The Human Visual System: An Engineering Perspective

  • Gislin Dagnelie


This chapter provides a brief introduction to the architecture and function of the healthy visual system. Particular emphasis is placed on the diverse capabilities of the visual system that visual prosthesis researchers may want to emulate, to provide the reader with a realistic sense of the daunting challenges facing workers in this field.


Optic Nerve Retinal Pigment Epithelium Retinal Ganglion Cell Human Visual System Optic Nerve Head 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Charge-coupled device


Cone outer segment


Henle fiber layer


Inner nuclear layer


Lateral geniculate nucleus


Nucleus of the optic tract


Outer nuclear layer


Retinal pigment epithelium


Superior colliculus


Terminal nucleus


Primary visual cortex, striate cortex


Secondary visual cortex, peristriate/extrastriate cortex



Supported in part by PHS grant # EY019991. This chapter is an adaptation of parts of an earlier chapter. [19] The author wishes to acknowledge the contributions of Eyal Margalit, M.D., who co-authored that chapter.


  1. 1.
    Ahnelt PK (1998), The photoreceptor mosaic. Eye (Lond), 12(Pt 3b): p. 531–40.Google Scholar
  2. 2.
    Ahnelt PK, Kolb H (2000), The mammalian photoreceptor mosaic-adaptive design. Prog Retin Eye Res, 19(6): p. 711–77.CrossRefGoogle Scholar
  3. 3.
    Ahuja AK, Dorn JD, Caspi A, et al. (2010). Subjects Implanted With the Argus™ II Retinal Prosthesis Are Able to Improve Performance in a Spatial-Motor Task. in ARVO Annual Mtg.Google Scholar
  4. 4.
    Arend LE, Timberlake GT (1986), What is psychophysically perfect image stabilization? Do perfectly stabilized images always disappear? J Opt Soc Am A, 3(2): p. 235–41.CrossRefGoogle Scholar
  5. 5.
    Barry MP, Dagnelie G, Group AIS (2010), Use of the Argus™ II Retinal Prosthesis to Improve Visual Guidance of Fine Hand Motion. in ARVO Annual Mtg.Google Scholar
  6. 6.
    Battaglini PP, Galletti C, Fattori P (1993), Functional properties of neurons in area V1 of awake macaque monkeys: peripheral versus central visual field representation. Arch Ital Biol, 131(4): p. 303–15.Google Scholar
  7. 7.
    Baylor DA (1987), Photoreceptor signals and vision. Proctor lecture. Invest Ophthalmol Vis Sci, 28(1): p. 34–49.Google Scholar
  8. 8.
    Bickford ME, Ramcharan E, Godwin DW, et al. (2000), Neurotransmitters contained in the subcortical extraretinal inputs to the monkey lateral geniculate nucleus. J Comp Neurol, 424(4): p. 701–17.CrossRefGoogle Scholar
  9. 9.
    Birch EE, Swanson WH (2000), Hyperacuity deficits in anisometropic and strabismic amblyopes with known ages of onset. Vision Res, 40(9): p. 1035–40.CrossRefGoogle Scholar
  10. 10.
    Bok D (1993), The retinal pigment epithelium: a versatile partner in vision. J Cell Sci Suppl, 17: p. 189–95.Google Scholar
  11. 11.
    Brindley GS, Gautier-Smith PC, Lewin W (1969), Cortical blindness and the functions of the non-geniculate fibres of the optic tracts. J Neurol Neurosurg Psychiatry, 32(4): p. 259–64.CrossRefGoogle Scholar
  12. 12.
    Buser P, Imbert M (1992), Vision. Cambridge, MA: MIT Press.Google Scholar
  13. 13.
    Coleman AL (1999), Glaucoma. Lancet, 354(9192): p. 1803–10.CrossRefGoogle Scholar
  14. 14.
    Cowey A, Johnson H, Stoerig P (2001), The retinal projection to the pregeniculate nucleus in normal and destriate monkeys. Eur J Neurosci, 13(2): p. 279–90.CrossRefGoogle Scholar
  15. 15.
    Cowey A, Stoerig P, Bannister M (1994), Retinal ganglion cells labelled from the pulvinar nucleus in macaque monkeys. Neuroscience, 61(3): p. 691–705.CrossRefGoogle Scholar
  16. 16.
    Curcio CA, Allen KA (1990), Topography of ganglion cells in human retina. J Comp Neurol, 300(1): p. 5–25.CrossRefGoogle Scholar
  17. 17.
    Curcio CA, Sloan KR (1992), Packing geometry of human cone photoreceptors: variation with eccentricity and evidence for local anisotropy. Vis Neurosci, 9(2): p. 169–80.CrossRefGoogle Scholar
  18. 18.
    da Cruz L, Coley B, Christopher P, et al. (2010). Patients Blinded by Outer Retinal Dystrophies Are Able to Identify Letters Using the Argus™ II Retinal Prosthesis System. in ARVO Annual Mtg.Google Scholar
  19. 19.
    Dagnelie G, Margalit E (2004), The visual system as a neuroprosthesis substrate: Anatomy, physiology, function, in Neuroprosthetics, theory and practice, Horch KW, Dillon G, Editors. World Scientific Press: Singapore. p. 235–59.CrossRefGoogle Scholar
  20. 20.
    Daniel PM, Whitteridge D (1961), The representation of the visual field on the cerebral cortex in monkeys. J Physiol, 159: p. 203–21.Google Scholar
  21. 21.
    Daroff R, Neetens A (1990), Neurological organization of ocular movement. Berkeley, CA: Kugler.Google Scholar
  22. 22.
    Daw NW (1995), Visual Development. New York, NY: Plenum Press.Google Scholar
  23. 23.
    Distler C, Hoffmann KP (2001), Cortical input to the nucleus of the optic tract and dorsal terminal nucleus (NOT-DTN) in macaques: a retrograde tracing study. Cereb Cortex, 11(6): p. 572–80.CrossRefGoogle Scholar
  24. 24.
    Dowling JE (1987), The retina: an approachable part of the brain. Cambridge, MA: Belknap Press.Google Scholar
  25. 25.
    Eckmiller M (1997), Morphogenesis and renewal of cone outer segments. Progr Ret Eye Res, 16: p. 401–41.CrossRefGoogle Scholar
  26. 26.
    Fine EM, Rubin GS (1999), Reading with central field loss: number of letters masked is more important than the size of the mask in degrees. Vision Res, 39(4): p. 747–56.CrossRefGoogle Scholar
  27. 27.
    Fitzgibbon T, Taylor SF (1996), Retinotopy of the human retinal nerve fibre layer and optic nerve head. J Comp Neurol, 375(2): p. 238–51.CrossRefGoogle Scholar
  28. 28.
    Frennesson C, Jakobsson P, Nilsson UL (1995), A computer and video display based system for training eccentric viewing in macular degeneration with an absolute central scotoma. Doc Ophthalmol, 91(1): p. 9–16.CrossRefGoogle Scholar
  29. 29.
    Freund JH (1973), Neuronal mechanisms of the lateral geniculate body, in Handbook of sensory physiology, Jung R, Editor. Springer: Berlin. p. 177–246.Google Scholar
  30. 30.
    Fulcher T, O’Keefe M, Bowell R, et al. (1995), Intellectual and educational attainment in albinism. J Pediatr Ophthalmol Strabismus, 32(6): p. 368–72.Google Scholar
  31. 31.
    Giolli RA, Blanks RH, Lui F (2006), The accessory optic system: basic organization with an update on connectivity, neurochemistry, and function. Prog Brain Res, 151: p. 407–40.CrossRefGoogle Scholar
  32. 32.
    Gray R, Regan D (1996), Cyclopean motion perception produced by oscillations of size, disparity and location. Vision Res, 36(5): p. 655–65.CrossRefGoogle Scholar
  33. 33.
    Hoffmann KP (1996), Comparative neurobiology of the optokinetic reflex in mammals. Rev Bras Biol, 56S1(2): p. 303–14.Google Scholar
  34. 34.
    Horton JC, Hoyt WF (1991), The representation of the visual field in human striate cortex. A revision of the classic Holmes map. Arch Ophthalmol, 109(6): p. 816–24.Google Scholar
  35. 35.
    Inoue Y, Takemura A, Kawano K, Mustari MJ (2000), Role of the pretectal nucleus of the optic tract in short-latency ocular following responses in monkeys. Exp Brain Res, 131(3): p. 269–81.CrossRefGoogle Scholar
  36. 36.
    Jindrova H (1998), Vertebrate phototransduction: activation, recovery, and adaptation. Physiol Res, 47(3): p. 155–68.Google Scholar
  37. 37.
    Jonas JB, Schmidt AM, Muller-Bergh JA, et al. (1992), Human optic nerve fiber count and optic disc size. Invest Ophthalmol Vis Sci, 33(6): p. 2012–8.Google Scholar
  38. 38.
    Kimble TD, Williams RW (2000), Structure of the cone photoreceptor mosaic in the retinal periphery of adult humans: analysis as a function of age, sex, and hemifield. Anat Embryol (Berl), 201(4): p. 305–16.CrossRefGoogle Scholar
  39. 39.
    Kolb H, Fernandez E, Nelson R (2009), Facts and figures concerning the Human Retina, in WebVision – The Organization of the Retina and the Visual System, Jones BW, Editor. Salt Lake City, UT.
  40. 40.
    Legge GE, Rubin GS, Pelli DG, Schleske MM (1985), Psychophysics of reading-II. Low vision. Vision Res, 25(2): p. 253–65.CrossRefGoogle Scholar
  41. 41.
    Livingstone MS, Pack CC, Born RT (2001), Two-dimensional substructure of MT receptive fields. Neuron, 30(3): p. 781–93.CrossRefGoogle Scholar
  42. 42.
    Massof RW, Dagnelie G, Benzschawel T, et al. (1990), First order dynamics of visual field loss in retinitis pigmentosa. Clin Vision Sciences, 5: p. 1–26.Google Scholar
  43. 43.
    Mustari MJ, Fuchs AF (1989), Response properties of single units in the lateral terminal nucleus of the accessory optic system in the behaving primate. J Neurophysiol, 61(6): p. 1207–20.Google Scholar
  44. 44.
    O’Connell WF (1996), Eccentric viewing, in Remediation and management of low vision, Cole RG, Rosenthal BP, Editors. Mosby: St. Louis, MO. p. 27–57.Google Scholar
  45. 45.
    Osterberg G (1935), Topography of the layer of rods and cones in the human retina. Acta Ophthalmol Scand, 13(S6): p. 11–103.Google Scholar
  46. 46.
    Polyak SL (1957), The vertebrate visual system, ed. Kluver H. Chicago, IL: Univ of Chicago Press.Google Scholar
  47. 47.
    Portfors-Yeomans CV, Regan D (1996), Cyclopean discrimination thresholds for the direction and speed of motion in depth. Vision Res, 36(20): p. 3265–79.CrossRefGoogle Scholar
  48. 48.
    Remington RW (1980), Attention and saccadic eye movements. J Exp Psychol Hum Percept Perform, 6(4): p. 726–44.CrossRefGoogle Scholar
  49. 49.
    Rizzo M, Barton JJS (2001), Retrochiasmal visual pathways and higher cortical function, in Duane’s clinical ophthalmology, Tasman W, Jaeger EA, Editors. Lippincott Williams & Wilkins: Philadelphia, PA. p. Ch. 7.Google Scholar
  50. 50.
    Robinson DA (1968), Eye movement control in primates. The oculomotor system contains specialized subsystems for acquiring and tracking visual targets. Science, 161(847): p. 1219–24.CrossRefGoogle Scholar
  51. 51.
    Sadun AA, Glaser JS (2001), Anatomy of the visual sensory system, in Duane’s clinical ophthalmology, Tasman W, Jaeger EA, Editors. Lippincott Williams & Wilkins: Philadelphia, PA. p. Ch. 4.Google Scholar
  52. 52.
    Santos A, Humayun MS, de Juan Jr. E, et al. (1997), Preservation of the inner retina in retinitis pigmentosa. Arch Ophthalmol, 115: p. 511–5.Google Scholar
  53. 53.
    Schroeder CE, Tenke CE, Arezzo JC, Vaughan HG, Jr. (1990), Binocularity in the lateral geniculate nucleus of the alert macaque. Brain Res, 521(1–2): p. 303–10.CrossRefGoogle Scholar
  54. 54.
    Shannon RV, Zeng FG, Kamath V, et al. (1995), Speech recognition with primarily temporal cues. Science, 270: p. 303–4.CrossRefGoogle Scholar
  55. 55.
    Singer W (1990), The formation of cooperative cell assemblies in the visual cortex. J Exp Biol, 153: p. 177–97.Google Scholar
  56. 56.
    Sjostrand J, Olsson V, Popovic Z, Conradi N (1999), Quantitative estimations of foveal and extra-foveal retinal circuitry in humans. Vision Res, 39(18): p. 2987–98.CrossRefGoogle Scholar
  57. 57.
    Tripathi RC, Tripathi BJ (1984), Anatomy of the human eye, orbit & adnexa, in The Eye, Vol. 1A, Vegetative Physiology and Biochemistry, Davson H, Editor. Academic Press: San Diego, CA. p. 1–268.Google Scholar
  58. 58.
    Tusa RJ (1990), Saccadic eye movements. Supranuclear control, in Neurological organization of ocular movement, Daroff R, Neetens A, Editors. Kugler: Berkeley, CA. p. 67–111.Google Scholar
  59. 59.
    Valvo A (1971), Sight restoration after long-term blindness: the problems and behavior patterns of visual rehabilitation. New York: American Foundation for the Blind.Google Scholar
  60. 60.
    van de Grind WA, Koenderink JJ, van Doorn AJ (2000), Motion detection from photopic to low scotopic luminance levels. Vision Res, 40(2): p. 187–99.CrossRefGoogle Scholar
  61. 61.
    Van Essen DC, Lewis JW, Drury HA, et al. (2001), Mapping visual cortex in monkeys and humans using surface-based atlases. Vision Res, 41(10–11): p. 1359–78.Google Scholar
  62. 62.
    Waltzman SB, Cohen NL, Gomolin RH, et al. (1994), Long-term results of early cochlear implantation in congenitally and prelingually deafened children. Am J Otol, 15 (Suppl 2): p. 9–13.Google Scholar
  63. 63.
    Westheimer G (1994), The Ferrier Lecture, 1992. Seeing depth with two eyes: stereopsis. Proc Biol Sci, 257(1349): p. 205–14.Google Scholar
  64. 64.
    Wilson HR, Mets MB, Nagy SE, Kressel AB (1988), Albino spatial vision as an instance of arrested visual development. Vision Res, 28(9): p. 979–90.CrossRefGoogle Scholar
  65. 65.
    Wolffe M (1995), Role of peripheral vision in terms of critical perception – its relevance to the visually impaired. Ophthalmic Physiol Opt, 15(5): p. 471–4.CrossRefGoogle Scholar
  66. 66.
    Wyszecki G, Stiles WS (1982), Color science (2nd ed.). New York: Wiley.Google Scholar
  67. 67.
    Yau KW, Baylor DA (1989), Cyclic GMP-activated conductance of retinal photoreceptor cells. Ann Rev Neurosci, 12: p. 289–327.CrossRefGoogle Scholar
  68. 68.
    Yuodelis C, Hendrickson A (1985), A qualitative and quantitative analysis of the human fovea during development. Vision Res, 26: p. 847–55.CrossRefGoogle Scholar
  69. 69.
    Zanker J, Mohn G, Weber U, et al. (1992), The development of vernier acuity in human infants. Vision Res, 32(8): p. 1557–64.CrossRefGoogle Scholar
  70. 70.
    Zrenner E (2009). Blind retinitis pigmentosa patients can read letters and recognize the direction of fine stripe patterns with subretinal electronic implants. in ARVO Annual Mtg.Google Scholar
  71. 71.
    Zrenner E, Miliczek KD, Gabel VP, et al. (1997), The development of subretinal microphotodiodes for replacement of degenerated photoreceptors. Ophthalmic Res, 29(5): p. 269–80.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Lions Vision Research & Rehabilitation CenterJohns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations