Skip to main content

Computational Fluid Dynamics Models of Ventricular Assist Devices

  • Chapter
  • First Online:
  • 1693 Accesses

Abstract

A ventricular assist device (VAD) is a pump surgically connected to the heart and aorta in order to boost systemic blood flow in heart failure patients. The design of these devices has evolved over the past 30 years, with improvements and innovations enabled through the synergistic use of experimental research, clinical studies, and computational models. The application of computational fluid dynamics models has allowed the design of VADs to shift from large, bulky devices designed for patients with severe cardiac failure to a variety of smaller devices designed for a range of patients and cardiovascular conditions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Goldstein S, Ali AS, Samuels LE. Ventricular remodeling: mechanisms and prevention. Cardiol Clin. 1998;16:623–32.

    Article  Google Scholar 

  2. American Heart Association. Heart disease and stroke statistics – 2009 update. Dallas, TX: American Heart Association, 2009.

    Google Scholar 

  3. Song X, Untariou A, Wood HG, Allaire PE, Throckmorton AL, Day SW, Olsen DB. Design and transient computational fluid dynamics study of a continuous flow ventricular assist device. ASAIO J. 2004;50:215–24.

    Article  Google Scholar 

  4. Miller L. Use of a continuous-flow device in patients awaiting heart transplantation. NEJM. 2007;357:885–96.

    Article  Google Scholar 

  5. Park SJ, Tector A, Piccioni W, Raines E, Gelijns A, Moskowitz A, Rose E, Holman W, Furukawa S, Frazier OH, Dembitsky W. Left ventricular assist devices as destination therapy: a new look at survival. J Thorac Cardiovasc Surg. 2005;129(1):9–17. Erratum in: J Thorac Cardiovasc Surg. 2005;129(6):1464.

    Google Scholar 

  6. Westaby S. Elective transfer from cardiopulmonary bypass to centrifugal blood pump support in very high-risk cardiac surgery. J Thorac Cardiovasc Surg. 2007;133:577–8.

    Article  Google Scholar 

  7. Rose EA, Gelijns AC, Moskowitz AJ, Heitjan DF, Stevenson LW, Dembitsky W, Long JW, Ascheim DD, Tierney AR, Levitan RG, Watson JT, Meier P, Ronan NS, Shapiro PA, Lazar RM, Miller LW, Gupta L, Frazier OH, Desvigne-Nickens P, Oz MC, Poirier VL. Long-term mechanical left ventricular assistance for end-stage heart failure. N Engl J Med. 2001;345:1435–43.

    Article  Google Scholar 

  8. Frazier OH, Rose EA, Oz MC. Multi-center clinical evaluation of the HeartMate vented electric left ventricular assist system in patients awaiting heart transplantation. J Thorac Cardiovasc Surg. 2009;122:1186–95.

    Article  Google Scholar 

  9. Russell SD, Miller LW, Pagani FD. Advanced heart failure: a call to action. Congest Heart Fail. 2008;14:316–21.

    Article  Google Scholar 

  10. Farrar DJ, Holman WR, McBride LR, Kormos RL, Icenogle TB, Hendry P J, Moore CH, Loisance, DY, El Banayosy A, Frazier H. Long-term follow-up of Thoratec ventricular assist device bridge-to- recovery patients successfully removed from support after recovery of ventricular function. J Heart Lung Transplant. 2002;21:516–21.

    Article  Google Scholar 

  11. Hetzer R, Muller JH, Weng Y, Meyer R, Dandel M. Bridging-to-recovery. Ann Thorac Surg. 2001;71:S109–13.

    Article  Google Scholar 

  12. Kumpati GS, McCarthy PM, Hoercher KJ. Left ventricular assist device bridge to recovery: a review of the current status. Ann Thorac Surg. 2001;71:S103–8.

    Article  Google Scholar 

  13. Mancini DM, Beniaminovitz A, Levin H, Catanese K, Flannery M, DiTullio M, Savin S, Cordisco ME, Rose E, Oz M. Low incidence of myocardial recovery after left ventricular assist device implantation in patients with chronic heart failure. Circulation. 1998;98:2383–9.

    Article  Google Scholar 

  14. Young JB. Healing the heart with ventricular assist device therapy: mechanisms of cardiac recovery. Ann Thorac Surg. 2001;71:S210–9.

    Article  Google Scholar 

  15. Mueller J, Wallukat G, Weng Y, Dandel M, Ellinghaus P, Huetter J, Hetzer R. Predictive factors for weaning from a cardiac assist device. An analysis of clinical, gene expression and protein data. J Heart Lung Transplant. 2001;20:202.

    Article  Google Scholar 

  16. Thoratec Corporation. Heartmate XVE Clinical Outcomes website. http://www.thoratec.com/vad-trials-outcomes/clinical-outcomes/heartmate-xve-lvad.aspx

  17. Lietz K, Long JW, Kfoury AG, Slaughter MS, Silver MA, Milano CA, Rogers JG, Naka Y, Mancini D, Miller LW. Outcomes of left ventricular assist device implantation as destination therapy in the post-REMATCH era: implications for patient selection. Circulation. 2007;116:497–505.

    Article  Google Scholar 

  18. Long JW, Kfoury AG, Slaughter MS, Silver M, Milano C, Rogers J, Delgado R, Frazier OH. Long-term destination therapy with the HeartMate XVE left ventricular assist device: improved outcomes since the REMATCH study. Congest Heart Fail. 2005;11:133–8.

    Article  Google Scholar 

  19. Worldheart Corporation. Worldheart corporation company. Website, 2009.

    Google Scholar 

  20. Nose Y, Motomura T. Cardiac prosthesis: artificial heart and assist circulation: past, present and future. Houston, TX: ICMT Publishers, 2003.

    Google Scholar 

  21. Nose Y, Yoshikawa M, Murabayashi S, Takano T. Development of rotary blood pump technology: past, present, and future. Artif Organs. 2000;24:412–20.

    Article  Google Scholar 

  22. Thoratec Corporation. HEARTMATE® XVE LVAS EXtended Lead vented electric left ventricular assist system operating manual. Pleasanton, CA: Thoratec Corporation, 2008.

    Google Scholar 

  23. Hanson S, Ratner BD. Testing of blood–materials interactions. In: Ratner, BD, Hoffman AS, Schoen FJ, Lemons JE. (Eds.), Biomaterials science: an introduction to materials in medicine. San Diego, CA: Academic Press, 1996, pp. 228–38.

    Google Scholar 

  24. Snyder TA, Watach MJ, Litwak KN, Wagner WR. Platelet activation, aggregation, and life span in calves implanted with axial flow ventricular assist devices. Ann Thorac Surg. 2002;73:1933–8.

    Article  Google Scholar 

  25. Gross DR. Concerning thromboembolism associated with left ventricular assist devices. Cardiovasc Res. 1999;42:45–7.

    Article  Google Scholar 

  26. Folie BJ, McIntire LV. Mathematical analysis of mural thrombogenesis: concentration profiles of platelet-activating agents and effects of viscous shear flow. Biophys J. 1989;56:1121–41.

    Article  Google Scholar 

  27. Karino T, Goldsmith HL, Motomiya M, Mabuchi S, Sohara Y. Flow patterns in vessels of simple and complex geometries. In: Leonard EF, Turitto VT, Vroman L. (Eds.), Contact with natural and artificial surfaces. New York: New York Academy of Sciences, 1987, pp. 422–41.

    Google Scholar 

  28. Muraki N. Ultrasonic studies of the abdominal aorta with special reference to hemodynamic considerations on thrombus formation in the abdominal aortic aneurysm. J Jpn Coll Angiol. 1983;23:401–13.

    Google Scholar 

  29. Apel J, Paul R, Klaus S, Siess T, Reul H. Assessment of hemolysis related quantities in a microaxial blood pump by computational fluid dynamics. Artif Organs. 2001;25:341–7.

    Article  Google Scholar 

  30. Bluestein D, Niu L, Schoephoerster RT, Dewanjee MK. Steady flow in an aneurysm model: correlation between fluid dynamics and blood platelet deposition. J Biomech Eng. 1996;118:280–6.

    Article  Google Scholar 

  31. De Wachter D, Verdonck P. Numerical calculation of hemolysis levels in peripheral hemodialysis cannulas. Artif Organs. 2002;26:576–82.

    Article  Google Scholar 

  32. Yano T, Sekine K, Mitoh A, Mitamura Y, Okamoto E, Kim D, Nishimura I, Murabayashi S, Yozu R. An estimation method of hemolysis within an axial flow blood pump by computational fluid dynamics analysis. Artif Organs. 2003;27:920–5.

    Article  Google Scholar 

  33. Kameneva M, Burgreen GW, Kono K, Repko B, Antaki JF, Umezu M. Effects of turbulent stresses upon mechanical hemolysis: experimental and computational analysis. ASAIO J. 2004;50:418–23.

    Article  Google Scholar 

  34. Kameneva M, Marad PF, Brugger JM, Repko B, Wang JH, Moran J, Borovetz HS. In vitro evaluation of hemolysis and sublethal blood trauma in a novel subcutaneous vascular access system for hemodialysis. ASAIO J. 2002;48:34–8.

    Article  Google Scholar 

  35. Giersiepen M, Wurzinger LJ, Opitz R, Reul H. Estimation of shear stress-related blood damage in heart valve prostheses – in vitro comparison of 25 aortic valves. Int J Artif Organs. 1990;13:300–6.

    Google Scholar 

  36. Song X, Throckmorton AL, Wood HG, Antaki JF, Olsen DB. Computational fluid dynamics prediction of blood damage in a centrifugal pump. Artif Organs. 2003;27:938–41.

    Article  Google Scholar 

  37. Throckmorton AL, Lim DS, McCulloch MA, Jiang W, Song X, Allaire PE, Wood HG, Olsen DB. Computational design and experimental performance testing of an axial-flow pediatric ventricular assist device. ASAIO J. 2005;51:629–35.

    Article  Google Scholar 

  38. Zhang J, Gellman B, Koert A, Dasse KA, Gilbert RJ, Griffith BP, Wu ZJ. Computational and experimental evaluation of the fluid dynamics and hemocompatibility of the CentriMag blood pump. Artif Organs. 2006;30:168–77.

    Article  Google Scholar 

  39. Bluestein D. Research approaches for studying flow-induced thromboembolic complications in blood recirculating devices. Expert Rev Med Devices. 2004 Sep;1(1):65–80. Review.

    Google Scholar 

  40. Song X, Untaroiu A, Wood HG, Allaire PE, Throckmorton AL, Day SW, Olsen DB. Design and transient computational fluid dynamics study of a continuous axial flow ventricular assist device. ASAIO J. 2004;50:215–24.

    Article  Google Scholar 

  41. Wu J, Antaki JF, Wagner WR, Snyder TA, Paden BE, Borovetz HS. Elimination of adverse leakage flow in a miniature pediatric centrifugal blood pump by computational fluid dynamics-based design optimization. ASAIO J. 2005;51:636–43.

    Article  Google Scholar 

  42. Song X, Wood HG, Day SW, Olsen DB. Studies of turbulence models in a computational fluid dynamics model of a blood pump. Artif Organs. 2003;27:935–7.

    Article  Google Scholar 

  43. Legendre D, Antunes P, Bock E, Andrade A, Biscegli JF, Ortiz JP. Computational fluid dynamics investigation of a centrifugal blood pump. Artif Organs. 2008;32:342–8.

    Article  Google Scholar 

  44. Okamoto E, Hashimoto T, Inoue T, Mitamura Y. Blood compatible design of a pulsatile blood pump using computational fluid dynamics and computer-aided design and manufacturing technology. Artif Organs. 2003;27:61–7.

    Article  Google Scholar 

  45. Okamoto E, Hashimoto T, Mitamura Y. Design of a miniature implantable left ventricular assist device using CAD/CAM technology. J Artif Organs. 2003;6:162–7.

    Article  Google Scholar 

  46. Medvitz RB, Kreider JW, Manning KB, Fontaine AA, Deutsch S, Paterson EG. Development and validation of a computational fluid dynamics methodology for simulation of pulsatile left ventricular assist devices. ASAIO J. 2007;53:122–31.

    Article  Google Scholar 

  47. Untaroiu A, Wood HG, Allaire PE, Throckmorton AL, Day S, Patel SM, Ellman P, Tribble C, Olsen DB. Computational design and experimental testing of a novel axial flow LVAD. ASAIO J. 2005;51:702–10.

    Article  Google Scholar 

  48. Curtas AR, Wood HG, Allaire PE, McDaniel JC, Day SW, Olsen DB. Computational fluid dynamics modeling of impeller designs for the HeartQuest left ventricular assist device. ASAIO J. 2002;48:552–61.

    Article  Google Scholar 

  49. Song X, Wood HG, Olsen D. Computational Fluid Dynamics (CFD) study of the 4th generation prototype of a continuous flow ventricular assist device (VAD). J Biomech Eng. 2004;126:180–7.

    Article  Google Scholar 

  50. Song X, Throckmorton AL, Wood HG, Allaire PE, Olsen DB. Transient and quasi-steady computational fluid dynamics study of a left ventricular assist device. ASAIO J. 2004;50:410–7.

    Article  Google Scholar 

  51. Burgreen GW, Loree HM, Bourque K, Dague C, Poirier VL, Farrar D, Hampton E, Wu ZJ, Gempp TM, Schob R. Computational fluid dynamics analysis of a Maglev centrifugal left ventricular assist device. Artif Organs. 2004;28:874–80.

    Article  Google Scholar 

  52. Chua LP, Song G, Lim TM, Zhou T. Numerical analysis of the inner flow field of a biocentrifugal blood pump. Artif Organs. 2006;30:467–77.

    Article  Google Scholar 

  53. Ashton RC, Goldstein DJ, Rose EA, Weinberg AD. Duration of left ventricular assist device support affects transplant survival. J Heart Lung Transplant. 1996;15:1151–6.

    Google Scholar 

  54. Song X, Throckmorton AL, Untaroiu A, Patel S, Allaire PE, Wood HG, Olsen DB. Axial flow blood pumps. ASAIO J. 2003;49:355–64.

    Article  Google Scholar 

  55. Zhang J, Koert A, Gellman B, Gempp TM, Dasse KA, Gilbert RJ, Griffith BP, Wu ZJ. Optimization of a miniature Maglev ventricular assist device for pediatric circulatory support. ASAIO J. 2007;53:23–31.

    Article  Google Scholar 

  56. Throckmorton AL, Untaroiu A, Allaire PE, Wood HG, Lim DS, McCulloch MA, Olsen DB. Numerical design and experimental hydraulic testing of an axial flow ventricular assist device for infants and children. ASAIO J. 2007;53:754–61.

    Article  Google Scholar 

  57. Kar B, Delgado RM 3rd, Frazier OH, Gregoric ID, Harting MT, Wadia Y, Myers TJ, Moser RD, Freund J. The effect of LVAD aortic outflow-graft placement on hemodynamics and flow: Implantation technique and computer flow modeling. Tex Heart Inst J. 2005;32(3):294–8.

    Google Scholar 

  58. Carr RT, Kotha SL. Separation surfaces for laminar flow in branching tubes – effect of Reynolds number and geometry. J Biomech Eng. 1995;117:442–7.

    Article  Google Scholar 

  59. May-Newman K, Hillen BK, Sironda CS, Dembitsky W. Effect of LVAD outflow conduit insertion angle on flow through the native aorta. J Med Engin Technol. 2004;28:105–9.

    Article  Google Scholar 

  60. May-Newman K, Hillen BK, Dembitsky W. The effect of LVAD outflow conduit anastomosis location on flow patterns in the native aorta. ASAIO J. 2006;52:132–9.

    Article  Google Scholar 

  61. May-Newman K, Abulon DJ, Joshi M, Dembitsky W. (submitted). Morphology and tissue characterization of fusion in aortic heart valves excised from LVAD patients.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen May-Newman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

May-Newman, K. (2010). Computational Fluid Dynamics Models of Ventricular Assist Devices. In: Guccione, J., Kassab, G., Ratcliffe, M. (eds) Computational Cardiovascular Mechanics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0730-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0730-1_18

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-0729-5

  • Online ISBN: 978-1-4419-0730-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics