Skip to main content

High-Strength Glass Fibers and Markets

  • Chapter
  • First Online:

Abstract

High-strength glass fibers play a crucial role in composite applications requiring combinations of strength, modulus, and high-temperature stability. Compositions in the high-strength glass group include S-glass and R-glass, which are used for applications requiring physical properties that cannot be satisfied by conventional E-glass. Additional compositions are also available for specialized applications requiring extreme performance in any one area. The main competition for high-strength glasses in the marketplace comes from carbon and polymer fibers. Ultimately, the product of choice is based on a compromise between cost and performance and will vary depending on the application.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. R. S. Harris, D. Tiffin and G. R Machlan, Glass composition, US Patent 3,402,055 (1968).

    Google Scholar 

  2. K. L. Loewenstein, The manufacturing technology of continuous glass fibers, American Elsevier Publishing Company, Inc., New York, p. 29 (1973).

    Google Scholar 

  3. J. G. Mohr and W. P. Rowe, Fiber glass, Van Nostrand Reinhold Company, New York, p. 207 (1978).

    Google Scholar 

  4. D. M. Miller, Glass fibers, composites, Vol 1, engineered materials handbook, ASM International, Materials Park pp. 45–48 (1987).

    Google Scholar 

  5. A. K. Varshneya, Fundamentals of inorganic glasses. Academic Press, Boston, p. 3 (1994).

    Google Scholar 

  6. J. E. Shelby, Introduction to glass science and technology, Edition 2, The Royal Society of Chemistry, Cambridge, UK, p. 268 (2005).

    Google Scholar 

  7. S. N. Loud, Jr., “Advanced composites applications of S-2 glass fiber,” reinforcing the future; Proceeding of the Thirty-Fourth Annual Conference of the Reinforced Plastics/Composites Institute, (1979).

    Google Scholar 

  8. S. J. Walling, S-2 Glass fiber: Its role in military applications, Fifth International Conference on Composite Materials: ICCM-V, San Diego (1985).

    Google Scholar 

  9. D. Hartman, M. E. Greenwood and D. M. Miller, “High Strength Glass Fibers,” AGY Technical Paper (1996).

    Google Scholar 

  10. ASTM Test Method D 578 Standard specification for glass fiber strands.

    Google Scholar 

  11. J. E. Shelby, op. cit. p. 191.

    Google Scholar 

  12. A. K. Varshneya, op. cit. Chapter 18.

    Google Scholar 

  13. R. H. Doremus, Glass science, John Wiley and Sons, New York, p. 291 (1973).

    Google Scholar 

  14. W. H. Otto, Compaction effects in glass fibers, J. Am. Ceram. Soc., 44 (2) 68–72 (1961).

    Article  Google Scholar 

  15. Y. Z. Yue, J. deC. Christiansen and S. L. Jensen, Determination of the fictive temperature for a hyperquenched glass, Chem. Phys. Let., 357, 20–24 (2002).

    Article  CAS  Google Scholar 

  16. F. T. Wallenberger, Advanced inorganic fibers: processes, structures, properties, applications, Kluwer Academic Publishers, Norwell, p. 93 (2000).

    Google Scholar 

  17. N. M. Cameron, Relation between melt treatment and glass fiber strength, J. Am. Ceram. Soc., 49 (3) 144–148 (1966).

    Article  CAS  Google Scholar 

  18. C. A. Richards and H. Li, An industry perspective of factors that affect fiber glass strength, Glass Res., 11 (2) 18–20, 29, (2002).

    CAS  Google Scholar 

  19. F. T. Wallenberger, op. cit. pp. 133–145.

    Google Scholar 

  20. V. I. Kostikov, Fibre science and technology, Springer Verlag, Berlin, pp. 188–190 (1995).

    Google Scholar 

  21. J. F. Bacon, High modulus, high temperature glass fibers, Appl. Polym. Symp., 21, 179–200 (1973).

    Google Scholar 

  22. J. F. Bacon, The Kinetics of Crystallization of Molten Binary and Ternary Oxide Systems and their Application to the Origination of High Modulus Glass Fibers” (NASA CR-1856), United Aircraft Corporation, East Hartford, Connecticut, (1971).

    Google Scholar 

  23. S. Inaba, S. Fujino and K. Morinaga, Young’s modulus and compositional parameters of oxide glasses, J. Am. Ceram. Soc. ,82 (12) 3501–3507 (1999).

    Article  CAS  Google Scholar 

  24. F. T. Wallenberger, S. D. Brown and G. Y. Onoda, ZnO-modified high modulus glass fibers, J. Non-Cryst. Solids, 152, 279–283 (1993).

    Article  CAS  Google Scholar 

  25. A. Lewis and D. L. Robbins, High-strength, high modulus glass fibers, J. Polym. Sci. C, 19, 117–150 (1967).

    Google Scholar 

  26. D. R. Messier, E. J. DeGuire and N. Katz, Oxynitride glass fibers, US Pat. 4609631 (1986).

    Google Scholar 

  27. J. Kobayashi, M. Oota and H. Minakuchi, Oxynitride glass and the fiber thereof, US Pat. 4957883 (1990).

    Google Scholar 

  28. H. Osafune, S. Kitamura and T. Kawasaki, Oxynitride glass, method of preparing the same and glass fiber, US Pat. 5576253, (1996).

    Google Scholar 

  29. P. B. McGinnis, High temperature glass fibers, US Pat. 6809050 (2004).

    Google Scholar 

  30. R Continuous Filament Glass Fibres; MSDS; Saint-Gobain Vetrotex International; Chambery Cedex, France (June, 2007).

    Google Scholar 

  31. D. A. Hofmann and P. B. McGinnis, Owens Corning, “Composition for high performance glass, high performance glass fibers, and articles therefrom, US Pat. App 0009403 (2008).

    Google Scholar 

  32. NGF EUROPE. (2004). Glass cord for rubber drive belt reinforcement. [Brochure]. NGF EUROPE Limited, Lea Green, St. Helens, England.

    Google Scholar 

  33. HS2 Glass Fiber, HS4 Glass Fiber, Chopped Strands; MSDS; Specialty Fiberglass Division Sinoma Science-Technology Co. Ltd.: Nanjing, China. http://corporateportal.ppg.com/NR/rdonlyres/75A02A67-ED04-497E-9607-7D0D5FCB423F/0/HighStrengthHS2HS4MSDS.pdf(accessed 4-13-09).

  34. http://www.nittobo.co.jp/business/glassfiber/sp_material/t-glass.htm

  35. Basalt Fiber & Composite Materials Technology Development. Retrieved 4-14-09, from http://www.basaltfm.com/eng/fiber/info.html

  36. G. Gardiner, The making of glass fiber, Compos. Technol. [Online] April (2009).

    Google Scholar 

  37. Y. I. Kolesov, M. Y. Kudryavtsev, and N. Y. Mikhailenko, Science for glass production, Glass Ceram., 58 (5–6), 197–202 (2001).

    Article  CAS  Google Scholar 

  38. N. N. Morozov, V. S. Bakunov, E. N. Morozov, L. G. Aslanova, P. A. Granovskii, V. V. Prokshin, and A. A. Zemlyanitsyn, Materials bases on basalts from the European north of Russia, Glass Ceram., 58 (3–4), 100–104 (2001).

    Article  CAS  Google Scholar 

  39. E. Fitzer, A. Gkogkidis, and M. Heine, Carbon fibers and their composites (a review), High Temp. High Pressures, 16, 363–392, (1984).

    CAS  Google Scholar 

  40. Committee on High-Performance Structural Fibers for Advanced Polymer Matrix Composites, available at the National Academies Press, http://www.nap.edu/catalog.php?record_id=11268.

  41. R. A. Lane, High performance fibers for personnel and vehicle armor systems, AMPTIAC Q., 9 (2), 3–9 (2005).

    Google Scholar 

  42. Kevlar® K29 is a trademark of I. E. DuPont de Nemours, http://www2.dupont.com/Kevlar/en_US/assets/downloads/KEVLAR_Technical_Guide.pdf

  43. R. E. Allred, Aramid fiber composites, in Handbook of composite reinforcements, S. M. Lee, ed., John Wiley and Sons, New York, pp. 5–24 (1992).

    Google Scholar 

  44. L. Pilato and M. J. Michno, Advanced composite materials, Chapter 3, Springer, Heidelberg, pp. 75–96 (1994).

    Google Scholar 

  45. SPECTRA® is a trademark of Honeywell International, Inc. http://www51.honeywell.com/sm/afc/common/documents/3.1_SpectraFiber1000.pdf

  46. DYNEEMA® is a registered trademark of Toyobo Co. Ltd., Japan http://www.toyobo.co.jp/e/seihin/dn/dyneema/index.htm

  47. T. F. Cooke, Fiber reinforcement, high performance, in Handbook of composite reinforcements, S. M. Lee, ed., John Wiley and Sons, New York, pp. 217–232 (1992).

    Google Scholar 

  48. S. Kumar, Ordered polymer fibers, in Handbook of composite reinforcements, S. M. Lee, ed., John Wiley and Sons, New York, pp. 470–493 (1992).

    Google Scholar 

  49. ZYLON® is a registered trademark of Toyobo Co. Ltd. Japan http://www.toyobo.co.jp/e/seihin/kc/pbo/Technical_Information_2005.pdf

  50. M. A. Meyers, Dynamic behavior of materials, John Wiley and Sons, New York, pp. 597–606 (1994).

    Book  Google Scholar 

  51. 51. S. Magnuson, Military services ponder future of their war-worn trucks, Nat. Def. Mag., April (2009), http://www.nationaldefensemagazine.org/ARCHIVE/2009/APRIL/Pages/MilitaryServicesPonderFutureofTheirWar-WornTrucks.aspx

  52. 52. S. Rush, The art of armor development, High Perform. Compos. Mag., January, (2007), http://www.compositesworld.com/articles/the-art-of-armor-development.aspx

  53. D. Fecko, High strength glass reinforcements still being discovered, Reinfor. Plast., 50 (4), 40–44 (2006).

    Article  Google Scholar 

  54. GLARE® is a registered trademark of Stork Fokker AESP, refer to http://www.storkaerospace.com/eCache/DEF/17/751.html

  55. Containers designed to withstand explosions to experience school of hard knocks, Air Safety Week, January 4, (1999). See http://findarticles.com/p/articles/mi_m0UBT/is_1_13/ai_53518407/

  56. J. G. Ingersoll, Natural gas vehicles, The Fairmont Press Inc., Lilburn (1996).

    Google Scholar 

  57. http://www.neogas.us/technology/cpv-technology.html

Download references

Acknowledgments

We would like to extend our thanks to AGY for granting permission to participate in this work. We also wish to thank the following individuals for their kind and thoughtful help in the writing of this chapter: Dick Holland of Composite One, and Scott Northrup, David Fecko, R. J. Fisher, Larry Huey, and Sudhir Hublikar all with AGY.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony V. Longobardo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hausrath, R.L., Longobardo, A.V. (2010). High-Strength Glass Fibers and Markets. In: Wallenberger, F., Bingham, P. (eds) Fiberglass and Glass Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0736-3_5

Download citation

Publish with us

Policies and ethics