Skip to main content

Computational Modeling of Aortic Heart Valve Mechanics Across Multiple Scales

  • Chapter
  • First Online:
Computational Cardiovascular Mechanics

Abstract

Computational modeling is an excellent tool with which to investigate the mechanics of the aortic heart valve. The setting of the heart valve presents complex dynamics and mechanical behavior in which solid structures interact with a fluid domain. There currently exists no standard approach; a variety of strategies have been used to address the different aspects of modeling the heart valve. Simplifications reduce computational costs, but could compromise accuracy. As advancements in modeling techniques are made and utilized, more physiologically relevant models are possible. Computational studies of the aortic valve have contributed to an improved understanding of the mechanics of the normal valve, and insights into the progression of diseased valves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rosamund W, Flegal K, Friday G, Furie K, Go A, Greenlund K, Haase N, Ho M, Howard V, Kissela B, Kittner S, Lloyd-Jones D, McDermott M, Meigs J, Moy C, Nichol G, O’Donnell CJ, Roger V, Rumsfeld J, Sorlie P, Steinberger J, Thom T, Wasserthiel-Smoller S, Hong Y. Heart disease and stroke statistics – 2007 update. Circulation. 2007;115:e69–e171.

    Article  Google Scholar 

  2. Yacoub MH, Takkenberg JJ. Will heart valve tissue engineering change the world? Nat Clin Pract Cardiovasc Med. 2005;2:60–1.

    Article  Google Scholar 

  3. Sacks MS, Yoganathan AP. Heart valve function: a biomechanical perspective. Phil Trans R Soc B. 2007;362:1369–91.

    Article  Google Scholar 

  4. Butcher JT, Nerem RM. Valvular endothelial cells and the mechanoregulation of valvular pathology. Phil Trans R Soc B. 2007;362:1445–57.

    Article  Google Scholar 

  5. Stella JA, Sacks MS. On the biaxial mechanical properties of the layers of the aortic valve leaflet. J Biomech Eng. 2007;129:757–66.

    Article  Google Scholar 

  6. Yoganathan AP, Woo YR, Sung HW, Jones M. Advances in prosthetic heart valves: fluid mechanics of aortic valve designs. J Biomater Appl. 1988;2:579–614.

    Article  Google Scholar 

  7. Yang G, Merrifield R, Masood S, Kilner PJ. Flow and myocardial interaction: an imaging perspective. Phil Trans R Soc B. 2007;362:1329–41.

    Article  Google Scholar 

  8. Thubrikar MJ. Geometry of the aortic valve. In: The Aortic Valve. Boca Raton, FL: CRC Press, 1990.

    Google Scholar 

  9. Misfeld M, Sievers HH. Heart valve macro- and microstructure. Phil Trans R Soc B. 2007;362:1421–36.

    Article  Google Scholar 

  10. Ranga A, Bouchot O, Mongrain R, Ugolini P, Cartier R. Computational simulations of the aortic valve validated by imaging data: evaluation of valve-sparing techniques. Interact Cardiovasc Thorac Surg. 2006;5:373–8.

    Article  Google Scholar 

  11. Howard IC, Patterson EA, Yoxall A. On the opening mechanism of the aortic valve: some observations from simulations. J Med Eng Technol. 2003;27:259–66.

    Article  Google Scholar 

  12. Weinberg EJ, Mofrad MRK. Transient, three-dimensional, multiscale simulations of the human aortic valve. Cardiovasc Eng. 2007;7:140–55

    Article  Google Scholar 

  13. Grande KJ, Cochran RP, Reinhall PG, Kunzelman KS. Stress variations in the human aortic root and valve: the role of anatomic asymmetry. Ann Biomed Eng. 1998;26:534–545.

    Article  Google Scholar 

  14. Nicosia MA, Cochran RP, Einstein DR, Rutland CJ, Kunzelman KS. A coupled fluid-structure finite element model of the aortic valve and root. J Heart Valve Dis. 2003;12:781–9.

    Google Scholar 

  15. Mendelson K, Schoen FJ. Heart valve tissue engineering: concepts, approaches, progress, and challenges. Ann Biomed Eng. 2006;34:1799–819.

    Article  Google Scholar 

  16. De Hart J, Baaijens FP, Peters GW, Schreurs PJ. A computational fluid-structure interaction analysis of a fiber-reinforced stentless aortic valve. J Biomech. 2003;36:699–712.

    Article  Google Scholar 

  17. Thubrikar M, Piepgrass WC, Bosher LP, Nolan SP. The elastic modulus of canine aortic valve leaflets in vivo and in vitro. Circ Res. 1980;47:792–800.

    Article  Google Scholar 

  18. Carmody CJ, Burriesci G, Howard IC, Patterson EA. An approach to the simulation of fluid-structure interaction in the aortic valve. J Biomech. 2006;39:158–69.

    Article  Google Scholar 

  19. Gnyaneshwar R, Kumar RK, Balakrishnan KR. Dynamic analysis of the aortic valve using a finite element model. Ann Thorac Surg. 2002;73:1122–9.

    Article  Google Scholar 

  20. Sripathi VC, Kumar RK, Balakrishnan KR. Further insights into normal aortic valve function: role of a compliant aortic root on leaflet opening and valve orifice area. Ann Thorac Surg. 2004;77:844–51.

    Article  Google Scholar 

  21. Patterson EA, Howard IC, Thornton MA. A comparative study of linear and nonlinear simulations of the leaflets in a bioprosthetic heart valve during the cardiac cycle. J Med Eng Technol. 1996;20:95–108.

    Article  Google Scholar 

  22. Ranga A, Mongrain R, Mendes Galaz R, Biadillah Y, Cartier R. Large-displacement 3D structural analysis of an aortic valve model with nonlinear material properties. J Med Eng Technol. 2004;28:95–103.

    Article  Google Scholar 

  23. Burriesci G, Howard IC, Patterson EA. Influence of anisotropy on the mechanical behaviour of bioprosthetic heart valves. J Med Eng Technol. 1999;23:203–15.

    Article  Google Scholar 

  24. Li J, Luo XY, Kuang ZB. A nonlinear anisotropic model for porcine aortic heart valves. J Biomech. 2001;34:1279–89.

    Article  Google Scholar 

  25. Cheng A, Dagum P, Miller DC. Aortic root dynamics and surgery: from craft to science. Phil Trans R Soc B. 2007;362:1407–19.

    Article  Google Scholar 

  26. Driessen NJ, Bouten CV, Baaijens FP. Improved prediction of the collagen fiber architecture in the aortic heart valve. J Biomech Eng. 2005;127:329–36.

    Article  Google Scholar 

  27. David TE, Feindel CM, Bos J. Repair of the aortic valve in patients with aortic insufficiency and aortic root aneurysm. J Thorac Cardiovasc Surg. 1995;109:345–51.

    Article  Google Scholar 

  28. Grande-Allen KJ, Cochran RP, Reinhall PG, Kunzelman KS. Mechanisms of aortic valve incompetence: finite-element modeling of Marfan syndrome. J Thorac Cardiovasc Surg. 2001;122:946–54.

    Article  Google Scholar 

  29. Robicsek F, Thubrikar MJ, Fokin AA. Cause of degenerative disease of the trileaflet aortic valve: review of subject and presentation of a new theory. Ann Thorac Surg. 2002;73:1346–54.

    Article  Google Scholar 

  30. Grande-Allen KJ, Cochran RP, Reinhall PG, Kunzelman KS. Finite-element analysis of aortic valve-sparing: influence of graft shape and stiffness. IEEE Trans Biomed Eng. 2001;48:647–59.

    Article  Google Scholar 

  31. Cacciola G, Peters GW, Schreurs PJ. A three-dimensional mechanical analysis of a stentless fibre-reinforced aortic valve prosthesis. J Biomech. 2000;33:521–30.

    Article  Google Scholar 

  32. Chandran KB, Kim SH, Han G. Stress distribution on the cusps of a polyurethane trileaflet heart valve prosthesis in the closed position. J Biomech. 1991;24:385–95.

    Article  Google Scholar 

  33. Krucinski S, Vesely I, Dokainish MA, Campbell G. Numerical simulation of bioprosthetic valves mounted on rigid and expansile stents. J Biomech. 1993;26:929–43.

    Article  Google Scholar 

  34. Robicsek F. Leonardo da Vinci and the sinuses of Valsalva. Ann Thorac Surg. 1991;52:328–35.

    Article  Google Scholar 

  35. Beck A, Thubrikar MJ, Robicsek F. Stress analysis of the aortic valve with and without the sinuses of Valsalva. J Heart Valve Dis. 2001;10:1–11.

    Google Scholar 

  36. David TE, Feindel CM, Webb GD, Colman JM, Armstrong S, Maganti M. Long-term results of aortic valve-sparing operations for aortic root aneurysm. J Thorac Cardiovasc Surg. 2006;132:347–54.

    Article  Google Scholar 

  37. Pacini D, Settepani F, De Paulis R, Loforte A, Nardella S, Ornaghi D, Gallotti R, Chiariello L, Di Bartolomeo R. Early results of valve-sparing reimplantation procedure using the Valsalva conduit: a multicenter study. Ann Thorac Surg. 2006;82:865–71.

    Article  Google Scholar 

  38. Driessen NJ, Boerboom RA, Huyghe JM, Bouten CV, Baaijen FP. Computational analyses of mechanically induced collagen fiber remodeling in the aortic heart valve. J Biomech Eng. 2003;125:549–57.

    Article  Google Scholar 

  39. De Hart J, Cacciola G, Schreurs PJ, Peters GW. A three-dimensional analysis of a fibre-reinforced aortic valve prosthesis. J Biomech. 1998;31:629–38.

    Article  Google Scholar 

  40. Chandran PL, Barocas VH. Deterministic material-based averaging theory model of collagen gel micromechanics. J Biomech Eng. 2007;129:137–47.

    Article  Google Scholar 

  41. Migliavacca F, Balossino R, Pennati G, Dubini G, Hsia TY, de Level MR, Bove EL. Multiscale modeling in biofluidynamics: application to reconstructive paediatric cardiac surgery. J Biomech. 2006;39:1010–20.

    Article  Google Scholar 

  42. Holzapfel GA, Gasser TC, Ogden RW. A new constitutive framework for arterial wall mechanics and a comparative study of material models. J Elast. 2000;61:1–48.

    Article  MathSciNet  MATH  Google Scholar 

  43. Weinberg EJ, Mofrad MRK. A multiscale computational comparison of the bicuspid and tricuspid aortic valves in relation to calcific aortic stenosis. J Biomech. 2008;41:3482–7.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad R. Kaazempur Mofrad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Croft, L.R., Kaazempur Mofrad, M.R. (2010). Computational Modeling of Aortic Heart Valve Mechanics Across Multiple Scales. In: Guccione, J., Kassab, G., Ratcliffe, M. (eds) Computational Cardiovascular Mechanics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0730-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0730-1_16

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-0729-5

  • Online ISBN: 978-1-4419-0730-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics