Computational Fluid Dynamics Models of Ventricular Assist Devices



A ventricular assist device (VAD) is a pump surgically connected to the heart and aorta in order to boost systemic blood flow in heart failure patients. The design of these devices has evolved over the past 30 years, with improvements and innovations enabled through the synergistic use of experimental research, clinical studies, and computational models. The application of computational fluid dynamics models has allowed the design of VADs to shift from large, bulky devices designed for patients with severe cardiac failure to a variety of smaller devices designed for a range of patients and cardiovascular conditions.


Ventricular Assist Device Mechanical Circulatory Support Total Artificial Heart Blood Damage Axial Pump 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Goldstein S, Ali AS, Samuels LE. Ventricular remodeling: mechanisms and prevention. Cardiol Clin. 1998;16:623–32.CrossRefGoogle Scholar
  2. 2.
    American Heart Association. Heart disease and stroke statistics – 2009 update. Dallas, TX: American Heart Association, 2009.Google Scholar
  3. 3.
    Song X, Untariou A, Wood HG, Allaire PE, Throckmorton AL, Day SW, Olsen DB. Design and transient computational fluid dynamics study of a continuous flow ventricular assist device. ASAIO J. 2004;50:215–24.CrossRefGoogle Scholar
  4. 4.
    Miller L. Use of a continuous-flow device in patients awaiting heart transplantation. NEJM. 2007;357:885–96.CrossRefGoogle Scholar
  5. 5.
    Park SJ, Tector A, Piccioni W, Raines E, Gelijns A, Moskowitz A, Rose E, Holman W, Furukawa S, Frazier OH, Dembitsky W. Left ventricular assist devices as destination therapy: a new look at survival. J Thorac Cardiovasc Surg. 2005;129(1):9–17. Erratum in: J Thorac Cardiovasc Surg. 2005;129(6):1464.Google Scholar
  6. 6.
    Westaby S. Elective transfer from cardiopulmonary bypass to centrifugal blood pump support in very high-risk cardiac surgery. J Thorac Cardiovasc Surg. 2007;133:577–8.CrossRefGoogle Scholar
  7. 7.
    Rose EA, Gelijns AC, Moskowitz AJ, Heitjan DF, Stevenson LW, Dembitsky W, Long JW, Ascheim DD, Tierney AR, Levitan RG, Watson JT, Meier P, Ronan NS, Shapiro PA, Lazar RM, Miller LW, Gupta L, Frazier OH, Desvigne-Nickens P, Oz MC, Poirier VL. Long-term mechanical left ventricular assistance for end-stage heart failure. N Engl J Med. 2001;345:1435–43.CrossRefGoogle Scholar
  8. 8.
    Frazier OH, Rose EA, Oz MC. Multi-center clinical evaluation of the HeartMate vented electric left ventricular assist system in patients awaiting heart transplantation. J Thorac Cardiovasc Surg. 2009;122:1186–95.CrossRefGoogle Scholar
  9. 9.
    Russell SD, Miller LW, Pagani FD. Advanced heart failure: a call to action. Congest Heart Fail. 2008;14:316–21.CrossRefGoogle Scholar
  10. 10.
    Farrar DJ, Holman WR, McBride LR, Kormos RL, Icenogle TB, Hendry P J, Moore CH, Loisance, DY, El Banayosy A, Frazier H. Long-term follow-up of Thoratec ventricular assist device bridge-to- recovery patients successfully removed from support after recovery of ventricular function. J Heart Lung Transplant. 2002;21:516–21.CrossRefGoogle Scholar
  11. 11.
    Hetzer R, Muller JH, Weng Y, Meyer R, Dandel M. Bridging-to-recovery. Ann Thorac Surg. 2001;71:S109–13.CrossRefGoogle Scholar
  12. 12.
    Kumpati GS, McCarthy PM, Hoercher KJ. Left ventricular assist device bridge to recovery: a review of the current status. Ann Thorac Surg. 2001;71:S103–8.CrossRefGoogle Scholar
  13. 13.
    Mancini DM, Beniaminovitz A, Levin H, Catanese K, Flannery M, DiTullio M, Savin S, Cordisco ME, Rose E, Oz M. Low incidence of myocardial recovery after left ventricular assist device implantation in patients with chronic heart failure. Circulation. 1998;98:2383–9.CrossRefGoogle Scholar
  14. 14.
    Young JB. Healing the heart with ventricular assist device therapy: mechanisms of cardiac recovery. Ann Thorac Surg. 2001;71:S210–9.CrossRefGoogle Scholar
  15. 15.
    Mueller J, Wallukat G, Weng Y, Dandel M, Ellinghaus P, Huetter J, Hetzer R. Predictive factors for weaning from a cardiac assist device. An analysis of clinical, gene expression and protein data. J Heart Lung Transplant. 2001;20:202.CrossRefGoogle Scholar
  16. 16.
    Thoratec Corporation. Heartmate XVE Clinical Outcomes website.
  17. 17.
    Lietz K, Long JW, Kfoury AG, Slaughter MS, Silver MA, Milano CA, Rogers JG, Naka Y, Mancini D, Miller LW. Outcomes of left ventricular assist device implantation as destination therapy in the post-REMATCH era: implications for patient selection. Circulation. 2007;116:497–505.CrossRefGoogle Scholar
  18. 18.
    Long JW, Kfoury AG, Slaughter MS, Silver M, Milano C, Rogers J, Delgado R, Frazier OH. Long-term destination therapy with the HeartMate XVE left ventricular assist device: improved outcomes since the REMATCH study. Congest Heart Fail. 2005;11:133–8.CrossRefGoogle Scholar
  19. 19.
    Worldheart Corporation. Worldheart corporation company. Website, 2009.Google Scholar
  20. 20.
    Nose Y, Motomura T. Cardiac prosthesis: artificial heart and assist circulation: past, present and future. Houston, TX: ICMT Publishers, 2003.Google Scholar
  21. 21.
    Nose Y, Yoshikawa M, Murabayashi S, Takano T. Development of rotary blood pump technology: past, present, and future. Artif Organs. 2000;24:412–20.CrossRefGoogle Scholar
  22. 22.
    Thoratec Corporation. HEARTMATE® XVE LVAS EXtended Lead vented electric left ventricular assist system operating manual. Pleasanton, CA: Thoratec Corporation, 2008.Google Scholar
  23. 23.
    Hanson S, Ratner BD. Testing of blood–materials interactions. In: Ratner, BD, Hoffman AS, Schoen FJ, Lemons JE. (Eds.), Biomaterials science: an introduction to materials in medicine. San Diego, CA: Academic Press, 1996, pp. 228–38.Google Scholar
  24. 24.
    Snyder TA, Watach MJ, Litwak KN, Wagner WR. Platelet activation, aggregation, and life span in calves implanted with axial flow ventricular assist devices. Ann Thorac Surg. 2002;73:1933–8.CrossRefGoogle Scholar
  25. 25.
    Gross DR. Concerning thromboembolism associated with left ventricular assist devices. Cardiovasc Res. 1999;42:45–7.CrossRefGoogle Scholar
  26. 26.
    Folie BJ, McIntire LV. Mathematical analysis of mural thrombogenesis: concentration profiles of platelet-activating agents and effects of viscous shear flow. Biophys J. 1989;56:1121–41.CrossRefGoogle Scholar
  27. 27.
    Karino T, Goldsmith HL, Motomiya M, Mabuchi S, Sohara Y. Flow patterns in vessels of simple and complex geometries. In: Leonard EF, Turitto VT, Vroman L. (Eds.), Contact with natural and artificial surfaces. New York: New York Academy of Sciences, 1987, pp. 422–41.Google Scholar
  28. 28.
    Muraki N. Ultrasonic studies of the abdominal aorta with special reference to hemodynamic considerations on thrombus formation in the abdominal aortic aneurysm. J Jpn Coll Angiol. 1983;23:401–13.Google Scholar
  29. 29.
    Apel J, Paul R, Klaus S, Siess T, Reul H. Assessment of hemolysis related quantities in a microaxial blood pump by computational fluid dynamics. Artif Organs. 2001;25:341–7.CrossRefGoogle Scholar
  30. 30.
    Bluestein D, Niu L, Schoephoerster RT, Dewanjee MK. Steady flow in an aneurysm model: correlation between fluid dynamics and blood platelet deposition. J Biomech Eng. 1996;118:280–6.CrossRefGoogle Scholar
  31. 31.
    De Wachter D, Verdonck P. Numerical calculation of hemolysis levels in peripheral hemodialysis cannulas. Artif Organs. 2002;26:576–82.CrossRefGoogle Scholar
  32. 32.
    Yano T, Sekine K, Mitoh A, Mitamura Y, Okamoto E, Kim D, Nishimura I, Murabayashi S, Yozu R. An estimation method of hemolysis within an axial flow blood pump by computational fluid dynamics analysis. Artif Organs. 2003;27:920–5.CrossRefGoogle Scholar
  33. 33.
    Kameneva M, Burgreen GW, Kono K, Repko B, Antaki JF, Umezu M. Effects of turbulent stresses upon mechanical hemolysis: experimental and computational analysis. ASAIO J. 2004;50:418–23.CrossRefGoogle Scholar
  34. 34.
    Kameneva M, Marad PF, Brugger JM, Repko B, Wang JH, Moran J, Borovetz HS. In vitro evaluation of hemolysis and sublethal blood trauma in a novel subcutaneous vascular access system for hemodialysis. ASAIO J. 2002;48:34–8.CrossRefGoogle Scholar
  35. 35.
    Giersiepen M, Wurzinger LJ, Opitz R, Reul H. Estimation of shear stress-related blood damage in heart valve prostheses – in vitro comparison of 25 aortic valves. Int J Artif Organs. 1990;13:300–6.Google Scholar
  36. 36.
    Song X, Throckmorton AL, Wood HG, Antaki JF, Olsen DB. Computational fluid dynamics prediction of blood damage in a centrifugal pump. Artif Organs. 2003;27:938–41.CrossRefGoogle Scholar
  37. 37.
    Throckmorton AL, Lim DS, McCulloch MA, Jiang W, Song X, Allaire PE, Wood HG, Olsen DB. Computational design and experimental performance testing of an axial-flow pediatric ventricular assist device. ASAIO J. 2005;51:629–35.CrossRefGoogle Scholar
  38. 38.
    Zhang J, Gellman B, Koert A, Dasse KA, Gilbert RJ, Griffith BP, Wu ZJ. Computational and experimental evaluation of the fluid dynamics and hemocompatibility of the CentriMag blood pump. Artif Organs. 2006;30:168–77.CrossRefGoogle Scholar
  39. 39.
    Bluestein D. Research approaches for studying flow-induced thromboembolic complications in blood recirculating devices. Expert Rev Med Devices. 2004 Sep;1(1):65–80. Review.Google Scholar
  40. 40.
    Song X, Untaroiu A, Wood HG, Allaire PE, Throckmorton AL, Day SW, Olsen DB. Design and transient computational fluid dynamics study of a continuous axial flow ventricular assist device. ASAIO J. 2004;50:215–24.CrossRefGoogle Scholar
  41. 41.
    Wu J, Antaki JF, Wagner WR, Snyder TA, Paden BE, Borovetz HS. Elimination of adverse leakage flow in a miniature pediatric centrifugal blood pump by computational fluid dynamics-based design optimization. ASAIO J. 2005;51:636–43.CrossRefGoogle Scholar
  42. 42.
    Song X, Wood HG, Day SW, Olsen DB. Studies of turbulence models in a computational fluid dynamics model of a blood pump. Artif Organs. 2003;27:935–7.CrossRefGoogle Scholar
  43. 43.
    Legendre D, Antunes P, Bock E, Andrade A, Biscegli JF, Ortiz JP. Computational fluid dynamics investigation of a centrifugal blood pump. Artif Organs. 2008;32:342–8.CrossRefGoogle Scholar
  44. 44.
    Okamoto E, Hashimoto T, Inoue T, Mitamura Y. Blood compatible design of a pulsatile blood pump using computational fluid dynamics and computer-aided design and manufacturing technology. Artif Organs. 2003;27:61–7.CrossRefGoogle Scholar
  45. 45.
    Okamoto E, Hashimoto T, Mitamura Y. Design of a miniature implantable left ventricular assist device using CAD/CAM technology. J Artif Organs. 2003;6:162–7.CrossRefGoogle Scholar
  46. 46.
    Medvitz RB, Kreider JW, Manning KB, Fontaine AA, Deutsch S, Paterson EG. Development and validation of a computational fluid dynamics methodology for simulation of pulsatile left ventricular assist devices. ASAIO J. 2007;53:122–31.CrossRefGoogle Scholar
  47. 47.
    Untaroiu A, Wood HG, Allaire PE, Throckmorton AL, Day S, Patel SM, Ellman P, Tribble C, Olsen DB. Computational design and experimental testing of a novel axial flow LVAD. ASAIO J. 2005;51:702–10.CrossRefGoogle Scholar
  48. 48.
    Curtas AR, Wood HG, Allaire PE, McDaniel JC, Day SW, Olsen DB. Computational fluid dynamics modeling of impeller designs for the HeartQuest left ventricular assist device. ASAIO J. 2002;48:552–61.CrossRefGoogle Scholar
  49. 49.
    Song X, Wood HG, Olsen D. Computational Fluid Dynamics (CFD) study of the 4th generation prototype of a continuous flow ventricular assist device (VAD). J Biomech Eng. 2004;126:180–7.CrossRefGoogle Scholar
  50. 50.
    Song X, Throckmorton AL, Wood HG, Allaire PE, Olsen DB. Transient and quasi-steady computational fluid dynamics study of a left ventricular assist device. ASAIO J. 2004;50:410–7.CrossRefGoogle Scholar
  51. 51.
    Burgreen GW, Loree HM, Bourque K, Dague C, Poirier VL, Farrar D, Hampton E, Wu ZJ, Gempp TM, Schob R. Computational fluid dynamics analysis of a Maglev centrifugal left ventricular assist device. Artif Organs. 2004;28:874–80.CrossRefGoogle Scholar
  52. 52.
    Chua LP, Song G, Lim TM, Zhou T. Numerical analysis of the inner flow field of a biocentrifugal blood pump. Artif Organs. 2006;30:467–77.CrossRefGoogle Scholar
  53. 53.
    Ashton RC, Goldstein DJ, Rose EA, Weinberg AD. Duration of left ventricular assist device support affects transplant survival. J Heart Lung Transplant. 1996;15:1151–6.Google Scholar
  54. 54.
    Song X, Throckmorton AL, Untaroiu A, Patel S, Allaire PE, Wood HG, Olsen DB. Axial flow blood pumps. ASAIO J. 2003;49:355–64.CrossRefGoogle Scholar
  55. 55.
    Zhang J, Koert A, Gellman B, Gempp TM, Dasse KA, Gilbert RJ, Griffith BP, Wu ZJ. Optimization of a miniature Maglev ventricular assist device for pediatric circulatory support. ASAIO J. 2007;53:23–31.CrossRefGoogle Scholar
  56. 56.
    Throckmorton AL, Untaroiu A, Allaire PE, Wood HG, Lim DS, McCulloch MA, Olsen DB. Numerical design and experimental hydraulic testing of an axial flow ventricular assist device for infants and children. ASAIO J. 2007;53:754–61.CrossRefGoogle Scholar
  57. 57.
    Kar B, Delgado RM 3rd, Frazier OH, Gregoric ID, Harting MT, Wadia Y, Myers TJ, Moser RD, Freund J. The effect of LVAD aortic outflow-graft placement on hemodynamics and flow: Implantation technique and computer flow modeling. Tex Heart Inst J. 2005;32(3):294–8.Google Scholar
  58. 58.
    Carr RT, Kotha SL. Separation surfaces for laminar flow in branching tubes – effect of Reynolds number and geometry. J Biomech Eng. 1995;117:442–7.CrossRefGoogle Scholar
  59. 59.
    May-Newman K, Hillen BK, Sironda CS, Dembitsky W. Effect of LVAD outflow conduit insertion angle on flow through the native aorta. J Med Engin Technol. 2004;28:105–9.CrossRefGoogle Scholar
  60. 60.
    May-Newman K, Hillen BK, Dembitsky W. The effect of LVAD outflow conduit anastomosis location on flow patterns in the native aorta. ASAIO J. 2006;52:132–9.CrossRefGoogle Scholar
  61. 61.
    May-Newman K, Abulon DJ, Joshi M, Dembitsky W. (submitted). Morphology and tissue characterization of fusion in aortic heart valves excised from LVAD patients.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Bioengineering Program, Department of Mechanical EngineeringSan Diego State UniversitySan DiegoUSA

Personalised recommendations