmol Strabismus, 32(6): p. 368–72.

    Google Scholar 

  31. Giolli RA, Blanks RH, Lui F (2006), The accessory optic system: basic organization with an update on connectivity, neurochemistry, and function. Prog Brain Res, 151: p. 407–40.

    Article  Google Scholar 

  32. Gray R, Regan D (1996), Cyclopean motion perception produced by oscillations of size, disparity and location. Vision Res, 36(5): p. 655–65.

    Article  Google Scholar 

  33. Hoffmann KP (1996), Comparative neurobiology of the optokinetic reflex in mammals. Rev Bras Biol, 56S1(2): p. 303–14.

    Google Scholar 

  34. Horton JC, Hoyt WF (1991), The representation of the visual field in human striate cortex. A revision of the classic Holmes map. Arch Ophthalmol, 109(6): p. 816–24.

    Google Scholar 

  35. Inoue Y, Takemura A, Kawano K, Mustari MJ (2000), Role of the pretectal nucleus of the optic tract in short-latency ocular following responses in monkeys. Exp Brain Res, 131(3): p. 269–81.

    Article  Google Scholar 

  36. Jindrova H (1998), Vertebrate phototransduction: activation, recovery, and adaptation. Physiol Res, 47(3): p. 155–68.

    Google Scholar 

  37. Jonas JB, Schmidt AM, Muller-Bergh JA, et al. (1992), Human optic nerve fiber count and optic disc size. Invest Ophthalmol Vis Sci, 33(6): p. 2012–8.

    Google Scholar 

  38. Kimble TD, Williams RW (2000), Structure of the cone photoreceptor mosaic in the retinal periphery of adult humans: analysis as a function of age, sex, and hemifield. Anat Embryol (Berl), 201(4): p. 305–16.

    Article  Google Scholar 

  39. Kolb H, Fernandez E, Nelson R (2009), Facts and figures concerning the Human Retina, in WebVision – The Organization of the Retina and the Visual System, Jones BW, Editor. http://webvision.med.utah.edu/Facts.html: Salt Lake City, UT.

  40. Legge GE, Rubin GS, Pelli DG, Schleske MM (1985), Psychophysics of reading-II. Low vision. Vision Res, 25(2): p. 253–65.

    Article  Google Scholar 

  41. Livingstone MS, Pack CC, Born RT (2001), Two-dimensional substructure of MT receptive fields. Neuron, 30(3): p. 781–93.

    Article  Google Scholar 

  42. Massof RW, Dagnelie G, Benzschawel T, et al. (1990), First order dynamics of visual field loss in retinitis pigmentosa. Clin Vision Sciences, 5: p. 1–26.

    Google Scholar 

  43. Mustari MJ, Fuchs AF (1989), Response properties of single units in the lateral terminal nucleus of the accessory optic system in the behaving primate. J Neurophysiol, 61(6): p. 1207–20.

    Google Scholar 

  44. O’Connell WF (1996), Eccentric viewing, in Remediation and management of low vision, Cole RG, Rosenthal BP, Editors. Mosby: St. Louis, MO. p. 27–57.

    Google Scholar 

  45. Osterberg G (1935), Topography of the layer of rods and cones in the human retina. Acta Ophthalmol Scand, 13(S6): p. 11–103.

    Google Scholar 

  46. Polyak SL (1957), The vertebrate visual system, ed. Kluver H. Chicago, IL: Univ of Chicago Press.

    Google Scholar 

  47. Portfors-Yeomans CV, Regan D (1996), Cyclopean discrimination thresholds for the direction and speed of motion in depth. Vision Res, 36(20): p. 3265–79.

    Article  Google Scholar 

  48. Remington RW (1980), Attention and saccadic eye movements. J Exp Psychol Hum Percept Perform, 6(4): p. 726–44.

    Article  Google Scholar 

  49. Rizzo M, Barton JJS (2001), Retrochiasmal visual pathways and higher cortical function, in Duane’s clinical ophthalmology, Tasman W, Jaeger EA, Editors. Lippincott Williams & Wilkins: Philadelphia, PA. p. Ch. 7.

    Google Scholar 

  50. Robinson DA (1968), Eye movement control in primates. The oculomotor system contains specialized subsystems for acquiring and tracking visual targets. Science, 161(847): p. 1219–24.

    Article  Google Scholar 

  51. Sadun AA, Glaser JS (2001), Anatomy of the visual sensory system, in Duane’s clinical ophthalmology, Tasman W, Jaeger EA, Editors. Lippincott Williams & Wilkins: Philadelphia, PA. p. Ch. 4.

    Google Scholar 

  52. Santos A, Humayun MS, de Juan Jr. E, et al. (1997), Preservation of the inner retina in retinitis pigmentosa. Arch Ophthalmol, 115: p. 511–5.

    Google Scholar 

  53. Schroeder CE, Tenke CE, Arezzo JC, Vaughan HG, Jr. (1990), Binocularity in the lateral geniculate nucleus of the alert macaque. Brain Res, 521(1–2): p. 303–10.

    Article  Google Scholar 

  54. Shannon RV, Zeng FG, Kamath V, et al. (1995), Speech recognition with primarily temporal cues. Science, 270: p. 303–4.

    Article  Google Scholar 

  55. Singer W (1990), The formation of cooperative cell assemblies in the visual cortex. J Exp Biol, 153: p. 177–97.

    Google Scholar 

  56. Sjostrand J, Olsson V, Popovic Z, Conradi N (1999), Quantitative estimations of foveal and extra-foveal retinal circuitry in humans. Vision Res, 39(18): p. 2987–98.

    Article  Google Scholar 

  57. Tripathi RC, Tripathi BJ (1984), Anatomy of the human eye, orbit & adnexa, in The Eye, Vol. 1A, Vegetative Physiology and Biochemistry, Davson H, Editor. Academic Press: San Diego, CA. p. 1–268.

    Google Scholar 

  58. Tusa RJ (1990), Saccadic eye movements. Supranuclear control, in Neurological organization of ocular movement, Daroff R, Neetens A, Editors. Kugler: Berkeley, CA. p. 67–111.

    Google Scholar 

  59. Valvo A (1971), Sight restoration after long-term blindness: the problems and behavior patterns of visual rehabilitation. New York: American Foundation for the Blind.

    Google Scholar 

  60. van de Grind WA, Koenderink JJ, van Doorn AJ (2000), Motion detection from photopic to low scotopic luminance levels. Vision Res, 40(2): p. 187–99.

    Article  Google Scholar 

  61. Van Essen DC, Lewis JW, Drury HA, et al. (2001), Mapping visual cortex in monkeys and humans using surface-based atlases. Vision Res, 41(10–11): p. 1359–78.

    Google Scholar 

  62. Waltzman SB, Cohen NL, Gomolin RH, et al. (1994), Long-term results of early cochlear implantation in congenitally and prelingually deafened children. Am J Otol, 15 (Suppl 2): p. 9–13.

    Google Scholar 

  63. Westheimer G (1994), The Ferrier Lecture, 1992. Seeing depth with two eyes: stereopsis. Proc Biol Sci, 257(1349): p. 205–14.

    Google Scholar 

  64. Wilson HR, Mets MB, Nagy SE, Kressel AB (1988), Albino spatial vision as an instance of arrested visual development. Vision Res, 28(9): p. 979–90.

    Article  Google Scholar 

  65. Wolffe M (1995), Role of peripheral vision in terms of critical perception – its relevance to the visually impaired. Ophthalmic Physiol Opt, 15(5): p. 471–4.

    Article  Google Scholar 

  66. Wyszecki G, Stiles WS (1982), Color science (2nd ed.). New York: Wiley.

    Google Scholar 

  67. Yau KW, Baylor DA (1989), Cyclic GMP-activated conductance of retinal photoreceptor cells. Ann Rev Neurosci, 12: p. 289–327.

    Article  Google Scholar 

  68. Yuodelis C, Hendrickson A (1985), A qualitative and quantitative analysis of the human fovea during development. Vision Res, 26: p. 847–55.

    Article  Google Scholar 

  69. Zanker J, Mohn G, Weber U, et al. (1992), The development of vernier acuity in human infants. Vision Res, 32(8): p. 1557–64.

    Article  Google Scholar 

  70. Zrenner E (2009). Blind retinitis pigmentosa patients can read letters and recognize the direction of fine stripe patterns with subretinal electronic implants. in ARVO Annual Mtg.

    Google Scholar 

  71. Zrenner E, Miliczek KD, Gabel VP, et al. (1997), The development of subretinal microphotodiodes for replacement of degenerated photoreceptors. Ophthalmic Res, 29(5): p. 269–80.

    Article  Google Scholar 

Download references

Acknowledgment

Supported in part by PHS grant # EY019991. This chapter is an adaptation of parts of an earlier chapter. [19] The author wishes to acknowledge the contributions of Eyal Margalit, M.D., who co-authored that chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gislin Dagnelie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Dagnelie, G. (2011). The Human Visual System: An Engineering Perspective. In: Dagnelie, G. (eds) Visual Prosthetics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0754-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0754-7_1

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-0753-0

  • Online ISBN: 978-1-4419-0754-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics